
Chapter 1

Direct sti↵ness method

1.1. Introduction

The direct sti↵ness method (DSM) is a method to solve statically determinant or indeterminant structures
that is particularly well-suited for computer implementation. It is the finite element method (FEM) applied
to a naturally discrete system, e.g., one modeled as a set of idealized elements connected at nodes, rather
than a partial di↵erential equation (PDE). As such, the DSM will serve as a gentle introduction to finite
element concepts such as an unstructured mesh, assembly, and application of boundary conditions without
the complexity of partial di↵erential equations.

In this document, we will solely consider the DSM in the context of a truss structure, defined as a structure
that consists of slender, linear elastic members joined at their endpoints by pin joints (free rotation, i.e., does
not support moments) with all loads (external loads and reaction forces) applied at nodes. The members are
assumed to be of negligible weight (relative to the external loads), have a constant area and sti↵ness along
their length, and the stress on any cross section is uniform. The assumption that the structure consists of
members of negligible weight connected by pins and is only loaded at its nodes implies the force in each
member is purely axial (pure compression or tension, no transverse force) and constant along its length. The
assumption that the members have constant area and sti↵ness implies the strain in each element is constant,
which in turn implies the axial displacement varies linearly along the length of the member. In the remainder
of the document, we will consider the truss in Figure 1.1 for concreteness.
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Figure 1.1: Left : Truss structure with three nodes and elements, an x-directed load at node 3, a pinned (fixed x
and y displacement) boundary condition at node 1, and a vertical roller (fixed y displacement) at node 2. The node
and element numbers are shown in the figure; the node numbers are contained in circles and the element numbers in
rectangles. Right : Numbering of global degrees of freedom.
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1.2. Element contribution to global equations

The goal of this section is to derive a relationship between the force in each element and the displacement of its
nodes in the coordinate system of the structure (x-y). However, the force-displacement relationship is most
readily derived in a coordinate system aligned with the element. Therefore we consider an arbitrary element
e from the truss and introduce a coordinate system (x̄e-ȳe) such that the first coordinate direction (x̄e) is
aligned with the axis of the bar (Figure 1.2). Each element consists of two local nodes whose numbering is
independent of the global node numbering in Figure 1.1 and taken as t1, 2u for convenience. Let ✓e denote the
angle (counterclockwise) from the horizontal to the element axis, i.e., the angle between the x̄

e- and x-axis.
Let pū

e

1, ū
e

2q and pū
e

3, ū
e

4q denote the displacement in the px̄, ȳq direction of local node 1 and 2, respectively.
Similarly, let F̄ e

1 and F̄
e

3 be the force at local node 1 and 2, respectively, in the x̄e-direction. The force in the
ȳ
e-direction has been intentionally excluded because, from the assumptions stated in Section 1.1, the force

in the members is purely axial. Finally, we denote the displacement and forces at local node 1 of element e
in the global coordinate system (x-y) as pu

e

1, u
e

2q and pF
e

1 , F
e

2 q, respectively. Similarly, the displacements and
forces at local node 2 of element e in the global coordinate system are pu

e

3, u
e

4q and pF
e

3 , F
e

4 q, respectively.
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Figure 1.2: Local and global coordinate system for bar 2 in the truss from Figure 1.1 (left), the forces and displace-
ments in the element coordinate system (center), and the forces and displacements in the global coordinate system
(right).

With this notation and the assumptions in Section 1.1, the (constant) strain in the element, defined as
the change in length of a member relative to its original length, is

✏̄e “
ū
e

3 ´ ū
e

1

he

. (1.1)

Then, from Hooke’s law (linear elasticity) that linearly relates stress and strain (� “ E✏), and the definition
of stress as force per unit area (F “ �A), we have

F̄
e

1 “ ´�̄eAe “ ´EeAe✏̄e “ ´
EeAe

he

pū
e

3 ´ ū
e

1q

F̄
e

3 “ �̄eAe “ EeAe✏̄e “
EeAe

he

pū
e

3 ´ ū
e

1q,

(1.2)

where Ae, Ee, ✏̄e, and �̄e are the cross-sectional area, sti↵ness (Young’s modulus), strain, and stress of
member e, respectively, all of which are constant along its length, or equivalently in matrix form

„
F̄

e

1

F̄
e

3

⇢
“

EeAe

he

„
1 ´1

´1 1

⇢ „
ū
e

1

ū
e

3

⇢
. (1.3)

It is easy to verify the signs have been chosen correctly by considering the case where ū
e

3 ° ū
e

1, i.e., the bar
is in tension therefore F̄

e

3 is correctly oriented and thus has a positive sign, while F̄
e

1 should be reversed and
thus has a negative sign.
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Before closing this section, we relate the forces and displacements in the element coordinate system to
the global coordinate system for global assembly of the elements in the next section. The following rotation
matrix will rotate a vector, v P R2, clockwise by ✓

T p✓q “

„
cos ✓ sin ✓

´ sin ✓ cos ✓

⇢
. (1.4)

A convenient property of rotation matrices is they are orthogonal, i.e., T p✓q
T

“ T p✓q
´1. Let ei and ē

e

i
be

unit vectors aligned with the x-y and x̄
e-ȳe coordinate axes, respectively. From the configuration of the x-y

coordinate system, e1 “ p1, 0q
T and e2 “ p0, 1q

T . Then, we have the relationship

ei “ T p✓eqē
e

i
(1.5)

from the definition of the x̄
e-ȳe coordinate system. Expansion of any vector v P R2 in these coordinate

systems gives
v “ v1e1 ` v2e2 “ v̄1ē

e

1 ` v̄2ē
e

2, (1.6)

where pv1, v2q are the coordinates of v in the x-y coordinates system and pv̄1, v̄2q are the coordinates of v in
the x̄

e-ȳe coordinate system. From the above equivalence between coordinate systems and (1.5), we have

v̄1e1 ` v̄2e2 “ v̄1T p✓eqē
e

1 ` v̄2T p✓eqē
e

2 “ T p✓eqpv̄1ē
e

1 ` v̄2ē
e

2q “ T p✓eqv. (1.7)

Thus, the displacements are transferred between coordinate systems as

„
ū
e

1

ū
e

2

⇢
“

„
cos ✓e sin ✓e

´ sin ✓e cos ✓e

⇢ „
u
e

1

u
e

2

⇢
,

„
ū
e

3

ū
e

4

⇢
“

„
cos ✓e sin ✓e

´ sin ✓e cos ✓e

⇢ „
u
e

3

u
e

4

⇢
, (1.8)

which we combine into a single matrix equation for convenience

»

——–

ū
e

1

ū
e

2

ū
e

3

ū
e

4

fi

��fl “

»

——–

cos ✓e sin ✓e 0 0
´ sin ✓e cos ✓e 0 0

0 0 cos ✓e sin ✓e
0 0 ´ sin ✓e cos ✓e

fi

��fl

»

——–

u
e

1

u
e

2

u
e

3

u
e

4

fi

��fl . (1.9)

Similarly the forces are transferred as

„
F̄

e

1

0

⇢
“

„
cos ✓e sin ✓e

´ sin ✓e cos ✓e

⇢ „
F

e

1

F
e

2

⇢
,

„
F̄

e

3

0

⇢
“

„
cos ✓e sin ✓e

´ sin ✓e cos ✓e

⇢ „
F

e

3

F
e

4

⇢
, (1.10)

which we combine into a single matrix equation

»

——–

F̄
e

1

0
F̄

e

3

0

fi

��fl “

»

——–

cos ✓e sin ✓e 0 0
´ sin ✓e cos ✓e 0 0

0 0 cos ✓e sin ✓e
0 0 ´ sin ✓e cos ✓e

fi

��fl

»

——–

F
e

1

F
e

2

F
e

3

F
e

4

fi

��fl . (1.11)

Padding the element equations in (1.3) with zeros

»

——–

F̄
e

1

0
F̄

e

3

0

fi

��fl “
EeAe

he

»

——–

1 0 ´1 0
0 0 0 0

´1 0 1 0
0 0 0 0

fi

��fl

»

——–

ū
e

1

ū
e

2

ū
e

3

ū
e

4

fi

��fl . (1.12)

and combining with the transformation between coordinate systems (1.9), (1.11) leads to the desired rela-
tionship between the elemental displacements and forces in the global coordinate system

F
e

“ K
e
u
e
, (1.13)
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where F
e

P R4 is the element force vector, ue
P R4 is the element displacement vector

F
e

“

»

——–

F
e

1

F
e

2

F
e

3

F
e

4

fi

��fl , u
e

“

»

——–

u
e

1

u
e

2

u
e

3

u
e

4

fi

��fl , (1.14)

and the element sti↵ness matrix is Ke
P R4ˆ4

K
e

“
EeAe

he

»

——–

cos ✓e sin ✓e 0 0
´ sin ✓e cos ✓e 0 0

0 0 cos ✓e sin ✓e
0 0 ´ sin ✓e cos ✓e

fi

��fl

T »

——–

1 0 ´1 0
0 0 0 0

´1 0 1 0
0 0 0 0

fi

��fl

»

——–

cos ✓e sin ✓e 0 0
´ sin ✓e cos ✓e 0 0

0 0 cos ✓e sin ✓e
0 0 ´ sin ✓e cos ✓e

fi

��fl .

(1.15)

1.3. Assembly of global equations: equilibrium

With the relationship between the nodal displacements and forces for each element in the global coordinate
system established in (1.13), we are ready to derive the governing equations for the global system. Since this
is a static structure (not a mechanism), each node must be in equilibrium, that is, the sum of forces acting
of the node from the elements, external loads, and reactions, should be zero. Equilibrium of each node in
the truss in Figure 1.1 leads to

R1 “ F
1
1 ` F

3
1 ´ r1 “ 0

R2 “ F
1
2 ` F

3
2 ´ r2 “ 0

R3 “ F
1
3 ` F

2
1 “ 0

R4 “ F
1
4 ` F

2
2 ´ r4 “ 0

R5 “ F
2
3 ` F

3
3 ´ f “ 0

R6 “ F
2
4 ` F

3
4 “ 0

(1.16)

where r1, r2 are the reaction forces at node 1, r4 is the reaction force at node 2, and all elements have been
assigned local node numbers such that local node 1 corresponds to the smaller global node number (Fig-
ure 1.3). The equations are written in this expanded form to highlight that the global equations are merely
a summation over the appropriate element equations (1.13), a procedure usually referred to as assembly.
Substituting the element contributions (1.13) into the equilibrium equations (1.16) leads to the system that
relates displacements and forces for the entire structure

R1 “ K
1
11u

1
1 ` K

1
12u

1
2 ` K

1
13u

1
3 ` K

1
14u

1
4 ` K

3
11u

3
1 ` K

3
12u

3
2 ` K

3
13u

3
3 ` K

3
14u

3
4 ´ r1

R2 “ K
1
21u

1
1 ` K

1
22u

1
2 ` K

1
23u

1
3 ` K

1
24u

1
4 ` K

3
21u

3
1 ` K

3
22u

3
2 ` K

3
23u

3
3 ` K

3
24u

3
4 ´ r2

R3 “ K
1
31u

1
1 ` K

1
32u

1
2 ` K

1
33u

1
3 ` K

1
34u

1
4 ` K

2
11u

2
1 ` K

2
12u

2
2 ` K

2
13u

2
3 ` K

2
14u

2
4

R4 “ K
1
41u

1
1 ` K

1
42u

1
2 ` K

1
43u

1
3 ` K

1
44u

1
4 ` K

2
21u

2
1 ` K

2
22u

2
2 ` K

2
23u

2
3 ` K

2
24u

2
4 ´ r4

R5 “ K
2
31u

2
1 ` K

2
32u

2
2 ` K

2
33u

2
3 ` K

2
34u

2
4 ` K

3
31u

3
1 ` K

3
32u

3
2 ` K

3
33u

3
3 ` K

2
34u

3
4 ´ f

R6 “ K
2
41u

2
1 ` K

2
42u

2
2 ` K

2
43u

2
3 ` K

2
44u

2
4 ` K

3
41u

3
1 ` K

3
42u

3
2 ` K

3
43u

3
3 ` K

2
44u

3
4.

(1.17)

Next, we enforce compatibility of displacements at nodes by relating element displacements (displacement
of the nodes of each element) to global nodal displacements. Let pu2pi´1q`1, u2iq be the displacement of
node i in the global truss structure; see numbering of global degrees of freedom in Figure 1.1. Then, the
displacement of the end of every element that meet at node i must be equal to pu2pi´1q`1, u2iq due to the
pin connection

u1 “ u
1
1 “ u

3
1

u2 “ u
1
2 “ u

3
2

u3 “ u
1
3 “ u

2
1

u4 “ u
1
4 “ u

2
2

u5 “ u
2
3 “ u

3
3

u6 “ u
2
4 “ u

3
4.

(1.18)
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Figure 1.3: Truss structure with local nodes and degrees of freedom labeled. The local node numbers are contained
in circles, the global element numbers are in rectangles, and numbered arrows identify the local degrees of freedom
for each element.

Substitution of these compatibility conditions into (1.25) leads to the final form of the assembled equations
that enforces equilibrium, compatibility of displacements at nodes, and the element equations

R1 “ pK
1
11 ` K

3
11qu1 ` pK

1
12 ` K

3
12qu2 ` K

1
13u3 ` K

1
14u4 ` K

3
13u5 ` K

3
14u6 ´ r1

R2 “ pK
1
21 ` K

3
21qu1 ` pK

1
22 ` K

3
22qu2 ` K

1
23u3 ` K

1
24u4 ` K

3
23u5 ` K

3
24u6 ´ r2

R3 “ K
1
31u1 ` K

1
32u2 ` pK

1
33 ` K

2
11qu3 ` pK

1
34 ` K

2
12qu4 ` K

2
13u5 ` K

2
14u6

R4 “ K
1
41u1 ` K

1
42u2 ` pK

1
43 ` K

2
21qu3 ` pK

1
44 ` K

2
22qu4 ` K

2
23u5 ` K

2
24u6 ´ r4

R5 “ K
3
31u1 ` K

3
32u2 ` K

2
31u3 ` K

2
32u4 ` pK

2
33 ` K

3
33qu5 ` pK

3
34 ` K

2
34qu6 ´ f

R6 “ K
2
41u1 ` K

2
42u2 ` K

2
41u3 ` K

2
42u4 ` pK

2
43 ` K

3
43qu5 ` pK

3
44 ` K

2
44qu6.

(1.19)

This can be compactly written as

Rpu,fq “ Ku ´ f “ 0, (1.20)

where the residual (R), vector of nodal displacements (u), and vector of external forces (f) are

R “

»

——————–

R1

R2

R3

R4

R5

R6

fi

������fl
, u “

»

——————–

u1

u2

u3

u4

u5

u6

fi

������fl
, f “

»

——————–

r1

r2

0
r4

f

0

fi

������fl
(1.21)

and the sti↵ness matrix (K) is

K “

»

——————–

K
1
11 ` K

3
11 K

1
12 ` K

3
12 K

1
13 K

1
14 K

3
13 K

3
14

K
1
21 ` K

3
21 K

1
22 ` K

3
22 K

1
23 K

1
24 K

3
23 K

3
24

K
1
31 K

1
32 K

1
33 ` K

2
11 K

1
34 ` K

2
12 K

2
13 K

2
14

K
1
41 K

1
42 K

1
43 ` K

2
21 K

1
44 ` K

2
22 K

2
23 K

2
24

K
3
31 K

3
32 K

2
31 K

2
32 K

2
33 ` K

3
33 K

3
34 ` K

2
34

K
3
41 K

3
42 K

2
41 K

2
42 K

2
43 ` K

3
43 K

3
44 ` K

2
44

fi

������fl
. (1.22)
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The sti↵ness matrix is exactly the derivative of the residual with respect to the nodal coordinates, i.e.,

K “
BR

Bu
, (1.23)

and therefore will also be referred to as the Jacobian matrix (the matrix of partial derivatives) of the residual.

1.4. Assembly of global equations: connectivity

In this section, we generalize the assembly procedure introduced in the previous section, which illuminates a
convenient shortcut for assembling the sti↵ness matrix. Consider a truss with Nv vertices and Ne elements
in d-dimensions. Let the jth column of x P RdˆNv be the coordinates of the jth node and ⇥ P N2ˆNe be
the connectivity of the truss, i.e., ⇥je is the global node corresponding to local node j of element e. Finally
define ⌅ P N2dˆNe as the mapping from local to global degrees of freedom, i.e., ⌅je is the global degree of
freedom corresponding to local degree of freedom j of element e.

Example 1.1: Truss from Figure 1.1

For the truss in Figure 1.1, the matrices defining the truss are

x “

„
0.0 1.0 1.0
0.0 0.0 1.0

⇢
, ⇥ “

„
1 2 1
2 3 3

⇢
, ⌅ “

»

——–

1 3 1
2 4 2
3 5 5
4 6 6

fi

��fl . (1.24)

From these definitions, it is easy to see that the equilibrium conditions can be written compactly as

Ri “

Neÿ

e“1

2dÿ

j“1

F
e

j
�i⌅je ´ fi, (1.25)

for i “ 1, . . . , dNv, where Ri is the equilibrium residual and fi is the external force corresponding to global
degree of freedom i, F

e

j
is the force acting on local degree for freedom j (j “ 1, . . . , 2d) of element e

(e “ 1, . . . , Ne), and the Kronecker delta function (additional detail in Chapter 2) is defined as

�ab “

#
1 if a “ b

0 if a ‰ b.
(1.26)

The equilibrium system in (1.16) is recovered using the truss definition in (1.24) in the general system (1.25).
Compatibility of the truss structure requires all degrees of freedom coincident at a node must be equal

due to the pin connection. That is, the jth local degree of freedom of element e must be equal to the
corresponding global degree of freedom u⌅je :

u
e

j
“ u⌅je “

dNvÿ

s“1

us�s⌅je , (1.27)

for local degrees of freedom j “ 1, . . . , 2d and elements e “ 1, . . . , Ne, where u
e

j
is the local degree of

freedom, us (s “ 1, . . . , dNv) are the global degrees of freedom, and the last equality follows from a simple
identity. The compatibility conditions in (1.18) is recovered using the truss definition in (1.24) with the
general conditions in (1.27).

The element equations (1.13) take the form of a matrix-vector product

F
e

j
“

2dÿ

k“1

K
e

jk
u
e

k
(1.28)

for local degrees of freedom j “ 1, . . . , 2d, where K
e

jk
(j, k “ 1, . . . , 2d) are the entries of the local sti↵ness

matrix for element e. Combining the element equations (1.28) with global compatibility (1.25)

Ri “

Neÿ

e“1

2dÿ

j“1

2dÿ

k“1

K
e

jk
u
e

k
�i⌅je ´ fi. (1.29)
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for global degrees of freedom i “ 1, . . . , dNv. Compatibility is enforced by replacing the local degrees of
freedom with the appropriate global degree of freedom from (1.27)

Ri “

Neÿ

e“1

2dÿ

j“1

2dÿ

k“1

dNvÿ

s“1

K
e

jk
us�i⌅je�s⌅ke ´ fi. (1.30)

After swapping the order of the summation, the governing equations reduce to a matrix-vector product as
in (1.20)

Ri “

dNvÿ

s“1

«
Neÿ

e“1

2dÿ

j“1

2dÿ

k“1

K
e

jk
�i⌅je�s⌅ke

�
us ´ fi, (1.31)

and therefore, we identify the entries of the sti↵ness matrix explicitly as

Kis “

Neÿ

e“1

2dÿ

j“1

2dÿ

k“1

K
e

jk
�i⌅je�s⌅ke (1.32)

for i, s “ 1, . . . , dNv. This equation suggests a simple procedure for constructing the global (assembled)
sti↵ness matrix: 1) evaluate the element sti↵ness matrix using (1.14) and 2) fill entries of the global sti↵ness
matrix using (1.32).

Example 1.2: Entries of global sti↵ness matrix, truss from Figure 1.1

We use the expression in (1.32) to compute K11, K21, K43, K64:

K11 “

3ÿ

e“1

4ÿ

j“1

4ÿ

k“1

K
e

jk
�1⌅je�1⌅ke “ K

1
11 ` K

3
11

K21 “

3ÿ

e“1

4ÿ

j“1

4ÿ

k“1

K
e

jk
�2⌅je�1⌅ke “ K

1
12 ` K

3
12

K43 “

3ÿ

e“1

4ÿ

j“1

4ÿ

k“1

K
e

jk
�4⌅je�3⌅ke “ K

1
43 ` K

2
21

K64 “

3ÿ

e“1

4ÿ

j“1

4ÿ

k“1

K
e

jk
�6⌅je�4⌅ke “ K

2
42.

1.5. Displacement boundary conditions

The final task before we can solve for the nodal displacements of the truss structure is to apply the displace-
ment boundary conditions. These are also called essential or Dirichlet boundary conditions. From the truss
in Figure 1.1, we know the x and y displacement of node 1 are zero and the y displacement of node 2 is
zero, i.e., u1 “ u2 “ u4 “ 0. Since these displacements are known, we do not need to solve for them and will
eliminate the corresponding equations from the system of equations in (1.20).

Consider a partition of the global degrees of freedom into those that are constrained (displacement
known) and unconstrained (displacement unknown). Let Ic and Iu be sets of indices that partition the
global degrees of freedom into constrained and unconstrained degrees of freedom, respectively. Then we
apply this partition to the nodal displacements to yield the vector of unknown displacements as uu “ u|Iu

and known displacements as uc “ u|Ic
, where uI is the restriction of the vector u to the indices in I. We

define fc, fu, Kcc, Kuc, Kcu, Kuu similarly, where, e.g., Kuc results from restricting the rows of K to the
indices in Iu and the columns to the indices in Ic. In the context of the truss in Figure 1.1, these quantities
are defined as: Iu “ t3, 5, 6u, Ic “ t1, 2, 4u,

uu “

»

–
u3

u5

u6

fi

fl , uc “

»

–
u1

u2

u4

fi

fl “

»

–
0
0
0

fi

fl , fu “

»

–
0
f

0

fi

fl , fc “

»

–
r1

r2

r4

fi

fl , (1.33)
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and

Kuu “

»

–
K33 K35 K36

K53 K55 K56

K63 K65 K66

fi

fl Kuc “

»

–
K31 K32 K34

K51 K52 K54

K61 K62 K64

fi

fl

Kcu “

»

–
K13 K15 K16

K23 K25 K26

K43 K45 K46

fi

fl Kcc “

»

–
K11 K12 K14

K21 K22 K24

K41 K42 K44

fi

fl .

(1.34)

Observe that both uu (unknown nodal displacements) and fc (reaction forces) are unknown, while uc

(prescribed displacements) and fu (external load) are known. This will always be the case because wherever
the displacement is known, there will be an unknown reaction force from the boundary condition and
whenever the displacement is unknown (i.e., without a displacement boundary condition), there will be a
known force. For more complex boundary conditions such as an elastic foundation, the displacement is
unknown and the force is given as a function of the unknown displacement.

After re-arranging the ordering of the equations and variables, we can write

u “

„
uu

uc

⇢
, f “

„
fu

fc

⇢
, K “

„
Kuu Kuc

Kcu Kcc

⇢
(1.35)

and the governing equation in (1.20) becomes

Rpuq “ Ku ´ f “

„
Kuu Kuc

Kcu Kcc

⇢ „
uu

uc

⇢
´

„
fu

fc

⇢
(1.36)

Expansion of this system of equations leads to two distinct systems: one for the nodal displacements
Rupuu;uc,fuq “ 0 and the other for the reaction forces Rcpfc;uu,ucq “ 0:

Rupuu;uc,fuq “ Kuuuu ` Kucuc ´ fu “ 0

Rcpfc;uu,ucq “ Kcuuu ` Kccuc ´ fc “ 0.
(1.37)

The semicolon notation is used to distinguish the primary variable (unknown) in the system of equations
(left of semicolon) from the data or known quantities.

1.6. Solution of the global system

Finally, the solution of the truss problem reduces to the solution of the systems of equations in (1.37). Since
the equations are linear, the unknown nodal displacement are defined as

uu “ K
´1
uu

pfu ´ Kucucq. (1.38)

The combination of this solution with the prescribed displacements in uc gives the displacement of the
entire truss structure and completes the analysis. From this information, the force, stress, strain, or any
other quantity of interest can be computed. If the reaction forces are required, substitute uu into Rc in
(1.37) to yield

fc “ KcuK
´1
uu

pfu ´ Kucucq ` Kccuc. (1.39)

This process of applying boundary conditions to the global system in (1.20) and solving the resulting system
in (1.38) and (1.39) sequentially is referred to as static condensation.

As a final note, the reader should always interpret x “ A
´1

b as the solution of the linear system Ax “ b

rather than explicit inversion of the matrix A, which is unstable, time- and resource-intensive, and destroys
sparsity. Either direct solvers such as LU factorizations or iterative solvers such as Conjugate Gradient can
be used to solve the linear systems that arise in the DSM (or FEM). In this class, we will use MATLAB’s
backslash function which uses a direct method.
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1.7. Connection to the finite element method

As mentioned in Section 1.1, the direct sti↵ness method is the finite element method applied to a naturally
discrete system derived by physical laws. As such the DSM and FEM share many common features such
as the assembly of global equations from element contributions, enforcement of compatibility based on
the connectivity of the mesh, application of Dirichlet boundary conditions through static condensation,
and solution of the resulting system of equations using direct or iterative solvers. By beginning with the
direct sti↵ness method, we were able to avoid the complication of partial di↵erential equations and their
reformulation as a weak form while introducing the aforementioned critical steps of the FEM. As we will
see, application of the FEM to PDEs will simply lead us to di↵erent element equations, but the remaining
steps (assembly, compatibility, boundary conditions, solve) will be the same.

1.8. Summary

We summarize the key points from this chapter:

1) The direct sti↵ness method is introduced as the analog to the finite element method for naturally discrete
problems such as the deformation of a truss structure.

2) The DSM contains many of the same ingredients of the FEM: element contribution to global system,
compatibility, assembly of global system, enforcement of essential boundary conditions.

3) The element contribution for a truss element was derived by transforming to a local coordinate system
aligned with each element.

4) Compatibility between the displacements of connected elements is enforced by introducing global degrees
of freedom and requiring all coincident local degrees of freedom be equal.

5) Equilibrium at each node is used to derive a global system that combines all element contributions.

6) Displacement boundary conditions are enforced by partitioning the degrees of freedom into constrained
and unconstrained and using static condensation to derive the governing equations for the unconstrained
degrees of freedom.

7) The concepts of nodes, connectivity, and local-to-global degree of freedom mapping were introduced and
used to derive an explicit expression for the entries of the assembled sti↵ness matrix in terms of the
element sti↵ness matrix.
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