
Chapter 2

Mathematical preliminaries

2.1. Introduction

In this chapter we introduce a number of basic mathematical concepts that will be used heavily through-
out the course. In particular, we review basic set theory, linear algebra, analysis, and partial di↵erential
equations. We will also introduce a convenient short-hand notation known as indicial notation.

2.2. Sets

A set X is a collection of objects, usually referred to as elements or points. An element x is a member of
a set X , denoted x P X . The set Y is a subset of a set X , denoted Y Ä X if y P Y implies y P X . In this
course we will be make extensive use of various numeric sets, e.g., the set of real R and complex C numbers,
natural numbers N “ t1, 2, . . . u, whole numbers N0 “ t0, 1, 2, ¨ ¨ ¨ u, and integers Z. We will also use R°0 to
denote the set of positive real numbers and R•0 as the set of non-negative real numbers. The set of real and
complex numbers, endowed with the standard operations of addition and multiplication, are algebraic fields.
Many of the results in this course hold for both the real and complex numbers and in these cases F is used
to denote either R or C. Elements of a field F are called scalars.

Binary set operations map two sets into a set. Let X and Y be two sets. The union of sets, denoted
X Y Y, is the set of all points belonging to either X or Y. The intersection sets, denoted X X Y, is the set
of all points belonging to both X and Y. The di↵erence between X and Y, denoted X zY, is the set of all
points belonging to X , but not Y (Figure 2.1). The empty set H is the set containing no elements and, by
convention, is a member of every set: X Y H “ X X H “ X . Two sets X , Y are equal if they are subset
of each other X Ä Y and Y Ä X , or their di↵erence is the empty set X zY “ YzX “ H. The union and
intersection operations are communtative, i.e., X Y Y “ Y Y X and, in general, the di↵erence operation is
not X zY ‰ YzX . Operations involving more than two sets are built up by recursively applying binary set
operations.

The Cartesian product between two set X , Y is defined as the set X ˆ Y

X ˆ Y :“ tpx, yq | x P X , y P Yu.

X Y

X Y Y

X Y

X X Y

X Y

X zY

Figure 2.1: Illustration of set operations: union (left), intersection (center), and set di↵erence (right).
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The pair px, yq is ordered, i.e., px, yq ‰ py, xq. We use X
n to denote the Cartesian product of the set X with

itself n times, i.e.,
X

n
“ X ˆ ¨ ¨ ¨ ˆ Xloooooomoooooon

n times

.

In this course, we will make extensive use of the Cartesian product of numeric sets, most notably the
n-product of fields Fn.

The set of m ˆ n matrices with entries belonging to the numeric set S will be denoted Mm,npSq. Similar
notation will be used to denote multidimensional arrays, i.e., Mm,n,kpSq is the set of m ˆ n ˆ k arrays with
entries belonging to S and Mi1,...,id is the set of i1 ˆ ¨ ¨ ¨ id arrays with entries belonging to S. In this course,
we will mostly consider real-valued matrices and arrays S “ R.

2.3. Linear spaces

A linear space is a key mathematical concept upon which most of linear algebra is constructed. While we
will mostly consider real linear spaces, we introduce them over a general field F.

Definition 2.3.1 (Linear space). A linear (vector) space is a nonempty set V and a field F combined with
two operations

` : V ˆ V Ñ V, px, yq fiÑ x ` y (addition)

¨ : F ˆ V Ñ V, p�, xq fiÑ � ¨ x “ �x (multiplication)

such that the following properties hold for all x, y, z P V and ↵,� P F

(a) commutativity w.r.t. addition: x ` y “ y ` x

(b) associativity w.r.t. addition: px ` yq ` z “ x ` py ` zq

(c) identity element w.r.t. addition: there exists 0 P V such that x ` 0 “ x

(d) inverse element w.r.t. addition: there exists ´x P V (additive inverse) such that x ` p´xq “ 0

(e) compatibility of scalar/field multiplication: ↵p�xq “ p↵�qx

(f) identity element w.r.t. scalar multiplication: 1x “ x, where 1 P F is the multiplicitive identity

(g) distributivity of scalar multiplication, vector addition: ↵px ` yq “ ↵x ` ↵y

(h) distributivity of scalar multiplication, field addition: p↵ ` �qx “ ↵x ` �x.

To completely specify a linear space, the set V, field F, and two operations p`, ¨q must be specified, which
leads to the lengthy description: pV,F,`, ¨q. A linear space will be denoted by its set V or set and field
pV,Fq when there is no risk of confusion.

A subset W Ä V, where pV,F,`, ¨q is a linear space, is called a linear subspace, or subspace, if pW,F,`, ¨q

is a linear space, i.e., a linear space over the same field and operations of the base space. Since many of the
linear space properties are inherited from the original space, W is a linear subspace provided ↵x ` �y P W

for any x, y P W and ↵,� P F (closed under addition and scalar multiplication).

Definition 2.3.2 (Linear combination). Let x1, . . . , xn be elements of a linear space V. A vector x P V is a
linear combination of vectors txku

n

k“1 if there exist scalars ↵1, . . . ,↵k P F such that

x “

nÿ

k“1

↵kxk. (2.1)

Definition 2.3.3 (Linear independence). A finite collection of vectors txku
n

k“1 is linearly independent if

nÿ

k“1

↵kxk “ 0 ñ ↵1 “ ¨ ¨ ¨ “ ↵n “ 0. (2.2)

An infinite collection of vectors W is linearly independent if every finite subset of W is linearly independent.
If a collection of vectors is not linearly independent, a vector in the set can be written as a linear combination
of others in the set and is called linearly dependent.
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Let A be a subset of a linear space V. The span of A, denoted spanA, is the set of all finite linear
combintations of vectors from A, i.e.,

spanA “

#
nÿ

k“1

↵kxk

ˇ̌
ˇ̌
ˇ x1, . . . , xn P A,↵1, . . . ,↵n P F, n P N

+
. (2.3)

Note that we explicitly include the summation symbol to clearly specify the range of the summation. The
span of A is the smallest linear subspace of V containing A.

Definition 2.3.4 (Basis). A set of vectors B Ä V, where V is a linear space is a basis of V if B is linearly
independent and spanB “ V.

If there exists a finite basis for V, the linear space in finite-dimensional. Otherwise it is infinite-

dimensional. There are many possible bases of a given linear space; it can be proven that all bases of
a given space must possess the same number of vectors. Thus the number of vectors needed to define a basis
for a linear space is a fundamental property of the space called its dimension.

2.3.1 Scalar spaces

The set of real numbers over the field of real numbers with the usual operations of addition and multiplication
pR,Rq is a linear space of dimension 1. Properties (a)-(h) in Definition 2.3.1 follow trivially from the
properties of real numbers. Similarly, the set of complex numbers over the field of complex numbers pC,Cq

under the usual operations of addition and multiplication is a linear space of dimension 1. Since these spaces
are one-dimensional, any single non-zero element of the space is a basis. In contrast, the set of complex
numbers over the field of real numbers pC,Rq under the usual operations of addition and multiplication is a
linear space of dimension 2 and a basis is t1, iu (i “

?
´1). In this course, any field F will implicitly represent

the linear space pF,Fq under the field operations of addition and multiplication unless otherwise specified.

2.3.2 Array spaces

The space of n vectors with entries belonging to the field F, denoted Fn, i.e., a Cartesian product of F,
is a linear space over the field F under component-wise addition and scalar multiplication pFn

,Fq, i.e., let
v, w P Fn and � P F

pv ` wqi “ vi ` wi, p�vqi “ �vi. (2.4)

Due to the component-wise nature of addition and scalar multiplication, properties (a)-(h) follow trivially
from the properties of a field with the additive identity z P Fn (c) and inverse of x P Fn (d)

z “ p0, . . . , 0q, ´x “ p´x1, . . . , xnq, (2.5)

respectively. This space can be trivially extended to higher dimensional arrays: Mm,npFq and Mi1,...,idpFq.
In this course, any array space, e.g., Fn, Mm,npFq, Mi1,...,idpFq, will implicitly represent the linear space
pFn

,Fq, pMm,npFq,Fq, pMi1,...,idpFq,Fq, respectively, under the operations of component-wise addition and
multiplication unless otherwise specified.

Example 2.1: Matrix subspace
Consider the linear space Mm,npFq. Then the following subset

V “ tA P Mm,npFq | Aij “ 0, i, j ° 1u (2.6)

is a linear subspace of Mm,npFq because for any A,B P V and ↵,� P R, ↵A ` �B P V.

Example 2.2: Linear combination in R2

Consider the linear space R2. The vector px1, x2q P R2 is a linear combination of p1, 0q, p0, 0.1q P R2

because
px1, x2q “ x1p1, 0q ` 10x2p0, 0.1q.
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Example 2.3: Canonical basis and dimension

Consider the linear space Fn. Define the set of canonical unit vectors te
piq

u
n

i“1 where e
piq

P Fn for
i “ 1, . . . , n is the vector with 1 P F as its ith component and all other components are 0 P F:

e
piq
j

“

#
1 if i “ j

0 if i ‰ j.
(2.7)

The set of canonical unit vectors is independent because

nÿ

k“1

↵ke
pkq

“ p↵1, . . . ,↵nq

is the zero element of Fn if and only if ↵1 “ ¨ ¨ ¨ “ ↵n “ 0 P F. The canonical unit vectors span all of Fn:
consider any x P Fn with x “ px1, . . . , xnq, then

x “

nÿ

k“1

xke
pkq

.

2.3.3 Sequence spaces

Let SpFq denote the space of sequences of elements in F (field), i.e.,

SpFq “ tpx1, x2, . . . q | x1, x2, ¨ ¨ ¨ P Fu.

For convenience we use txnu as short-hand notation for px1, x2, . . . q. Addition and scalar multiplication are
defined as

txnu ` tynu “ txn ` ynu, �txnu “ t�xnu (2.8)

for any txnu, tynu P SpFq and � P F. The space pSpFq,Fq under the above operations is a linear space, which
can be verified using the same argument used to prove the Cartesian product of linear spaces is a linear
space (Section 2.3.6).

The space of all bounded sequences of elements in F, denoted SbpFq, is a linear subspace of SpFq, which
we prove as follows. Let ↵,� P F and txnu, tynu P SbpFq, which implies there exists M1,M2 ° 0 such that
|xn| † M1 and |yn| † M2 for all n P N (definition of bounded sequence). From the definition of sequence
addition and scalar multiplication we have

↵txnu ` �tynu “ tznu, (2.9)

where zn “ t↵xn `�ynu. tznu is a bounded sequence because zn † M3, where M3 “ ↵M1 `�M2. Therefore
tznu P SbpFq, which implies SbpFq is a subspace of SpFq. Similarly one can show that the space of all
convergent sequences in F is a subspace of SbpFq. In this course, it is implicitly assumed that SpFq and SbpFq

refer to the linear spaces pSpFq,Fq and pSbpFq,Fq under the operations defined in (2.8).

2.3.4 Function spaces

Let X be a nonempty set and pV,Fq a linear space. The set of all mappings from X to V, denoted FXÑV ,
is a linear space over the field F under the following operations

pf ` gqpxq “ fpxq ` gpxq, p�fqpxq “ �fpxq (2.10)

for f, g P FXÑV and � P F. Properties (a)-(b), (e)-(h) follow from the corresponding properties of the linear
space V since addition and scalar multiplication are defined pointwise, i.e., for each x P X . The additive
identity (c) is the function F0 : X Ñ V such that x fiÑ 0 P V. The additive inverse (d) of any f P FXÑV is
´f : X Ñ V such that x fiÑ ´fpxq, where ´fpxq P V is the additive inverse of fpxq P V.
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2.3.5 Polynomial spaces

A particularly important function space in the study of the finite element method is the space of polynomial
functions. Let ⌦ be an open set of R (we restrict our attention to real polynomial spaces; multidimensional
polynomials are introduced later in the course) and define the space of polynomials over ⌦ as the function
space

Pp⌦q :“

#
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ ppxq “

8ÿ

n“0

anx
n
, x P ⌦, an P R, n P N0

+

The space of polynomials Pp⌦q is a linear space over the field R with operations

pp ` qqpxq “

8ÿ

k“0

pak ` bkqx
k
, p�pqpxq “

8ÿ

k“0

p�akqx
k (2.11)

for ↵,� P R and p, q P Pp⌦q where ppxq “
∞8

k“0 akx
k (ak P R) and qpxq “

∞8
k“0 bkx

k (bk P R). Properties
(a)-(b) follow from the corresponding property of real numbers. The additive identity (c) is the polynomial
p0 P Pp⌦q with coe�cients ak “ 0 for k P N0. The additive inverse (d) of the polynomial p P Pp⌦q where
ppxq “

∞8
k“0 akx

k is ´p P Pp⌦q defined as p´pqpxq “
∞8

k“0p´akqx
k. Properties (e)-(f) follow from the

definition of scalar multiplication and associativity of real numbers. Finally, let ↵,� P R and p, q P Pp⌦q

where ppxq “
∞8

k“0 akx
k (ak P R) and qpxq “

∞8
k“0 bkx

k (bk P R). Then property (g) follows from

↵pp ` qqpxq “ ↵pppxq ` qpxqq “ ↵

˜ 8ÿ

k“0

akx
k

`

8ÿ

k“0

bkx
k

¸
“ ↵

8ÿ

k“0

akx
k

` ↵

8ÿ

k“0

bkx
k

“ p↵p ` �qqpxq

and (h) follows from

p↵ ` �qppxq “ p↵ ` �q

8ÿ

k“0

akx
k

“

8ÿ

k“0

p↵ ` �qakx
k

“ ↵

8ÿ

k“0

akx
k

` �

8ÿ

k“0

akx
k

“ ↵ppxq ` �qpxq.

The degree of a polynomial p P Pp⌦q, denoted deg p, is the exponent of the highest degree monomial
term with non-zero coe�cient, i.e., if k “ deg p then ak ‰ 0 and ak`1 “ ak`2 “ ¨ ¨ ¨ “ 0. An extremely
important subspace of Pp⌦q that will be used extensively in our study of the finite element method is the
space of polynomials of degree at most k

P
k
p⌦q :“

#
p P Pp⌦q

ˇ̌
ˇ̌
ˇ ppxq “

kÿ

n“0

anx
n
, x P ⌦, a0, ¨ ¨ ¨ , ak P R

+
.

P
k
p⌦q is indeed a linear subspace of Pp⌦q because addition and multiplication by a scalar (independent of

x) cannot increase the degree of the polynomial. In this course, we only consider real-valued polynomials
over real domains. Therefore the notation Pp⌦q, Pk

p⌦q (⌦ Ä Rd) will be used to denote the linear space
pPp⌦q,Rq and pP

k
p⌦q,Rq under the standard operations of addition and scalar multiplication of polynomials

(2.11).

Example 2.4: Linear combination of polynomials

Consider the linear space P3
pRq. The element v “ x

2
`x

3
P P

3
pRq is a linear combination of 2`x

2
P P

3
pRq

and 1 ´ x
3
{2 P P

3
pRq because

v “ x
2

` x
3

“ 1p2 ` x
2
q ´ 2p1 ´ x

3
{2q.

Example 2.5: Canonical basis of Pk
p⌦q and dimension

Consider the polynomial space P
k
p⌦q where ⌦ Ä R (open). The set of monomials tx

n
u
k

n“0 defines a
basis of Pk

p⌦q because monomials are linearly independent and any polynomial of order at most k can
be represented as a linear combination of all monomials to degree k. Since there are k ` 1 independent
monomials of degree at most k and this set of monomials is a basis of Pk

p⌦q, we have dimP
k
p⌦q “ k ` 1

Page 17 of 75



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

(finite-dimensional). In contrast, Pp⌦q is an infinite-dimensional linear space.

2.3.6 Cartesian product of linear spaces

Consider a linear space pV,Fq and let V1, . . . ,Vn Ä V be linear subspaces. The Cartesian product space
pW,Fq is a linear space, where W “ V1 ˆ ¨ ¨ ¨ ˆ Vn and the operations are defined component-wise

px1, . . . , xnq ` py1, . . . , ynq “ px1 ` y1, ¨ ¨ ¨ , xn ` ynq

�px1, ¨ ¨ ¨ , xnq “ p�x1, ¨ ¨ ¨ ,�xnq.

Commutativity (a) and associtativity (b) of addition follow from the corresponding property of the generating
space V. The additive identity (c) is z “ p0, ¨ ¨ ¨ , 0q and the additive inverse (d) of any px1, ¨ ¨ ¨ , xnq P Fn is
p´x1, ¨ ¨ ¨ ,´xnq. Properties (e)-(f) are directly inherited from V since scalar multiplication is componenet-
wise. Finally, let px1, . . . , xnq, py1, . . . , ynq P W and ↵,� P F. Then (g) is established as

↵ ppx1, . . . , xnq ` py1, . . . , ynqq “ ↵px1 ` y1, . . . , xn ` ynq “ p↵px1 ` y1q, . . . ,↵pxn ` ynqq

and (h) is established as

p↵ ` �qpx1, . . . , xnq “ pp↵ ` �qx1, . . . , p↵ ` �qxnq

“ p↵x1 ` �x1, . . . ,↵xn ` �xnq

“ p↵x1, . . . ,↵xnq ` p�x1, . . . ,�xnq

“ ↵px1, . . . , xnq ` �px1, . . . , xnq.

2.3.7 Addition of linear spaces

Consider a linear space pV,Fq and let V1,V2 be linear subspaces. The sum space pW,Fq is a linear subspace
of pV,Fq, where

W “ V1 ` V2 :“ tv1 ` v2 | v1 P V1, v2 P V2u , (2.12)

under the same operations of addition and scalar multiplication defined for pV,Fq. To show this take x, y P W

and ↵,� P F. From the definition of W, there must exist x1, y1 P V1 and x2, y2 P V2 such that

x “ x1 ` x2, y “ y1 ` y2,

which implies
↵x ` �y “ ↵px1 ` y1q ` �px2 ` y2q.

Since both V1 and V2 are linear spaces, we have ↵px1 ` y1q P V1 and �px2 ` y2q P V2, which implies
↵x ` �y P W. Therefore, W is a linear subspace.

2.3.8 A�ne spaces

Consider a linear space pV,Fq. An a�ne subspace is a subset A Ä V that can be expressed as the sum of
an arbitrary element a P A and a linear space pW,Fq under the operations of the original space pV ,Fq

A “ a ` W :“ ta ` w | w P Wu . (2.13)

A�ne spaces are not linear spaces because they are not closed under addition or scalar multiplication. To
see this, take x, y P A then, by definition, for any a P A (in general a R W) there exists u, v P W such that
x “ a` u and y “ a` v. Taking a linear combination of these elements with arbitrary scalars ↵,� P F leads
to

z :“ ↵x ` �y “ ↵pa ` uq ` �pa ` vq “ a ` p↵ ` � ´ 1qa ` ↵u ` �vloooooooooooooomoooooooooooooon
RW unless ↵`�“1 or aPW

, (2.14)

which proves a�ne subspaces are not closed under addition and therefore not linear (sub)spaces. However,
they will play an important role in defining essential boundary conditions in a variational setting.
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2.4. Normed spaces

In this section we associate a norm with a linear space to provide a notion of magnitude or length, which
will be used to define, e.g., distance between vectors and convergence of sequences. The concept of a norm
generalizes the absolute value function in R or C.

Definition 2.4.1 (Norm). A function x fiÑ }x} from a linear space V into R is called a norm if

(a) }x} • 0 and }x} “ 0 ùñ x “ 0

(b) }�x} “ |�| }x} for every x P V, � P F
(c) triangle inequality: }x ` y} § }x} ` }y} for every x, y P V.

Example 2.6: Norms in Rn

Consider the linear space Rn and define the following functions:

}¨}1 : Rn
Ñ R, x “ px1, . . . , xnq fiÑ |x1| ` ¨ ¨ ¨ ` |xn|

}¨}
p
: Rn

Ñ R, x “ px1, . . . , xnq fiÑ p|x1|
p

` ¨ ¨ ¨ ` |xn|
p
q
1{p

}¨}8 : Rn
Ñ R, x “ px1, . . . , xnq fiÑ max

iPt1,...,nu
|xi|.

These functions are called the one-norm, p-norm (the most common being the p “ 2 norm), and infinity
norm, respectively, and are valid norms according to Definition 2.4.1. For concreteness, we verify }¨}1 is
a valid norm. Property (a) follows from the fact that for any x P Rn, }x}1 is a summation of nonnegative
numbers, i.e., must be nonnegative and can only be zero if all terms are zero (no negative numbers to
cancel out positive numbers). Property (b) is establish as follow: for any x P Rn and � P R,

}�x}1 “

nÿ

k“1

|�xn| “

nÿ

k“1

|�||xn| “ |�|

nÿ

k“1

|xn| “ |�| }x}1 .

Finally, the triangle inequality follows from the triangle inequality of the absolute value: for any x, y P Rn,
we have

}x ` y}1 “

nÿ

k“1

|xk ` yk| §

nÿ

k“1

p|xk| ` |yk|q “

nÿ

k“1

|xk| `

nÿ

k“1

|yk| “ }x}1 ` }y}1 ,

which establishes }¨}1 as a valid norm.

Definition 2.4.2 (Normed space). A normed space is a linear space V endowed with a norm }¨}.

It is possible to define di↵erent norms on the same linear space so both must be specified to completely
define the normed space: pV, }¨}q. If ambiguous, the field and/or operations of the linear space will be
included in the description: ppV,Fq, }¨}q or ppV,F,`, ¨q, }¨}q. A linear subspace of a normed space is a normed
space with the same norm. A unit vector associated with normed space pV, }¨}q is any x P V such that
}x} “ 1.

Definition 2.4.3 (Convergence in normed spaces). Let pV, }¨}q be a normed space. A sequence txnu of
elements of V converges to x P V if for every ✏ ° 0 there exists M ° 0 such that for every n • M ,
}xn ´ x} † ✏. In this case we say txnu converges to x and write lim

nÑ8
xn “ x or xn Ñ x.

Let x P V, where pV, }¨}q is a normed space, and let r P R°0. The open ball, closed ball, and sphere are
defined as

Bpx, rq :“ ty P V | }y ´ x} † ru

Bpx, rq :“ ty P V | }y ´ x} § ru

Spx, rq :“ ty P V | }y ´ x} “ ru,

(2.15)

respectively. In each case, x P V is the center and r is the radius.
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Figure 2.2: The gray region alone (without boundary ( )) defines the open unit ball Bp0, 1q, the union of the

gray region and boundary ( ) defines the closed unit ball Bp0, 1q, and the boundary ( ) alone defines the unit

sphere Sp0, 1q corresponding to the one-norm }¨}1 (left), two-norm }¨}2 (center), and infinity-norm }¨}8 (right).

Definition 2.4.4 (Open and closed sets). A subset S of a normed space pV, }¨}q is called open if for every
x P S there exists ✏ ° 0 such that Bpx, ✏q Ä S. A subset S is called closed if its complement is open, i.e.,
VzS is open.

Theorem 2.1. A subset S of a normed space pV, }¨}q is closed if and only if every sequence of elements in

S convergent in V has its limit in S, i.e.,

x1, x2, ¨ ¨ ¨ P S and xn ùñ x P S. (2.16)

Definition 2.4.5 (Interior). Let pV, }¨}q be a normed space. The interior of V, denoted V
o, is the union of

all open subsets of V, or equivalently, the set of all points x P V such that Bpx, ✏q Ä V for some ✏ ° 0.

Definition 2.4.6 (Closure). Let S be a subset of a normed space pV, }¨}q. The closure of S, denoted S, is
the intersection of all closed sets containing S, i.e., the smallest closed set containing S.

Theorem 2.2. Let S be a subset of a normed space pV, }¨}q. The closure of S is the set of limits of all

convergent sequences of elements of S.

Definition 2.4.7 (Boundary). The boundary BV of a normed space pV, }¨}q is the (set) di↵erence between
the closure of V and its interior

BV :“ VzV
o
.

Definition 2.4.8 (Dense subset). A subset S of a normed space pV, }¨}q is dense in V if S “ V .

Definition 2.4.9 (Compact set). A subset S of a normed space pV, }¨}q is compact if every sequence txnu

in S contains a convergent subsequence whose limit belongs to S.

Definition 2.4.10 (Bounded subsets). A subset S of a normed space pV, }¨}q is bounded if S Ä Bp0, rq for
some r ° 0.

Theorem 2.3. Compact sets are closed and bounded.

Definition 2.4.11 (Cauchy sequence). Let pV, }¨}q be a normed space. A sequence txnu
8
n“1 Ä V is a Cauchy

sequence if for every ✏ P R°0, there exists N P N such that for all m,n ° N (m,n P N), }xn ´ xm} † ✏.

Definition 2.4.12 (Banach space). A normed space pV, }¨}q is called complete if every Cauchy sequence of
points in V converges to a point in V. A complete normed space is called a Banach space.

2.5. Inner product spaces

Definition 2.5.1 (Inner product). A mapping p¨, ¨q : V ˆ V Ñ R on a linear space V is a called a inner

product if it satisfies
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(i) pu ` v, wq “ pu,wq ` pv, wq for all u, v, w P V

(ii) p↵u, vq for all u, v P V, ↵ P F
(iii) pu, vq “ pv, uq for all u, v P V

(iv) pv, vq • 0 for all v P V

(v) pv, vq “ 0 ñ v “ 0

Definition 2.5.2 (Inner product space). A linear space V together with an inner product defined on it is
called an inner product space and is denoted pV, p¨, ¨qq.

Theorem 2.4 (Cauchy-Schwarz Inequality). If pV, p¨, ¨qq is an inner product space, then for any u, v P V

|pu, vq| §

a
pu, uq

a
pv, vq. (2.17)

The equality holds if and only if u and v are linearly dependent.

Proposition 2.1. }v} :“
a

pv, vq defines a norm in the inner product space pV, p¨, ¨qq and is called the norm

induced by the inner product p¨, ¨q.

Thus any inner product space pV, p¨, ¨qq can be made into a normed space pV, }¨}q under the norm induced
by the inner product }v} :“

a
pv, vq.

Definition 2.5.3. Let pV, p¨, ¨qq be an inner product space. If the associated normed space pV, }¨}q is
complete, then pV, p¨, ¨qq is called a Hilbert space.

Proposition 2.2. Let pV, p¨, ¨qq be a Hilbert space and S Ä V a linear subspace. Then pS, p¨, ¨qq is a Hilbert

space.

2.6. Mappings

Let X and Y be two sets and consider a mapping f : X Ñ Y. If y “ fpxq, then y is the image of x. More
generally, let A Ä X and B Ä Y, then fpAq is the image of the set X and f

´1
pBq is the inverse image or

preimage of B, where
fpAq :“ tfpxq | x P Au, f

´1
pBq :“ tx P X | fpxq P Bu.

Note that the notation f
´1 does not imply f is invertible. If fpX q “ Y, f maps X onto Y (surjective). If,

for each y P Y, f´1
pyq consists of at most one element of X , then f is a one-to-one mapping of X into Y

(injective). Mappings that are both injective and surjective are bijective or invertible. The domain of f ,
denoted Dpfq, is the source set X of the mapping. The range of the mapping, denoted Rpfq, is the set of
points mapped from the domain

Rpfq :“ fpDpfqq “ ty P Y | fpxq “ y for some x P Dpfqu . (2.18)

Now let f P FXÑY where Y is a linear space. The null space of the mapping, N pfq Ä Dpfq, is the set of
points in the domain that map to zero, i.e.,

N pfq :“ tx P Dpfq | fpxq “ 0u. (2.19)

The support of a mapping, supppfq Ä Dpfq, is the set of points in the domain that do not map to zero, i.e.,

supp f :“ tx P Dpfq | fpxq ‰ 0u. (2.20)

Example 2.7: Sine function
Consider the sine function over R: sin P FRÑR, x fiÑ sinx (Figure 2.3). The domain is Dpsinq “ R and
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the range is Rpsinq “ r´1, 1s. The image of A :“ r0,⇡{2s and pre-image of R°0 are

sinA “ r0, 1s, sin´1 R°0 “

§

kPZ
p2k⇡, p2k ` 1q⇡q.

The null space of the sine function is N psinq “ tk⇡ | k P Zu. The sine function maps R onto r´1, 1s

(surjective with respect to the range r´1, 1s), but is not injective (null space contains more than one
point).

´2⇡ ´⇡ 0 ⇡ 2⇡
´1

0

1

x

si
n
x

Figure 2.3: The sine function over the domain r´2⇡, 2⇡s.

2.6.1 Linear and bilinear mappings

Definition 2.6.1 (Linear mapping). Let pV,Fq be a linear space with linear subspaces V1,V2 Ä V. A
mapping T : V1 Ñ V2 is a linear mapping if T p↵x ` �yq “ ↵T pxq ` �T pyq for all x, y P V1 and scalars
↵,� P F.

Definition 2.6.2 (Bilinear mapping). Let pV,Fq be a linear space with linear subspaces V1,V2,V3 Ä V.
A mapping T : V1 ˆ V2 Ñ V3 is a bilinear mapping if T p↵x1 ` �y1, z2q “ ↵T px1, z2q ` �T py1, z2q and
T pz1,↵x2 ` �y2q “ ↵T pz1, x2q ` �T pz1, y2q and for all x1, y1, z1 P V1, x2, y2, z2 P V2, and scalars ↵,� P F.

Let pV,Fq be a linear space with linear subspaces V1,V2,V3 Ä V. The space of all linear mappings from
V1 and V2 is a linear subspace of FV1ÑV2 over the field F with addition and scalar multiplication defined as
in (2.10):

pT1 ` T2qpxq “ T1pxq ` T2pxq, p�T qpxq “ �T pxq

for any x P V1 and � P F. Similarly the space of all bilinear mappings between V1 ˆ V2 and V3 is a linear
subspace of FV1ˆV2ÑV3 over the field F with addition and scalar multiplication are defined as

pT1 ` T2qpx, yq “ T1px, yq ` T2px, yq, p�T qpx, yq “ �T px, yq

for any x P V1 , y P V2, and � P F.

2.6.2 Continuity and boundedness

Definition 2.6.3 (Continuity). Let pV1, }¨}q and pV2, }¨}q be normed spaces. A mapping F : V1 Ñ V2 is
continuous at x0 P V1 if, for any sequence txnu of elements of V1 convergent to x0, the sequence tF pxnqu

converges to F px0q, i.e., }xn ´ x0} Ñ 0 implies }F pxnq ´ F px0q} Ñ 0. If F is continuous at every x0 P V1,
F is called continuous.

Definition 2.6.4 (Bounded linear mapping). A linear mapping T : V1 Ñ V2 is bounded if there exists ↵ ° 0
such that }T pxq} § ↵ }x} for all x P V1.

Theorem 2.5. A linear mapping is continuous if and only if it is bounded.

2.6.3 Classification: function vs. functional vs. operator

Three types of mappings, classified based on their domain and range, will be used extensively throughout
the course. Functions are mappings between numeric or array spaces. Let F be a field (R or C) and
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consider ⌦ Ä Fd (open). A mapping f : ⌦ Ñ Fm is called a m-vector-valued function of d variables because
it maps a vector with d entries to one with m entries. In the special case where m “ 1, the function
is scalar-valued. Vector-valued functions can be written as a collection of m scalar-valued functions, i.e.,
x fiÑ fpxq “ pf1pxq, . . . , fmpxqq where fi : ⌦ Ñ F for i “ 1, . . . ,m. A mapping f : ⌦ Ñ Mm,npFq is a pm,nq-
matrix-valued function of d variables and mappings to higher dimensional arrays are defined similarly, e.g.,
f : ⌦ Ñ Mm,n,kpFq is an array-valued function. Matrix-valued and array-valued functions can also be written
as arrays of scalar-valued functions, e.g., f : ⌦ Ñ Mm,npFq can be written as

x fiÑ fpxq “

»

—–
f11pxq . . . f1npxq

...
. . .

...
fm1pxq . . . fmnpxq

fi

�fl ,

where fij : ⌦ Ñ F for i “ 1, . . . ,m, j “ 1, . . . , n. In addition to functions, we will consider functionals,
mappings between a function space and a field, and operators, mappings between function spaces.

Example 2.8: Functions vs. functionals vs. operators
Any element of FRÑR is a function, e.g.,

sin : R Ñ R; x fiÑ sinx, | ¨ | : R Ñ R; x fiÑ |x|,
?

¨ : R Ñ R; x fiÑ
?
x (2.21)

are functions. Any definite integral
≥
b

a
: FRÑR Ñ R is a functional, e.g.,

ª
b

a

sinx dx “ cospaq ´ cospbq,

ª 2

´1
|x| dx “ 2.5,

ª
a

0

?
x dx “

2

3
a
3{2 (2.22)

for a, b P R are functionals. The derivative and antiderivative are operators

d

dx
: FRÑR Ñ FRÑR,

ª
x

0
: FRÑR Ñ FRÑR (2.23)

because they map functions to other functions, e.g., the derivative operator maps sin P FRÑR to cos P

FRÑR and the antiderivative operator maps cos to sin:

d

dx
psinq “ cos,

ª
x

0
cos “ sin . (2.24)

2.7. Indicial notation

For convenience, brevity, and simplicity, we will make extensive use of indicial notation and Einstein summa-
tion convention that writes vector/tensor operations explicitly in terms of their components in an abbreviated
form by eliminating summation symbols.

2.7.1 Range convention

When an equation involves indices, called free indices, with each character appearing once, it is understood
that the equation holds over the range of that variable. Free indices must appear exactly once in every term
of an equation, except when the term is numeric, in which case it is repeated for each equation.

Example 2.9: Range convention

Let x P R2, then

xi “ 1 ñ

#
x1 “ 1

x2 “ 1

Page 23 of 75



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Let a, b, c P R3, then

a
2
i

“ b
2
i

` c
2
i

ñ

$
’&

’%

a
2
1 “ b

2
1 ` c

2
1

a
2
2 “ b

2
2 ` c

2
2

a
2
3 “ b

2
3 ` c

2
3

Let A P Mm,npRq, u P Rm, v P Rn, then

Aij “ uivj ñ

$
’’’’’’’’&

’’’’’’’’%

A11 “ u1v1

¨ ¨ ¨

Am1 “ umv1

A12 “ u1v2

¨ ¨ ¨

Amn “ umvn

2.7.2 Summation convention

If an index, called a dummy index, appears twice in a term of an equation, summation over the range of
the variable is implied (Einstein summation convention). Because a dummy index is defined as an index
appearing twice in a term, they must come in pairs.

Example 2.10: Summation convention

Let A P M2,3,2pRq, B P M2,2pRq, and y P R3, then

Bij “

3ÿ

k“1

Aikjyk ñ Bij “ Aikjyk ñ

$
’’’&

’’’%

B11 “ A111y1 ` A121y2 ` A131y3

B21 “ A211y1 ` A221y2 ` A231y3

B12 “ A112y1 ` A122y2 ` A132y3

B22 “ A212y1 ` A222y2 ` A232y3

Let A P Mm,npRq, v P Rm and w P Rn, then

v “ Aw ñ vi “

nÿ

j“1

Aijwj ñ Aijwj

2.7.3 Rules

Indicial notation is a collection of conventions or rules that can save considerable time and minimize mistakes
if they are meticulously followed. Two indicial notation equations are equivalent provided they correspond
to the same expanded equation. This implies: 1) the relative index position is important, i.e., vi “ Aijwj

is not the same as vi “ Ajiwj unless A is symmetric (the latter may not even be valid unless m “ n),
2) the character used to represent indices is not important provided the relative position is maintained,
i.e., vi “ Aijwj is equivalent to vr “ Arsws, 3) the relative ordering of terms in the equation and factors
in a term is unimportant, i.e., vi “ Aijwj ` yi is equivalent to vi “ yi ` wjAij , and 4) the character
used to represent dummy index pairs can be swapped freely provided the pair structure is maintained, i.e.,
a “ bjj ` ckk “ bkk ` cjj “ bjj ` cjj . The rules are summarized as:

1) The same free indicies must appear in every term of an equation.

2) A character used as a free index should never be used as a dummy index.

3) The same character should never be used to represent multiple dummy index pairs in a term of an
equation.
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4) An index should appear no more than twice in any term of an equation.

Example 2.11: Vector, matrix operations
Standard vector and matrix operations in vector and indicial notation:

– Scalar times vector : let ↵ P R and v, w P Rn

w “ ↵v ñ wi “ ↵vi

– Vector addition: let a, b, c P Rn

c “ a ` b ñ ci “ ai ` bi

– Vector contraction (dot product): let ↵ P R and a, b P Rn

a ¨ b “

nÿ

i“1

aibi “ aibi

– Two norm of vector :

}v}2 “
?
v ¨ v “

gffe
nÿ

i“1

v
2
i

“
?
vivi

– Scalar times matrix : let ↵ P R and A,B P Mm,npRq

B “ ↵A ñ Bij “ ↵Aij

– Matrix addition: let A,B,C P Mm,npRq

C “ A ` B ñ Cij “ Aij ` Bij

– Matrix transpose: let A P Mm,npRq, B P Mn,mpRq

B “ A
T

ñ Bij “ Aji

– Matrix-vector contraction (matrix-vector product): let A P Mm,npRq, v P Rn, w P Rm

w “ Av ñ wi “ Aijvj

– Matrix-matrix product I : let A P Mm,lpRq, B P Ml,npRq, C P Mm,npRq

C “ AB ñ Cik “

lÿ

j“1

AijBjk “ AijBjk

– Matrix-matrix product II : let A P Ml,mpRq, B P Ml,npRq, C P Mm,npRq

C “ A
T
B ñ Cik “

lÿ

j“1

AjiBjk “ AjiBjk

– Matrix-matrix product III : let A P Mm,lpRq, B P Mn,lpRq, C P Mm,npRq

C “ AB
T

ñ Cik “

lÿ

j“1

AijBkj “ AijBkj
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– Matrix-matrix product IV : let A P Ml,mpRq, B P Mn,lpRq, C P Mm,npRq

C “ A
T
B

T
ñ Cik “

lÿ

j“1

AjiBkj “ AjiBkj

– Double contraction of matrix :

A : B “

mÿ

i“1

nÿ

j“1

AijBij “ AijBij

– Trace of matrix :

trA “

nÿ

i“1

Aii “ Aii

– Frobenius norm of matrix :

}A}
F

“

b
trpAAT q “

a
AijAij

2.7.4 Kronecker Delta

The Kronecker delta �
N

ij
is the indicial notation representation of the N ˆ N identity matrix, i.e.,

�
N

ij
“

#
1 if i “ j

0 if i ‰ j

for i, j “ 1, . . . , N . We will drop the superscript when no risk of confusion. This implies its trace, is �N
kk

“ N .
The Kronecker delta also acts as a replacement operator that replaces ai with aj when multiplied by �ij , i.e.,
ai�ij “ a1�1j ` a2�2j ` ¨ ¨ ¨ ` aN�Nj “ aj .

Example 2.12: Kronecker Delta
The replacement property implies

Aij�js “ Ais, �jk�km “ �jm, Aij�jkBkl�lm “ AikBkm, Cijkl�ij�kl “ Cjjkk.

2.8. Di↵erentiation and smoothness of functions

In this section we consider only functions between real array spaces; the extension to complex spaces is
straightforward, but not needed for this course.

2.8.1 Scalar-valued functions of one variable

Consider a real-valued function over ⌦ Ä R (open) f : ⌦ Ñ R. The derivative of f at x P ⌦ is defined as

f
1
pxq “ lim

tÑx

fptq ´ fpxq

t ´ x
, (2.25)

provided the limit exists, in which case f is said to be di↵erentiable at x. If f is di↵erentiable at all x P ⌦ it
is simply referred to as di↵erentiable. In this case we define the derivative function f

1 : ⌦ Ñ R, also denoted
df

dx
, according to the limit (2.25). If the derivative function f

1 is continuous at all x P ⌦, the function f is
said to be continuously di↵erentiable. Higher derivatives of f are defined by applying (2.25) recursively, i.e.,
the third derivative f

p3q : ⌦ Ñ R is the derivative function of the second derivative f
2
: ⌦ Ñ R, which is the

derivative function of f 1
pxq. A function g : ⌦ Ñ R is the kth order derivative of f : ⌦ Ñ R if it results from
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recursively applying the di↵erentiation formula k times. Any function that possesses k derivative functions
is said to be k times di↵erentiable. If the derivative functions are continuous it is k times continuously

di↵erentiable. A function is infinitely di↵erentiable if k derivative functions exist for any k P N.

2.8.2 Array-valued functions of multiple variables

Now consider a vector-valued function over ⌦ Ä Rm (open), f : ⌦ Ñ Rn, where x fiÑ pf1pxq, . . . , fnpxqq and
fi : ⌦ Ñ R for i “ 1, . . . , n are real-valued functions. The partial derivative of fi : ⌦ Ñ R at x P ⌦ is

Bfi

Bxj

pxq :“ lim
tÑ0

fipx ` te
pjq

q ´ fipxq

t
, (2.26)

provided the limit exists, where e
pjq

P Rn is the canonical unit vector defined in (2.7). In the case where
a partial derivative exist for all x P ⌦, we define the partial derivative function Bfi

Bxj
: ⌦ Ñ R. Similar to

the single variable case, partial di↵erentiation can be applied recursively to construct higher order derivative

functions, including mixed derivatives, i.e., the mixed second derivative function B2
fk

BxiBxj
is defined as

B
2
fk

BxiBxj

pxq :“
B

´
Bfk
Bxi

¯

Bxj

pxq. (2.27)

The order of the partial derivative is the total number of partial derivatives taken. For su�ciently smooth
functions, the ordering in which partial di↵erentiation is applied can be interchanged without modifying the
resulting function.

To succinctly describe partial derivatives of vector-valued functions we rely on multi-index notation. An
n-dimensional multi-index is an element ↵ P Nn

0 with entries ↵ “ p↵1, . . . ,↵nq. The order or magnitude
of the multi-index is given by its sum: |↵| “

∞
n

i“1 ↵i. We will use the following multi-index notation to
construct a monomial over Rn: let x P Rn with components x “ px1, . . . , xnq and define

x
↵ :“

nπ

i“1

x
↵i
i
.

It will also be convenient to use the multi-index to index into a multi-dimensional array A P Mm1¨¨¨mnpRq:
define

A↵ :“ A↵1¨¨¨↵n .

Finally, the multi-index notation will be used to define a partial derivative of a multi-dimensional function:

pD↵fqpxq :“
B

|↵|
f

Bx
↵1
1 ¨ ¨ ¨ Bx

↵n
n

pxq, (2.28)

The order of the derivative is given by |↵|.
For convenience, we adopt the comma convention as a shorthand notation for partial derivatives. For

an array of any order, all indices appearing after a comma indicate coordinates along which derivatives are
taken; all indices appearing before the comman have their usual meaning as indices of the array. The number
of indices appearing after the comma determines the order of the derivative. For example, we write

fi,j –
Bfi

Bxj

, fk,ij –
B
2
fk

BxiBxj

. (2.29)

In the remainder of the section, we introduce a number of useful derivative functions that will be used
extensively throughout the course.

Definition 2.8.1 (Jacobian matrix). Let f : ⌦ Ñ Rm be a function from an open set ⌦ Ä Rn. The Jacobian
matrix function, or Jacobian, denoted J : ⌦ Ñ Mm,npRq is the matrix-valued function of partial derivatives
of f , i.e.,

Jijpxq :“
Bfi

Bxj

pxq “ fi,jpxq. (2.30)
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Definition 2.8.2 (Gradient of scalar-valued function). Let f : ⌦ Ñ R be a scalar-valued function from
an open set ⌦ Ä Rn. The gradient is defined as the vector-valued function of partial derivative functions
rf : ⌦ Ñ Rn

rrfpxqs
i

“
Bf

Bxi

pxq “ f,ipxq (2.31)

Definition 2.8.3 (Gradient of vector-valued function). Let f : ⌦ Ñ Rm be a vector-valued function from
an open set ⌦ Ä Rn. The gradient is defined as the matrix-valued function of partial derivative functions
rf : ⌦ Ñ Mn,mpRq

rrfpxqs
ij

“
Bfj

Bxi

pxq “ fj,ipxq “ Jjipxq, (2.32)

which coincides with the transpose of the Jacobian of f .

Definition 2.8.4 (Gradient of array-valued function). Let f : ⌦ Ñ Mm1,...,md be a array-valued function
from an open set ⌦ Ä Rn. The gradient is defined as the array-valued function of partial derivative functions
rf : ⌦ Ñ Mn,m1,...,mdpRq

rrfpxqs
i1...id`1

“
Bfi2...id`1

Bxi1

pxq “ fi2...id`1,i1 . (2.33)

Definition 2.8.5 (Divergence of vector-valued function). Let f : ⌦ Ñ Rm be a vector-valued function from
an open set ⌦ Ä Rn. The divergence is defined as the real function r ¨ f : ⌦ Ñ R

r ¨ fpxq “

nÿ

i“1

Bfi

Bxi

pxq “ fi,ipxq. (2.34)

Definition 2.8.6 (Divergence of matrix-valued function). Let f : ⌦ Ñ Mm,npRm
q be a matrix-valued

function from an open set ⌦ Ä Rn. The divergence is defined as the vector-valued function r ¨ f : ⌦ Ñ Rm

rr ¨ fpxqsi “

nÿ

j“1

Bfij

Bxj

pxq “ fij,jpxq. (2.35)

Definition 2.8.7 (Divergence of array-valued function). Let f : ⌦ Ñ Mn1,...,ndpRm
q be a array-valued

function from an open set ⌦ Ä Rnd . The divergence is defined as the array-valued function r ¨ f : ⌦ Ñ

Mn1,...,nd´1

rr ¨ fpxqs
i1...id´1

“

ndÿ

j“1

Bfi1...id´1j

Bxj

pxq “ fi1...id´1j,jpxq (2.36)

Definition 2.8.8 (Laplacian of scalar-valued function). Let f : ⌦ Ñ R be a scalar-valued function from an
open set ⌦ Ä Rn. The Laplacian is defined as the divergence of the gradient �f : ⌦ Ñ R

�fpxq “ pr ¨ rfqpxq “

mÿ

i“1

B
2
f

BxiBxi

pxq “ f,iipxq. (2.37)

2.8.3 Spaces of smooth functions

Let ⌦ Ä Rn be an open set and define Cp⌦q as the space of continuous real-valued functions over ⌦

Cp⌦q “ tf : ⌦ Ñ R | f continuous on ⌦u .

Similarly, define C
k
p⌦q (k P N0) as the space of real-valued functions over ⌦ with continuous partial deriva-

tives of order k

C
k
p⌦q “ tf : ⌦ Ñ R | f has continuous partial derivatives of order k on ⌦u

and C
8

p⌦q as the space of infinitely di↵erentiable (partial derivatives of any order exists and are continuous)
real-valued functions over ⌦

C
8

p⌦q “ tf : ⌦ Ñ R | f infinitely di↵erentiable on ⌦u .
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Figure 2.4: The value ( ), first derivative (if exists) ( ), and second derivative (if exists) ( ) of the Heaviside

function (left), absolute value function (center), and piecewise polynomial function defined in (2.40) (right).

An important subset of C8
p⌦q, denoted C

8
c p⌦q, is the set of compactly supported C

8
p⌦q functions, i.e.,

f P C
8
c p⌦q implies f P C

8
p⌦q and supp f is a compact set.

By definition we have C0
p⌦q “ Cp⌦q. We also use C´1

p⌦q to denote the space of real-valued discontinuous,
i.e., not continuous, functions over ⌦

C
´1

p⌦q “ tf : ⌦ Ñ R | f discontinuous u .

Example 2.13: Real-valued functions
Most real-valued function with which we are familiar, e.g., polynomials, exponential and trigonometric
functions, are infinitely di↵erentiable (belong to C

8
pRq). The Heaviside function H : R Ñ R is defined as

x fiÑ Hpxq :“

#
1 if x ° 0

0 if x † 0.
(2.38)

Sometimes, for convenience, the Heaviside function is defined at x “ 0: Hp0q “ 0.5. The Heaviside
function is discontinuous: H P C

´1
pRq (Figure 2.4). The absolute value function | ¨ | : R Ñ R, defined as

x fiÑ |x| :“

#
x if x • 0

´x if x † 0
, (2.39)

is a continuous function but not di↵erentiable at 0: | ¨ | P C
0
pRq (Figure 2.4). Functions belonging to

C
k
p⌦q are trickier to construct and usually take the form of piecewise polynomial functions with special

conditions where di↵erent polynomials meet. For example, the function p : R Ñ R defined as

x fiÑ ppxq :“

#
´x

2
` x if x • 0

x
2

` x if x † 0
(2.40)

is continuously di↵erentiable p P C
1
p⌦q (Figure 2.4), which can be verified by observing the function is

C
8

pRzt0uq and continuous at 0 (but the derivative is not).

To construct the corresponding function spaces for vector-valued functions, observe that any function
f : ⌦ Ñ Rn, where ⌦ is an open subset of Rm and x fiÑ pf1pxq, . . . , fnpxqq, is a Cartesian product of real-
valued functions fi : ⌦ Ñ R for i “ 1, . . . , n. This implies that function spaces for vector-valued functions
can easily be constructed as Cartesian products of function spaces for scalar-valued functions, e.g., rC

8
p⌦qs

n

is the space of infinitely di↵erentiable n-vector-valued functions over ⌦.
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2.9. Integral identities

2.9.1 Divergence theorem

The divergence theorem relates the volume integral of the divergence of a continuously di↵erentiable function
to a boundary integral of the function itself. In one-dimension, this is the well-known fundamental theorem
of calculus: let � : R Ñ R be continuously di↵erentiable in the interval ra, bs Ä R, i.e., � P C

1
pra, bsq, then

ª
b

a

�
1
pxq dx “ r�s

b

a
“ �pbq ´ �paq. (2.41)

In multiple dimensions, let ⌦ be an compact subset of Rd with piecewise smooth boundary B⌦ and outward
unit normal n : B⌦ Ñ Rd. The divergence theorem states that the following identities hold

ª

⌦
fi,i dV “

ª

B⌦
fini dS, (2.42)

where f : ⌦ Ñ Rn is a continuously di↵erentiable, vector-valued function. It can be extended to matrix-
valued functions: ª

⌦
Fij,j dV “

ª

B⌦
Fijnj dS, (2.43)

F : ⌦ Ñ Mm,npRq is a continuously di↵erentiable matrix-valued function.

2.9.2 Integration-by-parts

A particularly useful integral identity for our study of the finite element method is integration-by-parts,
which follows directly from the divergence theorem, and allows one to move a derivative from one term in
a product to another. Let ⌦ be an compact subset of Rd with piecewise smooth boundary B⌦ and outward
unit normal n : B⌦ Ñ Rd. Then consider the continuously di↵erentiable vector-valued function f : ⌦ Ñ Rd

and continuously di↵erentiable real-valued function w : ⌦ Ñ R. The product rule of di↵erentiation states:

pfiwq,i “ fi,iw ` fiw,i. (2.44)

Next we integrate this equation over ⌦ and apply the divergence theorem to the term on the left side to
obtain ª

⌦
fi,iw dV “

ª

B⌦
wfini dS ´

ª

⌦
fiw,i, (2.45)

which is written in vector notation as
ª

⌦
wr ¨ f dV “

ª

B⌦
wf ¨ ndS ´

ª

⌦
f ¨ rw dV. (2.46)

For the special case of d “ 1, this reduces to the well-known integration-by-parts formula

ª
b

a

wf
1
dx “ rwf s

b

a
´

ª
b

a

fw
1
dx, (2.47)

which can easily be derived directly from the product rule d

dx
pwfq “ w

1
f ` wf

1 and fundamental theorem
of calculus. Finally, define � P C

2
p⌦q and f : ⌦ Ñ Rd, where fi :“ �,i. In this case, the integration-by-parts

formula yields ª

⌦
w�,ii dV “

ª

B⌦
w�,ini dS ´

ª

⌦
w,i�,i dV, (2.48)

which is written in vector notation as
ª

⌦
w�� dV “

ª

B⌦
wr� ¨ ndS ´

ª

⌦
rw ¨ r� dV. (2.49)
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2.10. Partial di↵erential equations

A partial di↵erential equation (PDE) is a relationship between an (unknown) function of several variables
and its partial derivatives over a domain ⌦ Ä Rd with boundary B⌦. If the function only depends on one
variable, it is called an ordinary di↵erential equation. Let upx1, . . . , xd, tq be an unknown function (dependent
variable) with independent variables x1, . . . , xd, t. The first d variables (x1, . . . , xd) usually represent spatial
variables and the last variable (t) is usually time.

To be well-posed, a PDE must be equipped with boundary conditions (BCs) and an initial condition (IC).
Problems that depend on only space x1, . . . , xd (not time t) require only BCs (not an IC) and are called
boundary value problem. On the other hand, problems that depend on only time t (not space x1, . . . , xd)
require only an IC (not BCs) and are called initial value problem. Problems that depends on both space and
time are called initial boundary value problems and must be equipped with both BCs and an IC.

The order of the PDE is determined by the highest derivative in the equation. A PDE is called linear

if it is of first degree in all its field (dependent) variables and their partial derivatives. A system of partial
di↵erential equations is a collection of several PDEs for several unknown functions. PDEs that do not depend
on time t are called static or steady, otherwise they are time-dependent or unsteady.

Example 2.14: Poisson equation

The Poisson equation is a second-order, linear, static PDE over a domain ⌦ Ä Rd

´ �u “ f. (2.50)

The solution of the Poisson equation over a disk (d “ 2) subject to homogeneous essential boundary
conditions is shown in Figure 2.5.

Figure 2.5: Solution of the Poisson equation over the disk.

Example 2.15: Linear elasticity

The linear elasticity equations are a system of d second-order, linear, static PDEs over a domain ⌦ Ä Rd

that model deformation of a linear elastic structure under infinitesimal strains

�ij,j “ fi, �ij “ Cijkl✏kl, ✏kl “
1

2
puk,l ` ul,kq (2.51)

where all indices range from 1, . . . , d, u : ⌦ Ñ Rd is the (unknown) displacement function, ✏ : ⌦ Ñ Md,dpRq

is the strain, � : ⌦ Ñ Md,dpRq is the stress, C : ⌦ Ñ Md,d,d,dpRq is the elasticity tensor, and f : ⌦ Ñ Rd

is the body load. The solution of the linear elasticity equations over the Batman domain (d “ 2) subject
to some boundary conditions is shown in Figure 2.6.
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Figure 2.6: Solution of the linear elasticity equations over the Batman domain.

Example 2.16: Incompressible Navier-Stokes equations
The incompressible Navier-Stokes equations are a system of d`1 second-order, nonlinear, time-dependent
PDEs over a domain ⌦ Ä Rd that model flow of a fluid with constant density

´ p⇢⌫vi,jqj ` ⇢vjvi,j ` P,i “ 0, vj,j “ 0 (2.52)

where v : ⌦ Ñ Rd is the (unknown) fluid velocity, P : ⌦ Ñ R°0 is the (unknown) fluid pressure, ⇢ P R°0 is
the fluid density, and ⌫ : ⌦ Ñ R°0 is the fluid viscosity. The solution of the incompressible Navier-Stokes
equations in the steady limit over the ND logo domain (d “ 2) subject to some boundary conditions is
shown in Figure 2.7.

Figure 2.7: Solution of incompressible Navier-Stokes equation over the ND domain.

Example 2.17: Compressible Euler equations
The compressible Euler equations are a system of d ` 2 first-order, nonlinear, time-dependent PDEs over
a domain ⌦ Ä Rd that models high-speed gas flows

⇢,t ` p⇢vjq,j “ 0, p⇢viq,t ` p⇢vivj ` P �ijq,j “ 0, p⇢Eq,t ` p⇢Hviq,j “ 0 (2.53)

where ⇢ : ⌦ Ñ R°0 is the fluid density, v : ⌦ Ñ R is the fluid velocity, E : ⌦ Ñ R°0 is the total energy,
H : ⌦ Ñ R°0 is the total enthalpy, and P : ⌦ Ñ R°0 is the pressure. The solution of the compressible
Euler equations in the steady limit over a NACA0012 airfoil (d “ 2) subject to some boundary conditions
is shown in Figure 2.8.
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Figure 2.8: Solution (Mach) of compressible Euler equations for a transonic (left) and supersonic inlet flow (right).

2.11. Summary

This chapter provided a detailed account of the mathematical concepts that will be used throughout the
document:

1) Indicial notation is a set of rules and conventions that can significantly reduce shorten and clarify notation
involving vector/tensor algebra and calculus.

2) A linear space is the fundamental mathematical space upon which most of the development in this section
is built. It a set endowed with two operations: addition and scalar multiplication. A linear space is an
abstraction of vectors in Euclidean spaces.

3) A basis is a linearly independent set of vectors that spans a linear space. The (unique) number of vectors
in a basis of a linear space is the dimension of the space.

4) A normed space is a linear space equipped with a norm, which introduces the concept of distance and
length. This provides the necessary structure to define convergence and a topology (open/closed sets).

5) Mappings are transformations between two sets. Linear and bilinear mappings possess the special property
of linearity in (both) its arguments. For mappings between numerical sets, we introduced the concept
of di↵erentiation and carefully considered relevant cases: single vs. multiple variables, scalar-valued vs.
vector-valued vs. matrix-valued vs. array-valued mappings.

6) The divergence theorem relates the volume integral of the divergence of a continuously di↵erentiable
function to a boundary integral of the function itself. Integration-by-parts is a useful identity to exchange
a derivative between terms in a product.

7) Partial di↵erential equations are classified by their order (highest derivative), linear vs. nonlinear, the
behavior of their solutions, scalar PDE vs. systems of PDEs, and static vs. time-dependent.
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