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AME40541/60541: Finite Element Methods
Homework 2: Due Monday, February 24, 2020

Problem 1: (10 points) Re-write the Navier equations using indicial notation and Einstein summation
convention. Replace xÑ 1, y Ñ 2, z Ñ 3.

Bσxx
Bx

`
Bσyx
By

`
Bσzx
Bz

` Fx “ 0

Bσxy
Bx

`
Bσyy
By

`
Bσzy
Bz

` Fy “ 0

Bσxz
Bx

`
Bσyz
By

`
Bσzz
Bz

` Fz “ 0

Problem 2: (15 points) (AME 60541 only) The elasticity tensor for a St. Venant-Kirchhoff material is
given by Cijkl “ λδijδkl`µpδikδjl` δilδjkq, where λ, µ are the Lamé parameters. Calculate the stress tensor
σij , where σij “ Cijklεkl and εkl is the strain tensor. Make sure to use the fact that the strain tensor is
symmetric (εij “ εji). Also, calculate the deviatoric stress sij “ σij ´

σkk

3 δij . In both cases, your answer
should be in terms of λ, µ, and the strain tensor ε.

Problem 3: (10 points) From JNR 2.1: Construct the weak form of the nonlinear PDE

´
d

dx

ˆ

u
du

dx

˙

` f “ 0 in p0, Lq,

ˆ

u
du

dx

˙
ˇ

ˇ

ˇ

ˇ

x“0

“ 0, upLq “
?

2,

for f : p0, Lq Ñ R is a given function.

Problem 4: (20 points) Consider the incompressible Navier-Stokes equations that govern the flow of an
incompressible fluid with density ρ : Ω Ñ Rą0 and viscosity ν : Ω Ñ Rą0 through a domain Ω Ă R3

´
B

Bx1

ˆ

ρν
Bv1

Bx1

˙

´
B

Bx2

ˆ

ρν
Bv1

Bx2

˙

´
B

Bx3

ˆ

ρν
Bv1

Bx3

˙

` ρv1
Bv1

Bx1
` ρv2

Bv1

Bx2
` ρv3

Bv1

Bx3
`
Bp

Bx1
“ 0

´
B

Bx1

ˆ

ρν
Bv2

Bx1

˙

´
B

Bx2

ˆ

ρν
Bv2

Bx2

˙

´
B

Bx3

ˆ

ρν
Bv2

Bx3

˙

` ρv1
Bv2

Bx1
` ρv2

Bv2

Bx2
` ρv3

Bv2

Bx3
`
Bp

Bx2
“ 0

´
B

Bx1

ˆ

ρν
Bv3

Bx1

˙

´
B

Bx2

ˆ

ρν
Bv3

Bx2

˙

´
B

Bx3

ˆ

ρν
Bv3

Bx3

˙

` ρv1
Bv3

Bx1
` ρv2

Bv3

Bx2
` ρv3

Bv3

Bx3
`
Bp

Bx3
“ 0

Bv1

Bx1
`
Bv2

Bx2
`
Bv3

Bx3
“ 0

where v : Ω Ñ R3 with components v “ pv1, v2, v3q is the velocity of the fluid and p : Ω Ñ Rą0 is the
pressure. The boundary is partitioned into two pieces: BΩ “ BΩD Y BΩN , where n : BΩ Ñ R3 is the outward
unit normal. The flow velocity and pressure are prescribed along BΩD

v “ v̄, p “ p̄ on BΩD,

where ū : BΩD Ñ R3 is the prescribed velocity with components v̄ “ pv̄1, v̄2, v̄3q and p̄ : BΩD Ñ Rą0 is the
prescribed pressure. The traction is prescribed as t̄ “ pt̄1, t̄2, t̄3q along BΩN

ρν

ˆ

Bv1

Bx1
n1 `

Bv1

Bx2
n2 `

Bv1

Bx3
n3

˙

´ pn1 “ ρt̄1

ρν

ˆ

Bv2

Bx1
n1 `

Bv2

Bx2
n2 `

Bv2

Bx3
n3

˙

´ pn2 “ ρt̄2 on BΩN

ρν

ˆ

Bv3

Bx1
n1 `

Bv3

Bx2
n2 `

Bv3

Bx3
n3

˙

´ pn3 “ ρt̄3.
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Re-write these equations in indicial notation and construct the weak form of the equations. Observe that in
this form the equations can easily be generalized from three dimensions to d dimensions. This means you
have also derived the weak formulation of the 1d, 2d (and higher dimensions!) incompressible Navier-Stokes
equations as well.

Problem 5: (35 points) (AME 60541 only) Consider a system of m second-order conservation laws in a

d-dimensional domain Ω Ă Rd
∇ ¨ F pU,∇Uq “ SpU,∇Uq in Ω,

where U : Ω Ñ Rm is the state, F pU,∇Uq P Rmˆd is the flux function (operator), and SpU,∇Uq P Rm is a
source term. The boundary conditions are U “ Ū on BΩD and F pU,∇Uqn “ q̄ on BΩN , where Ū : BΩD Ñ Rm
and q̄ : BΩN Ñ Rm are known boundary functions, BΩ “ BΩD Y BΩN , and n P Rd is the outward normal.

(a) (5 points) Write the conservation law in indicial notation. Drop the arguments to the flux function and
source term.

(b) (10 points) Construct both the weighted residual and weak formulation of the governing equations.

(c) (5 points) What conditions must an approximate solution Uhpxq « Upxq satisfy if applying (1) the
method of weighted residuals or (2) the Ritz method? Why is it difficult to construct Uh if F is
nonlinear in U or ∇U if using the method of weighted residuals?

(d) (15 points, 5 each) Write each of the following PDEs as a general conservation law, i.e., identify the state
(U), flux function (F pU,∇Uq), source term (SpU,∇Uq), and boundary conditions (Ū , q̄). Also identify
the PDE as linear or nonlinear (justify your answer) and the number of solution components (m).

• The second-order, linear elliptic PDE over the domain Ω Ă Rd

pkiju,jq,i “ f in Ω, u “ ū on BΩD, kiju,jni “ t̄ on BΩN ,

where u : Ω Ñ R is the unknown solution, k : Ω ÑMn,npRq are the elliptic coefficients, f : Ω Ñ R
is the source term, ū : BΩD Ñ R and t̄ : BΩN Ñ R are boundary conditions, n : BΩ Ñ Rd is the
outward normal, and the boundary is BΩ “ BΩD Y BΩN .

• The linear elasticity equations govern the deformation of a domain Ω Ă Rd subject to loads f :
Ω Ñ Rd

σij,j ` fi “ 0 in Ω, ui “ ūi on BΩD, σijnj “ t̄i on BΩN

where σ : Ω Ñ Md,dpRq is the stress field, ū : BΩD Ñ Rd is the prescribed boundary displacement
field and t̄ : BΩN Ñ Rd is the prescribed traction, n : BΩ Ñ Rd is the outward normal, and the
boundary is BΩ “ BΩD Y BΩN . The stress is related to the strain field ε : Ω Ñ Md,dpRq using
Hooke’s law (linear elastic material) and the strains are assumed infinitesimal

σij “ Cijklεkl, εij “
1

2
pui,j ` uj,iq.

• The incompressible Navier-Stokes equations (Problem 4)

Problem 6: (40 points) Consider the equations associated with a simply supported beam and subjected
to a uniform transverse load q “ q0:

d2

dx2

ˆ

EI
d2w

dx2

˙

“ q0 for 0 ă x ă L

w “ EI
d2w

dx2
“ 0 at x “ 0, L.

Take L “ 1, EI “ 1, and q0 “ ´1 and approximate the solution using the following methods:
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(a) the method of weighted residuals (Galerkin) using the two-term trigonometric basis wpxq « w2pxq “
c1 sin

`

πx
L

˘

` c2 sin
`

2πx
L

˘

,

(b) the method of weighted residuals (collocation) using the same trigonometric basis and collocation nodes
x1 “ 0.25 and x2 “ 0.75,

(c) the Ritz method using the same trigonometric basis, and

(d) the Ritz method using a two-term polynomial basis (wpxq « w2pxq “ c1xpx´ Lq ` c2x
2px´ Lq2).

For each method, verify the solution basis satisfies the appropriate conditions. Plot the approximate solution
generated by each method as well as the analytical solution. In a separate figure, plot the error of each
method epxq “ |wpxq ´ w̃pxq|, where w̃ is the approximate solution, and the residual over the domain.
Finally, quantify the error of each approximation using the L2-norm

eL2pΩq “

ż

Ω

|epxq|2 dV.

I recommend using some symbolic mathematics software (Maple, Mathematics, MATLAB, etc) to assist
with the calculations.

Problem 7: (20 points) Derive the element stiffness matrix and load vector for the following PDE

´
d2u

dx2
´ u` x2 “ 0

up0q “ 0,

ˆ

du

dx

˙
ˇ

ˇ

ˇ

ˇ

x“1

“ 1.

(1)

and implement in intg elem stiff load pde0.m (starter code with comments provided on the course webite
in the Homework 2 code distribution). Assume the element domain is Ωe :“ pxe1, x

e
2q and linear Lagrangian

basis functions are used:

φe1pxq “
xe2 ´ x

xe2 ´ x
e
1

, φe2pxq “
x´ xe1
xe2 ´ x

e
1

.

Be sure to consider two cases: one that includes the boundary term and one that does not. When should the
element with the boundary term included be used? As always, feel free to use any symbolic mathematics
software to ease the burden of the algebra/calculus manipulations.

Problem 8: (30 points) Derive the element stiffness matrix and force vector for the following PDE over
the domain Ω :“ r0, 1s ˆ r0, 1s (see figure below)

´∆T “ 0 in Ω

∇T ¨ n “ 1 on BΩ1

∇T ¨ n “ 0 on BΩ2

T “ 0 on BΩ3 Y BΩ4,

(2)

and implement in intg elem stiff load pde1.m (starter code with comments provided on the course webite
in the Homework 2 code distribution).
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0 1

0

1

ΩBΩ1

BΩ2

BΩ3

BΩ4

Square domain Ω “ r0, 1s ˆ r0, 1s with boundary BΩ “ BΩ1 Y BΩ2 Y BΩ3 Y BΩ4

Assume the element domain is Ωe :“ pxe1, x
e
2q ˆ py

e
1, y

e
2q and linear Lagrangian basis functions are used:

φe1px, yq “

ˆ

xe2 ´ x

xe2 ´ x
e
1

˙ˆ

ye2 ´ y

ye2 ´ y
e
1

˙

φe2px, yq “

ˆ

x´ xe1
xe2 ´ x

e
1

˙ˆ

ye2 ´ y

ye2 ´ y
e
1

˙

φe3px, yq “

ˆ

xe2 ´ x

xe2 ´ x
e
1

˙ˆ

y ´ ye1
ye2 ´ y

e
1

˙

φe4px, yq “

ˆ

x´ xe1
xe2 ´ x

e
1

˙ˆ

y ´ ye1
ye2 ´ y

e
1

˙

.

Be sure to consider two cases: one that includes the boundary term and one that does not. When should the
element with the boundary term included be used? As always, feel free to use any symbolic mathematics
software to ease the burden of the algebra/calculus manipulations.

Problem 9: (30 points) In this problem, you will implement a basic FEM code that we will enhance
(substantially) in your final project. Before proceeding, carefully review the starter code, including all the
comments, that has been provided on the course website in hwk02´code´starter.zip. I have provided
the following functions:

• create mesh hcube: create msh (xcg, e2vcg) for uniform mesh of d-dimensional hypercube

• create ldof2gdof cg: create ldof2gdof matrix

• assemble nobc mat dense: assemble global matrix from element matrices

• create dbc strct: create essential boundary condition structure (same as Hwk 1)

• create femsp cg: create FE space structure

• visualize fem: visualize FE mesh and solution

You are welcome to use your own version of create ldof2gdof cg.m and assemble nobc mat dense.m you
implemented in Homework 1 if you made them sufficiently general.

Problem 9.1 Implement a function eval unassembled stiff load.m that evaluates and stores the ele-
ment stiffness matrix and load vector for each element in the FE mesh. Starter code is provided on the
course website in the Homework 2 code distribution.
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Problem 9.2 Implement a function assemble nobc vec.m that assembles the element load vector into the
global load vector without applying essential boundary conditions. Starter code is provided on the course
website in the Homework 2 code distribution.

Problem 9.3 Implement a function apply bc solve fem.m that applies essential boundary conditions via
static condensation to the global FE system and solves the unknown solution coefficients. Starter code is
provided on the course website in the Homework 2 code distribution.

Problem 9.4 Implement a function solve fem dense.m that uses the finite element method to approximate
the unknown PDE solution at nodes using the functions created in Problems 9.1-9.3. Starter code is provided
on the course website in the Homework 2 code distribution.

Problem 9.5 Use the element developed in Problem 3 to approximate the solution of (1) using the finite
element method. Use a mesh consisting of three linear elements and plot against the exact solution

upxq “
2 cosp1´ xq ´ sinpxq

cosp1q
` x2 ´ 2.

What do you notice about the accuracy of the FEM solution at the nodes vs. interior to elements? Repeat
the analysis using a finite element mesh with 25 linear elements and plot the solution.

Problem 9.6 Use the element developed in Problem 4 to approximate the solution of (2) using the finite
element method. Use a mesh consisting of 3ˆ 3 linear elements and plot the solution. Repeat the analysis
using a finite element mesh of 25ˆ 25 linear elements and plot the solution.
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