
Chapter 3

Weighted residual methods

3.1. Introduction

In this chapter we introduce variational or weighted residual formulation of PDEs. To facilitate the discussion,
we limit ourselves to spaces of continuous functions where the notion of pointwise evaluation is well-defined.
This can be generalized considerably using Lebesgue integration and Sobolev spaces; however, we defer that
development to later chapters.

3.2. Strong formulation

Let ⌦ Ä Rd (open) and consider a PDE of order m in residual form: find u P U Ä C
m

p⌦q such that

Rrus “ 0, (3.1)

where R : Cm
p⌦q Ñ C

0
p⌦q is a di↵erential operator of order m. This is called the strong formulation of the

PDE because it enforces the governing equations pointwise throughout the domain and has strict regularity
requirements on the solution (m continuous derivatives). The PDE is equipped with essential BCs along
B⌦D Ä B⌦ and natural BCs along B⌦N Ä B⌦, where B⌦ “ B⌦D Y B⌦N ; essential and natural boundary
conditions are defined in Section 3.5.2. The space U Ä C

m
p⌦q, called the solution or trial space, consists of

functions in C
m

p⌦q that satisfy the boundary conditions of the PDE

U :“ tu P C
m

p⌦q | u satisfies BCs on B⌦u . (3.2)

Notice that U is not, in general, a linear subspace of Cm
p⌦q due to the requirement that functions satisfy

the BCs, e.g., suppose a boundary condition states u “ g ‰ 0 on B⌦, then u1, u2 P U are such that
u1pxq “ u2pxq “ gpxq for x P B⌦, but pu1 ` u2qpxq “ u1pxq ` u2pxq “ 2gpxq ùñ u1 ` u2 R U and therefore
U is not a linear space (not closed under addition). Under certain conditions, e.g., the PDE is linear, the
trial space is a�ne (Section 2.3.8), i.e., U “ ' ` U

0 where ' P U is arbitrary and U
0 is a linear space. The

linear space U
0 associated with the a�ne subspace U is the set of functions that satisfy the homogeneous

form of the BCs

U
0 :“ tu P C

m
p⌦q | u satisfies homogeneous BCs on B⌦u . (3.3)

Example 3.1: Strong formulation of second-order PDE in one dimension
For concreteness consider the following second-order PDE (m “ 2) in one dimension (d “ 1) over the
unit interval ⌦ :“ p0, Lq:

Rrus :“ ´
d

dx

„
a
du

dx

⇢
´ f, (3.4)
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where a : ⌦ Ñ R and f : ⌦ Ñ R are known smooth functions, with BCs

up0q “ u0,

ˆ
a
du

dx

˙

x“L

“ QL, (3.5)

where u0, QL P R are known scalars. The first condition is an essential BC and the second is a natural
BC, which implies B⌦D “ t0u and B⌦N “ t1u. The a�ne trial space for this problem is

U :“

"
u P C

2
p⌦q

ˇ̌
ˇ̌ up0q “ u0,

ˆ
a
du

dx

˙

x“L

“ QL

*
(3.6)

and the corresponding linear space is

U
0 :“

"
u P C

2
p⌦q

ˇ̌
ˇ̌ up0q “ 0,

ˆ
a
du

dx

˙

x“L

“ 0

*
. (3.7)

While the strong formulation is easy to understand and usually relates to physical principles (conservation
of mass, momentum, energy), it is not always convenient to use as a foundation for numerical methods.

Example 3.2: Strong formulation is not always suitable as foundation of numerical methods

Consider the following problem: find u P C
2
p⌦q where ⌦ :“ p0,⇡{2q such that

´
d

dx

„
e
x
du

dx
pxq

⇢
“ sinpxq (3.8)

holds for all x P ⌦ and satisfies the boundary conditions

up0q “ 1,

„
e
x
du

dx
pxq

⇢

x“⇡{2
“ 0. (3.9)

This fits the general form of (3.4) with apxq “ e
x, fpxq “ sinpxq, L “ ⇡{2, u0 “ 1, QL “ 0. The solution

of this boundary value problem can be determined by direct integration

upxq “
1

2

“
3 ` e

´x
psinpxq ´ cospxqq

‰
. (3.10)

However, a numerical method cannot search the infinite-dimensional trial space

U :“

#
u P C

2
p⌦q

ˇ̌
ˇ̌
ˇ up0q “ 1,

„
e
x
du

dx
pxq

⇢

x“⇡{2
“ 0.

+
(3.11)

for the solution, so we choose to approximate the solution in a finite-dimensional space. We choose an
approximation uh P P

3
p⌦q as

upxq « uhpxq :“ 1 ` c1px
2

´ ⇡xq ` c2

ˆ
x
3

´
3⇡2

4
x

˙
, (3.12)

where c1, c2 P R are unknown scalars, to ensure uh P U (satisfies the boundary conditions of (3.8)):
uhp0q “ 1 and re

x
u

1
h

pxqs
x“⇡{2 “ 0. Since the uh satisfies the boundary conditions (3.9), if we can

determine c1, c2 P R such that uh satisfies the PDE in (3.8), uh will be a solution of the boundary value
problem. To determine the unknown scalars, we substitute the expression for uh into the governing
equation to yield the following equation:

2
´
⇡

2
´ 1 ´ x

¯
c1 ´ 3

ˆ
x
2

` 2x ´
⇡
2

4

˙
c2 “ e

´x sinpxq

Unfortunately these equations are inconsistent, i.e., there are no c1, c2 P R that makes this equation true
for all x P p0,⇡{2q. This shows that, by using the strong formulation, we cannot find a solution to (3.8)
of the form (3.12). It is not surprising that this approach failed: we are requiring the PDE be satisfied
pointwise, but using an approximation that cannot represent its solution. To avoid this issue, we turn
to variational formulations of the PDE, which will be the foundation of a number of numerical methods,
including the finite element method.
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3.3. Weighted residual formulation

The weighted residual or weighted-integral formulation corresponding to the strong form(ulation) of the PDE
over an open domain ⌦ Ä Rd is: find u P U Ä C

m
p⌦q such that

ª

⌦
wRrus dV “ 0 (3.13)

for all w P C
8
c p⌦q. This weighted residual formulation of the PDE is equivalent to the strong formulation,

i.e., if u is a solution of the strong form, it is a solution of the weighted residual form and vice versa. This
equivalence can be proven by invoking the fundamental lemma of variational calculus (Lemma 3.1) applied
to the residual function Rrus.

Lemma 3.1 (Fundamental Lemma of Variational Calculus). Consider an open domain ⌦ Ä Rd
and suppose

G P C
0
p⌦q. Then, G “ 0 on ⌦ is equivalent to the weighted residual statement:

ª

⌦
G⌘ dV “ 0 (3.14)

for all ⌘ P C
8
c p⌦q.

Proof. G “ 0 immediately implies the weighted residual statement. To show the converse is true, suppose
the weighted residual statement holds. It can be shown that there exists a sequences of functions Gn P C

8
c p⌦q

that converges to G P L
2
p⌦q Ä C

0
p⌦q (because C

8
c p⌦q is dense in L

2
p⌦q, where L

2
p⌦q is the set of square

integrable functions over ⌦). From this, we have

lim
nÑ8

ª

⌦
GpxqGnpxq dx “

ª

⌦
|Gpxq|

2
dx.

From our assumption that the weighted residual statement holds we have

ª

⌦
GpxqGnpxq dx “ 0,

for all n P N because Gn P C
8
c p⌦q. Together these equations imply that G “ 0.

The ⌘ functions in Lemma 3.1 are called test functions in the context of variational formulation of
PDEs. It is important to note that the weighted residual formulation is equivalent to enforcing the PDE
over its domain ⌦, but does not incorporate any of the boundary conditions of the problem; the boundary
conditions are enforced strongly through the trial space. This implies that any numerical method based
on the weighted residual formulation must explicitly enforce all boundary conditions, which can be di�cult
for complex domains ⌦. Also note that this was a choice; a weighted residual statement incorporating the
boundary conditions could have been formed by introducing separate test functions over the boundary B⌦.
In Section 3.5, we introduce the weak formulation of the problem, which relaxes the regularity requirements
on the solution u (currently require m times continuously di↵erentiable) and incorporates the Neumann or
natural boundary conditions weakly into the integral equation rather than strongly in the trial space.

Example 3.3: Weighted residual formulation of second-order PDE in one dimension
Recall the second-order PDE in one dimension (3.4)-(3.5). The weighted residual formulation is: find
u P U (3.6) such that ª

L

0
w

ˆ
´

d

dx

„
a
du

dx

⇢
´ f

˙
dx “ 0 (3.15)

for all w P C
8
c pp0, Lqq.
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3.4. Method of weighted residuals

With the variational (integral) formulation of partial di↵erential equations introduced in the previous section,
we turn to constructing numerical methods based on the weighted residual formulation, called the method of
weighted residuals. Recall the weighted residual formulation (3.13) of the general PDE in (3.1): find u P U

such that ª

⌦
wRrus dV “ 0

for all w P C
8
c p⌦q. For simplicity in constructing test function spaces (later), we enforce the weighted residual

equation over the larger function space C
8

p⌦q Å C
8
c p⌦q (by considering a larger space we maintain equiva-

lence to the strong formulation). It is obvious there is no hope of enforcing this condition for all functions
in C

8
p⌦q (an infinite-dimensional function space) in a numerical method (intended to be implemented on

a computer or computed by hand). Instead, we will settle for enforcing the weighted residual equation on
a finite-dimensional subspace Wh Ä C

8
p⌦q. By replacing the infinite-dimensional C8

p⌦q with the finite-
dimensional Wh, the weighted residual formulation is no longer equivalent to the strong formulation, rather
it is an approximation.

The subspace Wh is constructed as the span of a linearly independent set of functions tw1, . . . , wnu Ä

C
8

p⌦q, i.e.,
Wh :“ spantw1, . . . , wnu.

By definition, tw1, . . . , wnu is a basis of Wh and dimWh “ n. By virtue of the weight function appearing
linearly in the weighted residual equation, the equation holds for all w P Wh if and only if it holds for each
wi, i “ 1, . . . , n (Proposition 3.1). Therefore, the finite-dimensional test space approximation of the weighted
residual formulation reduces to: find u P U such that

ª

⌦
wiRrus dV “ 0

for i “ 1, . . . , n.

Proposition 3.1. Let Z be any finite-dimensional space (dimZ “ n) of integrable, real-valued functions

with domain ⌦ Ä Rd
. For any function f : ⌦ Ñ R, the following are equivalent

(i)

ª

⌦
zf dV “ 0 for all z P Z

(ii)

ª

⌦
zif dV “ 0 for i “ 1, . . . , n, where B “ tz1, . . . , znu is a basis for Z.

Proof. Suppose piiq holds and expand any z P Z in the basis B: z “ ↵izi. Then we have

ª

⌦
zf dV “

ª

⌦
↵izif dV “ ↵i

ª

⌦
zif dV “ 0,

which establishes piq. Now suppose piq holds. Since B Ä Z, piq follows trivially by taking z “ zi P Z for
i “ 1, . . . , n.

While this finite-dimensional approximation of the test space has simplified the problem to only needing
to test the residual against a finite number of weighting functions, we still must search an infinite-dimensional
function space U (all functions in C

m
p⌦q that satisfy the BCs) for the solution. To simplify this task to one

that can be performed on a computer (or with hand calculations), we restrict the trial space to a finite-
dimensional subset Uh Ä U , which further approximates the original weighted residual formulation. The
construction of the finite-dimensional trial space is more delicate than the test space because it is an a�ne

space (for linear PDEs) rather than a linear one, i.e., U “ ' ` U
0 for any ' P U and U

0 is a linear space
(Section 3.2).

This additive decomposition of the trial space suggests a convenient means to construct general elements
of Uh: define a function ' P U , i.e., ' P C

m
p⌦q that satisfies all BCs (called a particular solution), and
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introduce a finite-dimensional subspace of the linear space U
0 (Cm

p⌦q functions satisfying the homogeneous
BCs), denoted U

0
h
(dimU

0
h

“ n), and define the approximation space

Uh :“ ' ` U
0
h
. (3.16)

We define U
0
h
as the span of a linearly independent set of functions t�1, . . . ,�nu

U
0
h
:“ spant�1, . . . ,�nu. (3.17)

Then elements uh P Uh take the form

uh “ ' ` ↵i�i, (3.18)

where ↵ P Rn. Finally, to define a meaningful trial space of a PDE of orderm, the basis functions t�1, . . . ,�nu

should possess m non-zero derivative functions, which we justify at the end of this section.

Example 3.4: Construction of finite-dimensional trial space
Let us formally construct the finite-dimensional trial space used in Example 3.2. The infinite-dimensional
trial space is defined in (3.11). We choose the particular solution to be ' : R Ñ R to be

' :“ 1, (3.19)

which is easy to verify satisfies the BCs: 'p0q “ 1, re
x
'

1
pxqs

x“⇡{2 “ 0. We define the homogeneous

portion of the trial space to be the two-dimensional linear space: U0
h
:“ spant�1,�2u where

�1pxq :“ x
2

´ ⇡x, �2pxq :“ x
3

´
3⇡2

4
x. (3.20)

Because �1p0q “ �2p0q “ 0, they satisfy the homogeneous BCs at x “ 0. Furthermore, we have
re

x
�

1
1pxqs

x“⇡{2 “ re
x

p2x ´ ⇡qs
x“⇡{2 “ 0 and re

x
�

1
2pxqs

x“⇡{2 “
“
e
x

p3x2
´ 3⇡2

{4q
‰
x“⇡{2 “ 0, which con-

firms they satisfy the homogeneous BCs at x “ ⇡{2. Furthermore the functions that comprise the trial
space Uh “ ' ` U

0
h
(' and U

0
h
defined above) are smooth and have at least m “ 2 non-zero derivative.

Therefore Uh is a valid, two-dimensional a�ne trial space.

Finally, we substitute the a�ne trial space approximation (3.18) into the weighted residual formulation
to obtain its finite-dimensional approximation: find ↵ P Rn, where ↵ “ p↵1, . . . ,↵nq such that

ª

⌦
wiRr' ` ↵j�js dV “ 0 (3.21)

for i “ 1, . . . , n. In the special case where R is a linear operator, the above equation reduces to

↵j

ª

⌦
wiRr�js dV “ ´

ª

⌦
wiRr's, (3.22)

which can be written as the linear system of equations K↵ “ F , where K P Mn,npRq and F P Rn are defined
as

Kij “

ª

⌦
wiRr�js dV, Fi “ ´

ª

⌦
wiRr's dV. (3.23)

This linear system makes the requirement that �i for i “ 1, . . . , n possess m non-zero derivatives. Otherwise
�j could be in the null space of R, i.e., Rr�js “ 0, and the matrix K would have a row of all zeros (singular).
Intuitively this means the basis vector �j would not be contributing to the approximation so any value of the
corresponding coe�cient ↵j would yield the same approximation. If the trial space basis functions possess
m non-zero derivatives, the matrix K is nonsingular (invertible) due to the linear independence of the basis
vectors tw1, . . . , wnu and t�1, . . . ,�nu.
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Example 3.5: Petrov-Galerkin weighted residual method
To close this section we return to Example 3.2 and apply the weighted residual method to approximate
(3.8) where directly using the strong formulation failed. We use the trial space constructed in Example 3.4
(validity in terms of BC enforcement, smoothness, and non-zero derivative functions established). For
simplicity we choose the finite-dimensional test space to be Wh “ tw1, w2u Ä C

8
pp0, 1qq, where

w1pxq :“ 1, w2pxq :“ x. (3.24)

Since the PDE is linear, we form the matrix in (3.23)

Kij “

ª
⇡{2

0
wiRr�js dx ùñ

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

K11 “

ª
⇡{2

0
w1Rr�1s dx “

ª
⇡{2

0
rp´2x ` ⇡ ´ 2qe

x
´ sinpxqs dx “ ´4.14

K12 “

ª
⇡{2

0
w1Rr�2s dx “

ª
⇡{2

0

„
3

4
p⇡

2
´ 4x2

´ 8xqe
x

´ sinpxq

⇢
dx “ ´8.40

K21 “

ª
⇡{2

0
w2Rr�1s dx “

ª
⇡{2

0
x rp´2x ` ⇡ ´ 2qe

x
´ sinpxqs dx “ ´5.48

K22 “

ª
⇡{2

0
w2Rr�2s dx “

ª
⇡{2

0
x

„
3

4
p⇡

2
´ 4x2

´ 8xqe
x

´ sinpxq

⇢
dx “ ´16.07

and the right-hand side vector

Fi “ ´

ª
⇡{2

0
wiRr's dx ùñ

$
’’’&

’’’%

F1 “ ´

ª
⇡{2

0
w1Rr's dx “

ª
⇡{2

0
sinpxq dx “ 1

F2 “ ´

ª
⇡{2

0
w2Rr's dx “

ª
⇡{2

0
x sinpxq dx “ 1.

We solve the resulting linear system of equations to find ↵1 “ ´0.37 and ↵2 “ 0.065, which results in the
following approximation to the solution of the PDE (Figure 3.1):

uhpxq “ 1 ´ 0.37px
2

´ ⇡xq ` 0.065px
3

´ 3⇡2
x{4q. (3.25)

Unlike the strong form, the weighted residual form resulted in a solvable linear system of equations and
a valid approximation of the PDE; however, the solution provides a poor approximation to the exact
solution (Figure 3.1). In Example 3.6 we will use the Ritz method to obtain an accurate approximation
using a trial space of the same dimension (2).

Thus far, we have introduced and defined the test basis tw1, . . . , wnu and trial basis t�1, . . . ,�nu indepen-
dently, which is commonly referred to as a Petrov-Galerkin method. In the remainder of this section, we
introduce three common choices to define the test function basis in terms of the trial basis functions.

3.4.1 Bubnov-Galerkin method

The first approach, called the Bubnov-Galerkin or Galerkin method, takes the test space Wh to be the same
as the homogeneous trial space U

0
h
, which is usually accomplished by using the same basis, i.e., wi “ �i for

i “ 1, . . . , n. The general form of the finite-dimensional weighted residual equation (3.21) reduces to
ª

⌦
�iRr' ` ↵j�js dV “ 0. (3.26)

In the linear case, the system matrix and right-hand side (3.23) reduce to

Kij “

ª

⌦
�iRr�js dV, Fi “ ´

ª

⌦
�iRr's dV. (3.27)
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Example 3.6: Galerkin weighted residual method
We return to Example 3.2 and apply the weighted residual method to approximate (3.8) using a Galerkin
choice for test space, using the trial space constructed in Example 3.4. Since the PDE is linear, we form
the matrix in (3.27)

Kij “

ª
⇡{2

0
�iRr�js dx ùñ

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

K11 “

ª
⇡{2

0
�1Rr�1s dx « 10.05

K12 “

ª
⇡{2

0
�1Rr�2s dx « 26.96

K21 “

ª
⇡{2

0
�2Rr�1s dx « 30.96

K22 “

ª
⇡{2

0
�2Rr�2s dx « 85.54

and the right-hand side vector

Fi “ ´

ª
⇡{2

0
�iRr's dx ùñ

$
’’’&

’’’%

F1 “ ´

ª
⇡{2

0
�1Rr's dx « ´2

F2 “ ´

ª
⇡{2

0
�2Rr's dx « ´6.

We solve the resulting linear system of equations to find ↵1 “ ´0.38 and ↵2 “ 0.067, which results in the
following approximation to the solution of the PDE (Figure 3.1):

uhpxq “ 1 ´ 0.38px
2

´ ⇡xq ` 0.067px
3

´ 3⇡2
x{4q. (3.28)

The solution is similar to the Petrov-Galerkin approximation in that it provides a poor approximation to
the PDE solution; however, unlike directly using the strong formulation, we obtain a consistent approx-
imation. In Example 3.6 we will use the Ritz method to obtain an accurate approximation using a trial
space of the same dimension (2).

3.4.2 Collocation method

Another common approach, called the collocation method, takes the test basis functions

wipxq “ �px ´ xiq, (3.29)

for i “ 1, . . . ,m, where xi P ⌦ are selected collocation points throughout the domain and � is the Dirac delta
function. The Dirac delta function � : ⌦ Ñ R is defined such that for any function f P C

1
p⌦q and point

⇠ P ⌦: ª

⌦
fpxq�px ´ ⇠q dV “ fp⇠q. (3.30)

Substituting the test functions (3.29) into the finite-dimensional weight-integral formulation (3.21), we see
that the collocation method is equivalent to requiring the residual function be zero at the collocation nodes
(instead of in a weighted integral sense)

Rr' ` �jcjspxiq “ 0. (3.31)

In the linear case, the system matrix and right-hand side (3.23) reduce to

Kij “ Rr�jspxiq, Fi “ ´Rr'spxiq. (3.32)
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Example 3.7: Collocation method
Let us revisit Example 3.2 in the context of the collocation method using the same trial space constructed
in Example 3.4. The collocation method simply enforces the residual at specified points throughout the
domain. For simplicity we choose these points to be equally spaced away from the boundary: x1 “ ⇡{6
and x2 “ ⇡{3. This lead to the linear system (3.32) with matrix

Kij “ Rr�jspxiq ùñ

$
’’’&

’’’%

K11 “ Rr�1spx1q « ´0.34

K12 “ Rr�2spx1q « 5.30

K21 “ Rr�1spx2q « ´3.58

K22 “ Rr�2spx2q « ´7.05

(3.33)

and right-hand side vector

Fi “ ´Rr'spxiq ùñ

#
F1 “ ´Rr'spx1q « 0.50

F2 “ ´Rr'spx2q « 0.87.
(3.34)

We solve the linear system to find ↵1 “ ´0.38 and ↵2 “ 0.070, which lead to the following approximation
to the solution of the PDE

uhpxq “ 1 ´ 0.38px
2

´ ⇡xq ` 0.070px
3

´ 3⇡2
x{4q. (3.35)

The solution is similar to the Petrov-Galerkin and Galerkin approximations in that it provides a poor
approximation to the PDE solution; however, unlike directly using the strong formulation, we obtain a
consistent approximation. In Example 3.6 we will use the Ritz method to obtain an accurate approximation
using a trial space of the same dimension (2).

3.4.3 Least-squares method

Finally, the least-squares method defines the solution coe�cients ↵ P Rm to be the solution of the minimiza-
tion problem

minimize
↵PRm

fp↵q :“

ª

⌦
Rr' ` ↵j�js

2
dV. (3.36)

The first-order optimality condition states that f is stationary with respect to ↵i, i.e.,
Bf

B↵i

“ 0, which leads

to ª

⌦
�iR

1
r' ` ↵j�jsRr' ` ↵j�js dV “ 0 (3.37)

for i “ 1, . . . ,m. This is fits the form of a weighted residual method with wi “ �iR
1
r'`↵j�js for i “ 1, . . . , n.

3.5. Weak formulation

The construction of the weak formulation of a partial di↵erential equation begins with the weighted residual
formulation of the PDE (3.13) and, assuming the PDE is of orderm “ 2r for r P N (even), moves r derivatives
from the PDE solution variable u onto the test function w using integration-by-parts. The final step in the
derivation of the weak form is to incorporate the natural boundary conditions from the problem statement
into boundary terms that arise. This approaches improves upon the weighted residual formulation in two
keys ways. First, it weakens the regularity requirements on the trial space since solutions only need to be
continuously di↵erentiable r times to define the weak formulation. Furthermore, the trial space is no longer
constrained to solutions that satisfy natural BCs because they are incorporated into the integral equation
and imposed weakly.
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3.5.1 Model problem

For concreteness, consider the canonical second-order PDE over the unit interval ⌦ :“ p0, Lq Ä R: find
u P U Ä C

2
p⌦q such that

´
d

dx

ˆ
a
du

dx

˙
` cu “ f in ⌦

up0q “ u0ˆ
a
du

dx

˙

x“L

“ QL,

(3.38)

where a, c, f P F⌦ÑR are given functions of su�cient smoothness, u0, QL P R are given constants, and the
trial space is given in (3.6). The weighted residual form of the PDE reads: find u P U such that

ª
L

0
w

„
´

d

dx

ˆ
a
du

dx

˙
` cu ´ f

⇢
dx, (3.39)

for all w P C
8
c p⌦q. Apply integration-by-parts (2.47) to move one derivative from u to w

ª
L

0

„
dw

dx
a
du

dx
` wpcu ´ fq

⇢
dx ´

„
wa

du

dx

⇢L

0

“ 0. (3.40)

This is the weak formulation of (3.38) without boundary conditions. To incorporate natural boundary condi-
tions into the weak formulation, we need a concrete definition of essential and natural boundary conditions,
which stems from the definition of primary and secondary variables.

3.5.2 Essential and natural boundary conditions

Essential, or Dirichlet, boundary conditions are conditions on primary variables along boundaries, while
natural, or Neumann, boundary conditions are conditions on secondary variables along boundaries. Primary
and secondary variables can be identified from the weak formulation without boundary conditions, e.g.,
(3.40). Secondary variables multiply the test functions (or their derivatives) in the boundary terms, whereas
primary variables are identified by replacing the test function (w in this case) with the PDE solution variable
(u in this case). A number of examples of primary vs. secondary variables and essential vs. natural boundary
conditions are provided in the next section.

From these definitions, it is clear that PDEs of order 2r will have r primary and secondary variables since
there will be r boundary terms resulting from r applications of integration-by-parts to move derivatives
from the solution variable to the test variable. There will also be a secondary variable corresponding to
each primary variable. The secondary variable corresponding to a primary variable can be identified by
replacing the primary variable with its corresponding test function in the boundary terms of the weak form
and identifying the variable that multiplies it. With these definitions, it follows that u is the only primary

variable for the PDE in (3.38) and a
du

dx
is the corresponding secondary variable. This implies the boundary

conditions in (3.38) are classified as

up0q “ u0 (essential BC),

ˆ
a
du

dx

˙

x“L

“ QL (natural BC).

3.5.3 Complete weak formulation

To complete the weak formulation we incorporate the natural BCs into (3.40) by substituting them into the
boundary term of the weighted residual formulation (integrated-by-parts) to yield

ª
L

0

„
dw

dx
a
du

dx
` w pcu ´ fq

⇢
dx `

„
wa

du

dx

⇢

x“0

´ wpLqQL “ 0, (3.41)

which must hold for all C8
c p⌦q. However, since functions in C

8
c p⌦q vanish on B⌦, both boundary terms are

zero, which eliminates our ability to enforce the natural BCs. For this reason, we extend our space of test
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functions by only requiring the test functions vanish on B⌦D, i.e., the portion of the boundary with essential
BCs, to yield the test space W :“ tw P C

8
p⌦q | wp0q “ 0u. It can be verified that W is a linear space for any

PDE. Notice that this does not destroy equivalence to the strong formulation because we are still enforcing
the integral equation for all w P C

8
c p⌦q; we have just added functions to also enforce the natural BCs. The

complete weak formulation is: find u P Ṽ Ä C
2
p⌦q such that

ª
L

0

„
dw

dx
a
du

dx
` wpcu ´ fq

⇢
dx ´ wpLqQL “ 0 (3.42)

for all w P W. Since the integral equation incorporates the natural BCs, the trial space does not have to be
restricted to functions that satisfy the natural BCs (only essential BCs). Therefore the trial space for the
weak form Ṽ :“ tu P C

2
p⌦q | up0q “ u0u extends the trial space from the strong form (3.6).

We have assumed su�cient regularity of the solution and test function to pose the strong formulation of
the PDE and derive the weak formulation. Under these regularity conditions, the strong, weighted residual,
and weak formulations are equivalent. However, we can weaken the regularity requirements by directly
considering the weak form of a PDE since lower-order derivatives of the PDE variable appear in the weak
formulation than in the strong and weighted residual formulations. In the context of our model problem,
this means we can search for solutions in C

1
p⌦q instead of requiring C

2
p⌦q: find u P V such that

ª
L

0

„
dw

dx
a
du

dx
` wpcu ´ fq

⇢
dx ´ wpLqQL “ 0 (3.43)

for all w P W, where the trial space is V :“ tu P C
1
p⌦q | up0q “ u0u. This is a more general form of (3.8)

that allows for solutions with weaker regularity. The term weak comes from the weakening of the regularity
requirements of the solution (trial) space. Under these weaker regularity requirements, the strong and weak
form are not equivalent (since the strong form may not even be defined if, e.g., u R C

2
p⌦q). We will extend

these concepts in later chapters by introducing a notion of regularity based on integrability rather than
smoothness (di↵erentiability). While the weakened regularity requirements may seem pedantic, it plays a
significant role in the construction of finite element spaces.

For the sake of generality in the remainder of this document, we use functionals (mapping from functions
to scalars) to represent the weak formulation of a general PDE (3.1) of order m “ 2r, r P N over a domain
(open) ⌦ Ä Rd with essential BCs prescribed on B⌦D and natural BCs on B⌦N such that B⌦ “ B⌦D Y B⌦N :
find u P V Ä C

r
p⌦q such that

Bpw, uq “ `pwq (3.44)

for all w P W, where B : W ˆ V Ñ R and ` : W Ñ R are functionals defining the (weak) integral equations
and the trial and test spaces are

V :“ tu P C
r
p⌦q | u satisfies essential BCs on B⌦Du

W :“ tw P C
8

p⌦q | wpxq “ 0 for x P B⌦Du.
(3.45)

Since C
8

p⌦q is a linear space and W is closed under addition and scalar multiplication, W is a linear space.
On the other hand, V is an a�ne space, i.e., V “ ' ` V

0 where ' P V is arbitrary and V
0 is a linear space.

Unlike the weighted residual formulation, the trial space of the weak form V is an a�ne space for any PDE
due to the definition of an essential BC (the trial space of the weighted residual method is only an a�ne
space for special PDEs, e.g., linear PDEs). The linear space V

0 is the collection C
r
p⌦q functions that satisfy

the homogeneous essential boundary conditions

V
0

“ tu P C
r
p⌦q | u satisfies homogeneous essential BCs on B⌦Du . (3.46)

Equation (3.44) is called a bilinear form for linear PDEs. For our model problem (r “ 1), the functionals in
(3.44) are

Bpw, uq :“

ª
L

0

„
dw

dx
a
du

dx
` wcu

⇢
dx, `pwq :“

ª
L

0
wf dx ` wpLqQL. (3.47)

We close this section with the derivation of the weak formulation for some more complicated PDEs. For
each problem we will apply the three central steps to derive the weak formulation:
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1) derive weighted residual formulation from strong formulation,

2) integrate-by-parts (r times for PDE of order 2r) to move r derivatives onto the test function, and

3) simplify boundary terms by enforcing natural BCs and that all test functions vanish at essential BCs.

Example 3.8: Fourth-order PDE in one dimension

Let ⌦ :“ p0, Lq Ä R and consider the fourth-order partial di↵erential equation: find w P C
4
p⌦q such that

d
4
w

dx4
“ 0 (3.48)

with boundary conditions wp0q “ w0, wpLq “ wL,
dw

dx
p0q “ w

1
0, and

d
2
w

dx2 pLq “ w
2
L
. This boundary value

problem describes the deflection of a (Euler-Bernoulli) beam subject to prescribed deflection at the left
(w0) and right end (wL), prescribed rotation at the left end (w1

0), and applied moment at the right end
(w2

L
).
To construct the weak formulation, multiply the governing equations by a test function v P C

2
p⌦q,

integrate over the domain, and apply integration-by-parts twice to move two derivatives onto the test
function

0 “

ª
L

0
v
d
4
w

dx4
dx “

ª
L

0
´
dv

dx

d
3
w

dx3
dx `

„
v
d
3
w

dx3

⇢L

0

“

ª
L

0

d
2
v

dx2

d
2
w

dx2
dx `

„
v
d
3
w

dx3

⇢L

0

´

„
dv

dx

d
2
w

dx2

⇢L

0

.

From examining the boundary terms, we identify the primary variables as w and dw

dx
(identify test function

v in boundary terms and replace with PDE function w) and the corresponding secondary variables as d
3
w

dx3

and d
2
w

dx2 (terms multiplying the test functions in the boundary terms), respectively. Since both primary
variables are specified at x “ 0, we set the corresponding test functions to zero vp0q “

dv

dx
p0q “ 0. In

addition, the primary variable w is specified as x “ L so we set the corresponding test function to zero
vpLq “ 0. Using these choices for the test function and incorporating the natural boundary condition
d
2
w

dx2 pLq “ w
2
L
into the boundary terms above, we arrive at the weak form

ª
L

0

d
2
v

dx2

d
2
w

dx2
dx ´

dv

dx
pLqw

2
L

“ 0,

which can be formulated for solutions in C
2
p⌦q.

Example 3.9: Timoshenko beam
Let ⌦ :“ p0, Lq Ä R and consider the system of second-order partial di↵erential equations that govern the
deflection of a beam using Timoshenko theory: find w P C

2
p⌦q and �x P C

2
p⌦q such that

´
d

dx

„
S

ˆ
dw

dx
` �x

˙⇢
` cfw “ q

´
d

dx

ˆ
D
d�x

dx

˙
` S

ˆ
dw

dx
` �x

˙
“ 0

(3.49)

holds in ⌦ with boundary conditions wp0q “ �xp0q “ 0,
“
S

`
dw

dx
` �x

˘‰
x“L

“ FL, and
”
D

d�x

dx

ı

x“L

“ M0.

The remaining terms are known (su�ciently smooth) functions S,D, cf , q P F⌦ÑR and scalars M0, FL P R.
Since the governing equation is a system of PDEs, we introduce a test function for each equation:

v1 P C
1
p⌦q for the first PDE (for w) and v2 P C

1
p⌦q for the second PDE (for �x). To construct the weak

formulation, we begin by constructing the weighted residual formulation: multiply each PDE by its own
test function, integrate each over the domain, and add them:

ª
L

0

ˆ
v1

"
´

d

dx

„
S

ˆ
dw

dx
` �x

˙⇢
` cfw ´ q

*
` v2

"
´

d

dx

ˆ
D
d�x

dx

˙
` S

ˆ
dw

dx
` �x

˙*˙
dx “ 0.
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Apply integration-by-parts to move a derivative from w onto v1 and from �x onto v2

ª
L

0

"
dv1

dx
S

ˆ
dw

dx
` �x

˙
`

dv2

dx
D
d�x

dx
` v1pcfw ´ qq ` v2S

ˆ
dw

dx
` �x

˙*
dx

´

„
v1S

ˆ
dw

dx
` �x

˙⇢L

0

´

„
v2D

d�x

dx

⇢L

0

“ 0.

From this form, we can identify the primary variables as w (replace v1 with w in the boundary terms to
identify) and �x (replace v2 with �x in the boundary terms to identify) and the corresponding secondary
variables as S

`
dw

dx
` �x

˘
and D

d�x

dx
, respectively. Since both primary variables are specified at x “ 0, we

take v1p0q “ v2p0q “ 0 and substitute the natural boundary conditions at x “ L to arrive at the final
version of the weak formulation

ª
L

0

"
dv1

dx
S

ˆ
dw

dx
` �x

˙
`

dv2

dx
D
d�x

dx
` v1pcfw ´ qq ` v2S

ˆ
dw

dx
` �x

˙*
dx ´ v1pLqFL ´ v2pLqML “ 0,

which can be formulated for solutions in C
1
p⌦q.

Example 3.10: Poisson equation in d dimensions

Let ⌦ Ä Rd (open) and consider the Poisson equation: find u P C
2
p⌦q such that

´�u “ 0 in ⌦

u “ g on B⌦D

ru ¨ n “ h on B⌦N ,

(3.50)

where the boundary of the domain B⌦ is partitioned into B⌦D (essential/Dirichlet condition applied)
and B⌦N (natural/Neumann condition applied), i.e., B⌦ “ B⌦1 Y B⌦2. For convenience, we convert this
equation to indicial notation: ´u,ii “ 0 in ⌦, u “ g on B⌦D, u,ini “ h on B⌦N .

To derive the weak formulation, we follow the standard procedure and setup the weighted residual
equation by multiplying by a test function w P C

1
p⌦q and integrating over the domain

ª

⌦
wp´u,iiq dV “ 0.

Applying integration-by-parts (use the identity pwu,iq,i “ w,iu,i`wu,ii and apply the divergence theorem;
see (2.48)) yields

ª

⌦
wp´u,iiq dV “

ª

⌦
pw,iu,i ´ pwu,iq,iq dV “

ª

⌦
w,iu,i dV ´

ª

B⌦
wu,ini dS “ 0.

By examining the boundary terms, we see that u is the primary variable (from replacing the test function
with u in the boundary term) and u,ini is the secondary variable (multiplies the test function in the
boundary term). Next, we choose wpxq “ 0 for x P B⌦D because the primary variable is specified on B⌦D.
This causes the integral over the entire boundary to become an integral over only B⌦N because of the
additive property of integration

ª

B⌦
wu,ini dS “

ª

B⌦D

wu,ini dS `

ª

B⌦N

wu,ini dS “

ª

B⌦N

wu,ini dS,

where the last equality used w “ 0 on B⌦D. Finally, we substitute the natural boundary condition
u,ini “ h on B⌦N into the weak form to yield

ª

⌦
w,iu,i dV ´

ª

B⌦N

w hdS “ 0,

which can be formulated for solutions in C
1
p⌦q.
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3.6. Ritz method

While the method of weighted residuals did not su↵er from the same drawbacks as methods based on the
strong formulation, they have their own disadvantages. In particular, the approximation functions used must
have 2r non-zero derivatives for PDEs of order 2r, which eliminates a number of useful and e�cient families of
approximations. In addition, the weighted residual form does not incorporate any of the boundary conditions
so the solution basis must account for them. To avoid these issues, we construct a numerical method based
on the weak formulation of the PDE, which only requires the solution basis have m non-zero derivatives
(because half of the derivatives of the PDE were moved onto the test functions) and only need to satisfy the
essential boundary conditions (the natural boundary conditions are embedded in the weak form).

Recall the weak form of a general PDE of order m “ 2r (3.44) with test and trial space defined in (3.45).
Following our derivation of the method of weighted residuals, we approximate the infinite-dimensional test
and trial spaces using finite-dimensional spaces. Construction of a finite-dimensional trial space closely
follows the corresponding procedure for the method of weighted residuals. First, since the trial space for the
weak formulation is an a�ne space, we write it as

V “ ' ` V
0
, (3.51)

where ' P V (particular solution) and V
0 is a linear space of Cr

p⌦q functions that satisfy the homogeneous
essential BCs. Then we define the finite-dimensional approximation to V as

Vh :“ ' ` V
0
h
, (3.52)

where V
0
h

Ä Vh and dimV
0
h

“ n. We define V
0
h
as the span of a linearly independent set of functions

t�1, . . . ,�nu. Then elements uh P Vh take the form

uh “ ' ` ↵i�i, (3.53)

where ↵ P Rn. Similar to the weighted residual method, the basis functions of the trial space should posses r
non-zero derivatives for a PDE of order m “ 2r (half as many as required by the weighted residual method)
to ensure the resulting system has a unique solution. This plays a significant role in the construction of finite
element spaces and enables the use of piecewise linear basis functions, by far the most widely used finite
element solution space, for second-order PDEs.

To define the finite-dimensional test space, the Ritz method employs a Galerkin approximation, i.e.,
Wh :“ V

0
h
. With these approximations, the finite-dimensional (Ritz) approximation of the weak form (3.44)

is: find uh P Vh such that
Bpwh, uhq “ `pwhq (3.54)

for all wh P V
0
h
. From Proposition 3.1, enforcing (3.54) for all wh P V

0
h
is equivalent to enforcing it for all

vectors in a basis (since V0
h
finite-dimensional), which reduces the Ritz formulation to: find ↵ P Rn such that

Bp�i,' ` ↵j�jq “ `p�iq (3.55)

for i “ 1, . . . , n. In the special case where B is bilinear and ` is linear, (3.55) becomes

↵jBp�i,�jq “ `p�iq ´ Bp�i,'q, (3.56)

which can be written as the linear system of equations K↵ “ F , where K P Mn,npRq and F P Rn are defined
as

Kij “ Bp�i,�jq, Fi “ `p�iq ´ Bp�i,'q. (3.57)

Once this system (3.55) (or (3.57) in the linear case) has been solved for the coe�cients ↵, they are substituted
back into (3.53) to obtain our approximation of the PDE

u « uh “ ' ` ↵j�j . (3.58)
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0 ⇡{4 ⇡{2
1

1.2

1.4

1.6

x

Figure 3.1: The solution to (3.8) ( ), its approximation using the Ritz method ( ) in Example 3.6 and the

method of weighted residuals: Petrov-Galerkin in Example 3.4 ( ), Bubnov-Galerkin in Example 3.4.1 ( ), and

collocation in Example 3.4.2 ( ).

Example 3.11: Ritz method
To conclude this section, we return to Example 3.2 and apply the Ritz method to approximate the
solution of (3.8). The weak formulation of (3.8) is: find u P V such that:

ª
⇡{2

0

„
dw

dx
a
du

dx
´ wf

⇢
dx “ 0 (3.59)

for all w P W, where the trial and test space are

V :“
 
u P C

1
pp0,⇡{2qq

ˇ̌
up0q “ 1

(
, W :“ tw P C

8
pp0,⇡{2qq | wp0q “ 0u (3.60)

and apxq :“ e
x and fpxq :“ sinx. The weak formulation can be writtin in bilinear form (3.44) as

Bpw, uq “

ª
⇡{2

0

dw

dx
a
du

dx
dx, `pwq “

ª
⇡{2

0
wf dx (3.61)

Given the poor approximation of the trial space in Examples 3.4,3.4.2, we use the flexibility a↵orded by
the weak formulation to construct an improved one

Vh :“ ' ` spant�1, . . . ,�Nu, (3.62)

where ' :“ 1 and �k “ x
k for k “ 1, . . . , N . This implies the Ritz linear system (3.57) is (N “ 2)

Kij “ Bp�i,�jq “

ª
⇡{2

0
ijx

i`j´2
e
x
dx ùñ

$
’’&

’’%

K11 “ e
´⇡{2

´ 1 « 3.81

K12 “ K21 “ 2 ` p⇡ ´ 2qe
⇡{2

« 7.49

K22 “ ´8 ` p⇡
2

´ 4⇡ ` 8qe
⇡{2

« 17.51

Fi “ `p�iq ´ Bp�i,'q “

ª
⇡{2

0
x
i sinpxq dx ùñ

#
F1 “ 1

F2 “ ⇡ ´ 2 « 1.14,

(3.63)

which can be solved to obtain the coe�cients ↵1 “ 0.845 and ↵2 “ ´0.296. This leads to the following
approximation to the solution of the PDE

uhpxq “ 1 ` 0.845x ´ 0.296x2
. (3.64)

From Figure 3.1 we see the Ritz solution is a far better approximation to the true solution (3.10) of the
PDE in (3.8), which largely comes from the flexibility a↵orded by the weakened conditions on the trial
space. To improve the approximation we simply include more terms in the polynomial expansion, i.e.,
larger N .
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As we will see in the remainder of the course, the finite element method is a Ritz method with a particularly
convenient choice/construction of the trial space.

3.7. Summary

This chapter introduced variational formulations (weighted residual and weak) of the partial di↵erential
equations and numerical methods based on them (weighted residual and Ritz):

1) The strong or di↵erential formulation of a partial di↵erential equation is not always amenable to approx-
imation in a finite-dimensional trial space.

2) An equivalent formulation recasts the PDE as a weighted integral statement that must hold for arbitrary
weighting functions.

3) Integrating the weighted residual statement by parts yields another variational formulation of the PDE,
known as the weak formulation. The term weak comes from the weaker regularity requirements on the
trial space (only need to be r times di↵erentiable for a PDE of order 2r, whereas weighted residual form
requires 2r times di↵erentiable).

4) The weak formulation defines a systematic procedure to identify primary vs. secondary variables of a
boundary value problem, which leads to a formal definition of essential vs. natural boundary conditions.

5) Since the weighted residual formulation does not incorporate the boundary conditions of the boundary
value problem, the trial space must only contain solutions that satisfy all essential and natural boundary
conditions, which can be a di�cult task.

6) The weak formulation incorporates natural boundary conditions so the trial space is only required to
contain solutions that satisfy the essential boundary conditions.

7) The three step procedure for deriving the weak formulation of a PDE from its strong formulation is:

1) derive weighted residual formulation from strong formulation,

2) integrate-by-parts (r times for PDE of order 2r) to move r derivatives onto the test function, and

3) simplify boundary terms by enforcing natural BCs and that all test functions vanish at essential BCs.

8) The method of weighted residuals is a numerical method for approximating boundary value problems
based on their weighted residual formulation. It approximates the infinite-dimensional test and trial
spaces with finite-dimensional subspaces (a�ne space for trial space). Common approaches to choose the
test space include:

• Petrov-Galerkin: independent test/trial spaces

• (Bubnov-)Galerkin: test space taken to be homogeneous part of trial space

• Collocation: enforce PDE at selected points throughout the domain

• Least-squares: solution defined such that L2 norm of the residual function is minimized

9) The Ritz method is a Galerkin method based on the weak formulation where the finite-dimensional trial
space contains functions satisfying the essential boundary conditions and the test space is taken as the
homogeneous part of the trial space (which is a linear space).
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