
Chapter 4

Finite element method: one
dimension

4.1. Introduction

In this chapter we introduce the finite element (FE) method (FEM) for one-dimensional, linear, second-order,
scalar PDEs using the variational setting built in Chapter 3. This will elucidate the key ingredients of the
finite element method and provide context for a more general variational development and the extension to
more general PDEs (nonlinear, higher dimensional domains, higher order PDEs, etc). In this chapter we
will intentionally be informal/vague regarding the regularity trial and test spaces. A rigorous development
will be deferred to later chapters.

4.2. Model problem

In this chapter we restrict our attention to a somewhat general form of a linear, second-order, scalar PDE
in one spatial dimension: given a domain ⌦ :“ p0, Lq Ä R, find u P C2

p⌦q such that

´
d

dx

ˆ
a
du

dx

˙
“ f in ⌦, up0q “ ū,

ˆ
a
du

dx

˙

x“L

“ Q̄, (4.1)

where a, f P F⌦ÑR are known functions and ū, Q̄ P R are known scalars. There is an essential BC at x “ 0
and a natural BC at x “ L: B⌦D “ t0u and B⌦N “ tLu. We could have chosen our model problem to have
essential BCs at both ends or a natural BC at x “ 0 and an essential BC at x “ L; however, we could not
choose natural BCs at both ends as the solution would not be unique, e.g., if u is a solution to (4.1) then so
is u ` C where C P R.

Despite its simplicity, the PDE in (4.1) models a number of relevant physical systems. It governs the
displacement u : ⌦ Ñ R (assumed small) of an elastic bar of length L with a :“ EA, where E,A P F⌦ÑR°0

are the spatially varying modulus and cross-sectional area of the bar, fixed at its left end (if ū “ 0) and
subject to a tangential load intensity f : ⌦ Ñ R and an applied traction Q̄ at its right end (Figure 4.1). It
also governs temperature distribution u : ⌦ Ñ R in a heat conducting bar with thermal conductivity along
its length a : ⌦ Ñ R°0, subject to a distributed heat source f : ⌦ Ñ R along its length, a fixed temperature
ū at its left end, and imposed heat flow Q̄ at its right end (adiabatic if Q̄ “ 0). It also governs:

• flow through porous medium (fluid head u, permeability a, infiltration f , point source Q̄),

• flow through pipes (pressure u, pipe resistance a, f “ 0, point source Q̄),

• flow of viscous fluids (x-velocity u, viscosity a, pressure gradient f , shear source Q̄),

• elastic cables (displacement u, tension a, traverse force f , point source Q̄),

• torsion of bars (angle of twist u, shear sti↵ness a, f “ 0, torque Q̄), and
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Figure 4.1: Elastic bar with axial sti↵ness apxq fixed at the left end subject to distributed axial load fpxq and point
load Q̄.

• electrostatics (electrical potential u, dielectric constant a, charge density f , electric flux Q̄).

From Chapter 2 the weak formulation of (4.1) is: find u P V such that

ª
L

0

„
dw

dx
a
du

dx
´ wf

⇢
dx ´ wpLqQ̄ “ 0 (4.2)

for all w P W, where V is the (a�ne) trial space and W is the (linear) test space

V :“ tv P F⌦ÑR | vp0q “ ūu , W :“ tw P F⌦ÑR | wp0q “ 0u . (4.3)

For brevity, we will make use of the abstract bilinear form

Bpw, uq “ `pwq, (4.4)

where B : W ˆ V Ñ R and ` : W Ñ R are functionals

Bpw, uq :“

ª
L

0

dw

dx
a
du

dx
dx, `pwq :“ wpLqQ̄ `

ª
L

0
wf dx. (4.5)

4.3. Finite element method: formulation

The finite element method is a Ritz method in that it approximates the weak formulation of the PDE in a
finite-dimensional trial and test (Galerkin) space of the form

Vh :“ 'h ` V0
h
, Wh :“ V0

h
, (4.6)

where 'h is a a�ne o↵set satisfying the essential BC of (4.1) and V0
h
is a finite-dimensional linear space of

solutions satisfying the homogeneous essential BC of (4.1)

'h P tf P F⌦ÑR | fp0q “ ūu , V0
h
:“ tv P F⌦ÑR | vp0q “ 0u , (4.7)

where dimV0
h

† 8. That is, the finite element method approximates the weak formulation of the PDE (4.4)
as: find uh P Vh such that

Bpwh, uhq “ `pwhq (4.8)

for all wh P V0
h
. This is an approximation (not equivalent) to the weak form in (4.4) because Vh and V0

h
are

proper (finite-dimensional) subsets of the trial V and test space W, i.e., the FE formulation does not test
against all functions in W, only those that lie in V0

h
. However, the fact that these approximation spaces are

finite-dimensional leads to a computable formulation. We will often call uh the finite element solution.
To this point, the FE formulation is identical to the Ritz formulation in Section 3.6. The brilliance of the

finite element method comes from a specific choice for the a�ne o↵set 'h and linear space V0
h
using piecewise

polynomials that conveniently define families of approximation spaces that can be refined or enriched (in an
natural way) to provide increasingly accurate approximations to the infinite-dimensional counterpart and
are amenable to computer implementation.
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Figure 4.2: Triangulation of one-dimensional domain including global and local numbering.

To define the finite element approximation space, we begin by discretizing the domain ⌦ into Ne :“ Nv´1
non-overlapping finite elements: Nh :“ tx̂Iu

Nv
I“1 is an ordered set of nodes such that

0 “: x̂1 † x̂2 † ¨ ¨ ¨ † x̂Nv
:“ L, (4.9)

with corresponding segments (elements)
⌦e :“ px̂e, x̂e`1q (4.10)

for e “ 1, . . . , Ne (Figure 4.2). We call the collection of elements a mesh or triangulation of the domain,
denoted

Eh :“ t⌦eu
Ne
e“1. (4.11)

Both the set of nodes Nh and elements Eh are ordered sets, i.e., any member of Nh has an associated node
number, called a global node number, and any member of Eh has an associated element number. We use the
notation x̂i P Nh to denote the ith global node and ⌦e P Eh to denote the eth element. The length of each
segment is denoted he :“ x̂e ´ x̂e´1 and h :“ maxth1, . . . , hNu is the mesh size parameter, a measure of the
fineness of the mesh.

For convenience we also introduce notation for the ordered set of nodes associated with element ⌦e:
N e

h
:“ tx̂

e

i
u
2
i“1 where the ordering of the members is called the local node number (Figure 4.2). In the simple

case of a one-dimensional PDE, the global and local node numbers are related as

x̂e “ x̂
e

1, x̂e`1 “ x̂
e

2 (4.12)

for e “ 1, . . . , Ne, assuming the global/local numbering in Figure 4.2. Following the approach in Chapter 1
we describe the relationship between the global and local node numbering using the connectivity matrix
⇥ P N2ˆNe ,

⇥ “

„
1 2 ¨ ¨ ¨ Ne

2 3 ¨ ¨ ¨ Ne ` 1

⇢
, (4.13)

which abstracts (4.12) to
x̂
e

j
“ x̂⇥je . (4.14)

Since we are considering a scalar PDE, i.e., the solution is a scalar-valued function u P F⌦ÑR, there will be
a single degree of freedom per node and therefore the local-to-global degree of freedom mapping is ⌅ “ ⇥.

Example 4.1: Mesh of one-dimensional domain

For a mesh of a one-dimensional domain ⌦ Ä R with Ne “ 4 elements (Nv “ 5 nodes), we have the
(ordered) node and element sets

Nh :“ tx̂1, x̂2, x̂3, x̂4, x̂5u, Eh :“ tpx̂1, x̂2q, px̂2, x̂3q, px̂3, x̂4q, px̂4, x̂5qu. (4.15)

The local (ordered) node sets are

N 1
h
:“ tx̂1, x̂2u, N 2

h
:“ tx̂2, x̂3u, N 3

h
:“ tx̂3, x̂4u, N 4

h
:“ tx̂4, x̂5u, (4.16)

which leads to the connectivity matrix

⇥ “

„
1 2 3 4
2 3 4 5

⇢
. (4.17)
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ū

Figure 4.3: An example of an a�ne o↵set 'h ( ), an element of V0
h ( ), and an element of the trial space

Vh “ 'h ` V0
h ( ) for a mesh with Ne “ 8 elements.

From this concept of a mesh, we define the corresponding a�ne o↵set and finite element subspace (asso-
ciated with the PDE in (4.1)) to be

'h P
 
u P C0

p⌦q

ˇ̌
u|⌦e

P P1
p⌦eq, up0q “ ū

(

V0
h
:“

 
v P C0

p⌦q

ˇ̌
v|⌦e

P P1
p⌦eq, vp0q “ 0

(
.

(4.18)

The finite element subspace V0
h
consists of continuous functions over ⌦ that are linear when restricted to an

element of the triangulation Eh and satisfy the homogeneous essential BC of (4.1). From inspection, it is
clear that the dimension of this space is dimV0

h
“ Nv ´ 1 because any continuous, piecewise linear function

is uniquely determined by its value at the interface between linear segments (the Nv nodes in our case);
however, the boundary constraint fixes the value at x “ 0, reducing the dimension to Nv ´ 1. The a�ne
o↵set 'h is also piecewise linear and continuous, but satisfies the non-homogeneous essential BC of (4.1).
This leads to a trial space and test space of the form (4.6) that satisfy the appropriate BCs (Figure 4.3).
The requirement that functions in V0

h
be continuous is reasonable given solutions to (4.1) will be continuous

functions and is required for the FE formulation to be computable as we will see in subsequent chapters.

Remark 4.1. The use of piecewise linear functions to define V0
h
is predicated on using the weak formulation

of the second-order PDE where a derivative has been moved onto the test function. The weighted residual
formulation would involve a second-order di↵erential operator that would map a piecewise linear function to
zero, leading to a useless finite-dimensional formulation.

The finite-dimensional approximation of the weak form in (4.4) combined with the choices for the a�ne
o↵set 'h and finite element subspace V0

h
(4.18) complete the abstract formulation of the finite element

method.

4.4. Construction of the finite element subspace

In this section we construct the most well-known, recognizable FE basis consisting of nodal hat functions. We
consider two approaches to contruct the basis functions. The first method directly constructs the piecewise
polynomial (linear in this case) basis functions over the triangulation Eh, while the second approach builds
first builds a polynomial basis for a single element and uses this to define the piecewise polynomial basis
over the entire domain. The direct approach is an instructive tool and useful for analysis; however, it is
not practical from an implementation viewpoint. On the other hand, the element approach is amenable
to computer implementation since it never requires the entire piecewise polynomial basis functions to be
formed.

4.4.1 Direct construction

To begin the direct construction of the finite element subspace V0
h
defined in (4.18), we first construct a

collection of functions A :“ t 1, 2, . . . , Nvu Ä F⌦ÑR, a subset of which will be used to define a basis of
the pNv ´ 1q-dimensional space V0

h
. We require the functions of A possess three key properties that will be

extremely useful when it comes to an e�cient computer implementation of the finite element method:
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1) the functions are nodal, i.e., each node I “ 1, . . . , Nv has an associated basis function  I that possesses
the Lagrangian property

 Ipx̂Jq “ �IJ (4.19)

for J “ 1, . . . , Nv,

2) the functions are linear when restricted to an element of Eh, i.e., for any ⌦e P Eh

 I |⌦e
P P1

p⌦eq (4.20)

for I “ 1, . . . , Nv, and

3) the basis function associated with node I is only non-zero on elements connected to node I, i.e., the basis
functions have local support

supp 1 “ ⌦1, supp Nv “ ⌦Nv´1, supp I “ ⌦I´1 Y ⌦I , I “ 2, . . . , Nv ´ 1. (4.21)

The first property implies A is linearly independent (Proposition 4.1). It also provides a strong connection
between values of a function in spanA and its expansion in the basis A. To see this take f P spanA, which
we write as

f “

Nvÿ

I“1

f̂I I , (4.22)

where f̂1, . . . , f̂Nv P R are the coe�cients defining the expansion of f in the basis A. This is an equality
between functions and must hold for any x P ⌦. Evaluating at a node x “ x̂J , we have

fpx̂Jq “

Nvÿ

I“1

f̂I Ipx̂Jq “

Nvÿ

I“1

f̂I�IJ “ f̂J , (4.23)

which shows that the value of the function at node J is equal to the coe�cient associated with the basis
function  J , i.e., the coe�cients are the nodal values of the function (intuition behind the nodal terminology).
The second property implies that V0

h
Ä spanA. Finally, the last property leads to sparsity of the finite

element sti↵ness matrix, which is of extreme practical importance as we will see in later chapters.

Proposition 4.1 (Linear independence of nodal functions). Consider the domain ⌦ Ä Rd
with corresponding

triangulation Eh and node set Nh (Nv “ |Nh|). Let A “ t 1, . . . , Nvu Ä F⌦ÑR be a collection of functions

with the nodal property  Ipx̂Jq “ �IJ for I “ 1, . . . , Nv and x̂J P Nh. Then the set A is linearly independent.

Proof. Take ↵1, . . . ,↵Nv P R such that
Nvÿ

I“1

↵I I “ 0. (4.24)

Since this is an equation involving functions, it must hold for any x P ⌦. Evaluating this equation at a node
x “ x̂J , we have

Nvÿ

I“1

↵I Ipx̂Jq “

Nvÿ

I“1

↵I�IJ “ ↵J “ 0, (4.25)

which holds for all nodes J “ 1, . . . , Nv. Therefore the functions in A are linearly independent.

The collection of functions over the one-dimensional domain p0, Lq satisfying these properties are the
nodal hat functions, defined as

 Ipxq :“

$
’’’’’&

’’’’’%

x ´ x̂I´1

hI´1
x P ⌦I´1

x̂I`1 ´ x

hI

x P ⌦I

0 x R ⌦I´1 Y ⌦I

(4.26)
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x̂1 x̂2 x̂I´1 x̂I x̂I`1 x̂Nv´1 x̂Nv

 1  Nv I

1

Figure 4.4: Hat function for interior node I ( ) and for boundary nodes 1 ( ) and Nv ( ). The functions
are only non-zero in elements connected to the particular node and take the value of 1 at their own node and 0 at all
other nodes.

x̂1 x̂2 x̂3 x̂4 x̂5 x̂6

 1  6 2  3  4  5

1

Figure 4.5: Hat functions for a complete triangulation (Ne “ 5) of a one-dimensional domain ⌦ Ä R.

for interior nodes I “ 2, . . . , Nv ´ 1 and

 1pxq :“

$
&

%

x̂2 ´ x

h1
x P ⌦1

0 x R ⌦1,

 Nv pxq :“

$
&

%

x ´ x̂Nv´1

hNv´1
x P ⌦Nv´1

0 x R ⌦Nv´1,

(4.27)

for boundary nodes (Figure 4.4-4.5). It is a simple exercise to verify the hat functions satisfy our re-
quirements (piecewise linear nodal functions with local support). In addition, the nodal hat functions are
continuous, i.e.,  I P C0

pp0, Lqq, which implies any element of spanA are continuous (linear combinations of
continuous functions are continuous functions).

We use these functions to define the FE a�ne o↵set 'h and linear subspace V0
h
as

'h :“ ū 1, V0
h
:“ spant 2, . . . , Nvu (4.28)

(Figure 4.3). For these to be valid choices according to (4.18), the a�ne o↵set must be continuous and satisfy
'hp0q “ ū and any function vh P V0

h
must be continuous and satisfy vhp0q “ 0. Futhermore the Nv ´ 1

vectors defining V0
h
must be linearly independent to span the pNv ´ 1q-dimensional space defined in (4.18).

Continuity of 'h and elements of V0
h
follow directly from continuity of the nodal hat functions  1, . . . , Nv

as mentioned previously. Boundary condition enforcement follows directly from the Lagrangian property

'hp0q “ ū 1p0q “ ū 1px̂1q “ ū (4.29)

and
vhp0q “ vhpx̂1q “ v̂2 2px̂1q ` ¨ ¨ ¨ ` v̂Nv Nv px̂1q “ 0, (4.30)

where vh P V0
h
is expanded in the basis t 2, . . . , Nvu with corresponding coe�cients v̂2, . . . , v̂Nv P R. The

Nv ´ 1 vectors defining V0
h
are linearly independent owning to Proposition 4.1. Therefore, the choices in

(4.28) are valid.

4.4.2 Construction from element level

Direct construction of the finite element subspace becomes cumbersome in higher dimensions and for higher
polynomial degrees. Therefore we consider an alternate approach that, instead of considering the entire
domain ⌦ “ p0, Lq and building up basis functions for V0

h
in a global sense (Section 4.4.1), constructs the

finite element space restricted to an arbitrary element and then fits elements together using the continuity
requirement. This simplifies the task of constructing a basis for a piecewise polynomial space over the
triangulation Eh to constructing one for a polynomial space over ⌦e P Eh. Unlike the direct approach, this
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Figure 4.6: A finite element with local node numbering and P1p⌦q nodal basis.

construction will lead to a systematic procedure, amenable to computer implementation, that can naturally
be generalized to higher dimensions, higher polynomial spaces, and other PDEs.

Because V0
h
consists of piecewise linear functions, for any vh P V0

h
we have

vh|⌦e
P P1

p⌦eq (4.31)

for any ⌦e P Eh, where vh|⌦e
: ⌦e Ñ R is the restriction of vh to ⌦e. In words this says any function of V0

h

is a polynomial of degree one when restricted to an element of Eh. This implies that the restriction of vh to
⌦e can be written

vh|⌦e
“ v̂

e

1�
e

1 ` v̂
e

2�
e

2, (4.32)

where t�
e

1,�
e

2u is a basis of P1
p⌦eq (recall dimP1

p⌦eq “ 2) and v̂
e

1, v̂
e

2 P R are the corresponding coe�cients.
For convenience we choose a nodal basis that satisfies

�
e

i
px̂

e

j
q “ �ij (4.33)

for i, j “ 1, 2. Repeating the development from the previous section, the nodal property guarantees the
functions t�

e

1,�
e

2u are linearly independent and, for any function f P P1
p⌦eq with coe�cients f̂

e

1 , f̂
e

2 P R in
the basis t�

e

1,�
e

2u, i.e., f “ f̂
e

1�
e

1 ` f̂
e

2�
e

2,

fpx̂
e

i
q “

2ÿ

j“1

f̂
e

j
�
e

j
px̂

e

i
q “ f̂

e

i
. (4.34)

In this sense, �e

i
is the basis function associated with node x̂

e

i
and the corresponding coe�cient f̂e

i
is equal

to the value of the function f at that node. The unique nodal basis of P1
p⌦eq (Figure 4.6) is

�
e

1pxq :“
x̂
e

2 ´ x

he

, �
e

2pxq :“
x ´ x̂

e

1

he

. (4.35)

Since  I P V0
h
for I “ 1, . . . , Nv, its restriction to an element ⌦e P Eh can be expanded in the element

basis

 I |⌦e
“

2ÿ

i“1

↵̂
e

i
�
e

i
. (4.36)

Furthermore since  I is a nodal function, it will take the value 1 at node I and zero at all other nodes,
which leads to the condition

 Ipx̂
e

i
q “  Ipx̂⇥ieq “ �I⇥ie (4.37)

where the first equality used the global-to-local node relationship in (4.14) and the second used the nodal
property of  I . Substituting this into equation (4.36), we have

�I⇥ie “  I |⌦e
px̂

e

i
q “

2ÿ

j“1

↵̂
e

j
�
e

j
px̂

e

i
q “ ↵̂

e

i
, (4.38)
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⌦e

 e  e`1

�
e

1 �
e

2

x̂e “ x̂
e

1 x̂e`1 “ x̂
e

2

Figure 4.7: The relationship between the global finite element basis functions  I ( ) and the element basis
functions �e

i ( ): the element basis functions are the restriction of the global basis functions to a single element.
Shaded region: restriction to element ⌦e.

which leads to the following relationship between the element basis t�
e

1,�
e

2u and the global functions
t 1, . . . , Nvu

 I |⌦e
“

2ÿ

i“1

�I⇥ie�
e

i
. (4.39)

This procedure to construct the global basis functions from elementwise basis functions will naturally
generalize to higher dimensions and polynomial degrees. In the special case of a scalar PDE on a one-
dimensional mesh (numbering given in Figure 4.2), we use the fact that ⇥1e “ e and ⇥2e “ e ` 1 to reduce
this to

 I |⌦e
“ �Ie�

e

1 ` �Ie1�e

2, (4.40)

where e
1

“ e ` 1. For concreteness consider an interior node I “ 2, . . . , Nv ´ 1, then

 Ipxq “

$
’’’’’&

’’’’’%

�
I

2 “
x ´ x̂I´1

hI´1
x P ⌦I´1

�
I

1 “
x̂I`1 ´ x

hI

x P ⌦I

0 x R ⌦I´1 Y ⌦I ,

(4.41)

which agrees with the expression from direct construction of  I in (4.26). Figure 4.7 illustrates this re-
lationship between the local and global basis functions. This completes our construction of the V0

h
from

the element level. In an implementation, we never need to explicitly form the piecewise polynoimal basis
functions t 1, . . . , Nvu; however, this relationship between the element and global bases will be helpful in
deriving the finite element system in a way that will suggest an e↵ective, modular computer implementation.

4.5. Finite element method

Given the construction of the finite element subspace in the previous section, we turn to deriving the finite
element system. That is, introducing our subspace approximation into the finite element weak formulation to
obtain an algebraic system of equations. Following the precedent set in the previous section, we first consider
direct construction of the global sti↵ness matrix and load vector. While instructive this is not amenable
to computer implementation in more complex scenarios. We repeat the derivation using the elementwise
construction in Section 4.4.2 to obtain the global algebraic system from elementwise terms.

4.5.1 Direct construction of global system

From the construction of the nodal basis of hat functions (4.28) of the FE subspace V0
h
in Section 4.4.2, any

element wh P V0
h
and uh P 'h ` V0

h
can be written as

wh “

Nvÿ

I“2

ŵI I , uh “ ū 1 `

Nvÿ

I“2

ûI I , (4.42)

Page 57 of 131



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

where ŵ2, . . . , ŵNv P R and û2, . . . , ûNv P R are the coe�cients of wh and uh, respectively, in the basis
t 2, . . . , Nvu. We introduce ŵ1, û1 P R so wh and uh can be conveniently written as

wh “

Nvÿ

I“1

ŵI I , uh “

Nvÿ

I“1

ûI I , (4.43)

provided w1 “ 0 and u1 “ ū; these boundary conditions will be imposed later. Substituting the expansions
(4.43) into the FE formulation (4.8) and using linearity of the functionals yields

Nvÿ

I“1

ŵI

«
Nvÿ

J“1

K̂IJ ûJ ´ f̂I

�
“ 0 (4.44)

where K̂ P MNv,Nv pRq is the global sti↵ness matrix and f̂ P RNv is the global load vector without considering
essential boundary conditions

K̂IJ :“ Bp I , Jq, f̂I :“ `p Iq. (4.45)

Now we impose the essential boundary conditions, i.e., require ŵ1 “ 0 and û1 “ ū, to yield

Nvÿ

I“2

ŵI

«
Nvÿ

J“2

K̂IJ ûJ ´ pf̂I ´ ūK̂I1q

�
“ 0. (4.46)

This equation must hold for arbitrary ŵ2, . . . , ŵNv P R to be equivalent to the FE formulation (4.8), which
holds for an arbitrary wh P V0

h
. Equation (4.46) can only be true for arbitrary values of ŵ2, . . . , ŵNv if each

term in the summation over I is zero, i.e.,

Nvÿ

J“2

K̂IJ ûJ “ f̂I ´ ūK̂I1 (4.47)

for I “ 2, . . . , Nv, which is a (square) linear system of equations (of size Nv ´ 1) that can be solved to
compute the unknown coe�cients û2, . . . , ûNv . Then the FE solution is reconstructed as

uh “ ū 1 ` û2 2 ` ¨ ¨ ¨ ûNv Nv . (4.48)

To provide a strong connection to the direct sti↵ness method, we introduce terms that partition quantities
based on whether or not an essential boundary condition is prescribed at the corresponding node. Let Ic

denote the set of node indices constrained by an essential BC and let Iu be the unconstrained nodes (without
essential BC). Then we use a superscript v̂u to denote the restriction of a vector over all nodes (v̂ P RNv ) to
only the nodes in Iu nodes; v̂c is defined similarly. For matrices (MNv,Nv pRq) two superscripts are required to

specify the restriction of the rows and columns, e.g., for Â P MNv,Nv pRq, Âcu is the restriction of rows of Â to
those in Ic and the restriction to columns in Iu. In the present context, Ic

“ t1u and Iu
“ t2, . . . , Nvu. With

this notation set, define K̂
uu

P MNv´1,Nv´1pRq, K̂uc
P MNv´1,1pRq, ûu

P RNv´1, ûc
P R, and f̂

u
P RNv´1

where
K̂

uu
IJ

:“ K̂I`1,J`1, K̂
uc
I1 :“ K̂I`1,1, û

u
I
:“ ûI`1, û

c :“ ū, f̂
u
I
:“ f̂I`1 (4.49)

for I, J “ 1, . . . , Nv ´ 1. With these definitions (4.47) reduces to

K̂
uu
û
u

“ f̂
u

´ K̂
uc
û
c
, (4.50)

which provides a close parallel to the final system obtained using the direct sti↵ness method (trusses) in
(1.38).

Remark 4.2. As mentioned in Section 4.3, the finite element method is a special case of the Ritz method
developed in Section 3.6 using the specific subspace V0

h
and a�ne o↵set 'h constructed in Section 4.4. To

see this, introduce �I :“  I`1 for I “ 1, . . . , Nv ´ 1 and recall that t�1, . . . ,�Nv´1u was established to be
a basis of V0

h
in Section 4.4.1. From (3.57), applying the Ritz method to the bilinear form in (4.4) with this

basis leads to the sti↵ness matrix

K̂
ritz
IJ

“ Bp�I ,�Jq “ Bp I`1, J`1q “ K̂I`1,J`1 “ K̂
uu
IJ

(4.51)
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for I, J “ 1, . . . , Nv ´ 1 and load vector

f̂
ritz
I

“ `p�Iq ´ Bp�I ,'hq “ `p I`1q ´ ūBp I`1, 1q “ f̂I`1 ´ ūK̂I`1,1 “ f̂
u
I

´ K̂
uc
I1 û

c
1 (4.52)

for I “ 1, . . . , Nv ´ 1, which is precisely the FE system in (4.50).

We close this section by explicitly constructing the global sti↵ness matrix and force vector corresponding
to the PDE in (4.1) based on the basis of nodal hat functions. From the definition of the sti↵ness matrix in
(4.45) and the bilinear terms in (4.5), the entries of the sti↵ness matrix are

K̂IJ :“ Bp I , Jq “

ª
L

0

d I

dx
a
d J

dx
dx (4.53)

for I, J “ 1, . . . , Nv. From the expression for the hat functions we observe the integrand will only be non-zero
if |I ´ J | § 1, otherwise the support of the basis functions in the integrand will not overlap and the product
will be zero. This reduces the sti↵ness matrix to

K̂IJ “

$
’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’%

ª
x̂2

x̂1

d 1

dx
a
d 1

dx
dx if I “ J “ 1

ª
x̂I`1

x̂I´1

d I

dx
a
d I

dx
dx if 1 † I “ J † Nv

ª
x̂Nv

x̂Nv´1

d Nv

dx
a
d Nv

dx
dx if I “ J “ Nv

ª
x̂I

x̂I´1

d I

dx
a
d I´1

dx
dx if J “ I ´ 1, I ° 1

ª
x̂I`1

x̂I

d I

dx
a
d I`1

dx
dx if J “ I ` 1, I † Nv

0 otherwise

(4.54)

for I, J “ 1, . . . , Nv. Since the nodal hat functions are piecewise linear, their derivatives are piecewise
constant

d I

dx
pxq :“

$
’’’’&

’’’’%

1

hI´1
x P ⌦I´1

´
1

hI

x P ⌦I

0 x R ⌦I´1 Y ⌦I

(4.55)

for interior nodes I “ 2, . . . , Nv ´ 1 and

d 1

dx
pxq :“

$
&

%
´

1

h1
x P ⌦1

0 x R ⌦1,

d Nv

dx
pxq :“

$
&

%

1

hNv´1
x P ⌦Nv´1

0 x R ⌦Nv´1,

(4.56)
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boundary nodes. From these equations, the sti↵ness matrix reduces to

K̂IJ “

$
’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’%

1

h
2
1

ª
x̂2

x̂1

a dx if I “ J “ 1

1

h
2
I´1

ª
x̂I

x̂I´1

a dx `
1

h
2
I

ª
x̂I`1

x̂I

a dx if 1 † I “ J † Nv

1

h
2
Nv´1

ª
x̂Nv

x̂Nv´1

a dx if I “ J “ Nv

´
1

h
2
I´1

ª
x̂I

x̂I´1

a dx if J “ I ´ 1, I ° 1

´
1

h
2
I

ª
x̂I`1

x̂I

a dx if J “ I ` 1, I † Nv

0 otherwise.

(4.57)

This expression highlights one critical reason for choosing basis functions with local support : the sti↵ness
matrix is sparse, i.e., many of its entries are zero. Furthermore, in the special case of a scalar PDE in one
dimension (with the numbering chosen according to Figure 4.2), the matrix is tridiagonal, i.e., of the form

K̂ “

»

—————–

ˆ ˆ

ˆ ˆ ˆ

. . .
. . .

. . .
ˆ ˆ ˆ

ˆ ˆ

fi

�����fl
(4.58)

where the ˆ symbol indicates a nonzero value. This special structure means that, in addition to being very
sparse, specialized algorithms exist for solving linear systems defined by K̂ extremely e�ciently using direct
methods (OpNvq operations, whereas direct solvers usually require OpN

3
v

q operations).

To complete the Ritz method, we compute the load vector f̂ P RNv as

f̂I :“ `p Iq “  IpLqQ̄ `

ª
L

0
 If dx (4.59)

for I “ 1, . . . , Nv, which can be reduced to

f̂I “

$
’’’’’’’’&

’’’’’’’’%

ª
x̂2

x̂1

ˆ
x̂2 ´ x

h1

˙
f dx if I “ 1

ª
x̂I

x̂I´1

ˆ
x ´ x̂I´1

hI´1

˙
f dx `

ª
x̂I`1

x̂I

ˆ
x̂I`1 ´ x

hI

˙
f dx if 1 † I † Nv

Q̄ `

ª
x̂Nv

x̂Nv´1

ˆ
x ´ x̂Nv´1

hNv´1

˙
f dx if I “ Nv

(4.60)

using the expressions for the hat functions (4.26)-(4.27) and their derivatives (4.55)-(4.56).

The approach to directly construct the sti↵ness matrix from its definition in (4.53) is striaghtforward;
however, it is not practical for a number of reasons. The main reason is it relies on explicit expressions
for the basis functions  1, . . . , Nv , which are messy to define for higher degree polynomial spaces and
higher dimensional problems. In addition, it does not appear amenable to computer implementation for
more complex problems due to the presence of the integrals, each of which must consider two elements (in
general) to carry out the computation. In higher dimensions on unstructured meshes, the number of elements
connected to a given node varies throughout the mesh, which makes this procedure more complicated.
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4.5.2 Construction of global system from element level assembly

Now we turn to an alternative procedure to form the finite element system from element basis functions
that that can be easily extended to higher dimensional space and higher degrees polynomials. To begin,
we observe that the bilinear form in (4.4) can be written equivalently, owing to the additive property of
integration, as a summation over element contributions

Bpw, uq “

Neÿ

e“1

Bepw, uq, `pwq “

Neÿ

e“1

`epwq, (4.61)

where Be : W ˆ V Ñ R is the restriction of the bilinear functional B to element ⌦e P Eh and `e : W Ñ R is
the restriction of ` to ⌦e. In the case of the PDE in (4.5), these terms are

Bepw, uq :“

ª

⌦e

dw

dx
a
du

dx
dx, `epwq :“

ª

⌦e

wf dx `

#
wpLqQ̄ if e “ Ne

0 otherwise.
, (4.62)

The boundary term is only included in the element touching the boundary x “ L to avoid counting it
multiple times. From the definition of the elementwise functionals as integrals over a single element ⌦e P Eh,
we have

Bepw, uq “ Bepw|⌦e
, u|⌦e

q, `epwq “ `epw|⌦e
q (4.63)

for any w P W and u P V.
With these definitions, the sti↵ness matrix K̂ in (4.45) can be expanded as

K̂IJ :“ Bp I , Jq “

Neÿ

e“1

Bep I , Jq “

Neÿ

e“1

Bep I |⌦e
,  J |⌦e

q “

Neÿ

e“1

2ÿ

i“1

2ÿ

j“1

Bep�
e

i
,�

e

j
q�I⇥ie�J⇥je , (4.64)

for I, J “ 1, . . . , Nv and we used (4.61) to write the bilinear term as a summation over element contributions,
(4.63) to restrict the basis functions to ⌦e, and (4.39) to relate the global basis functions to the element
basis functions. Next we expand the load vector f̂ in (4.45) as

f̂I :“ `p Iq “

Neÿ

e“1

`ep Iq “

Neÿ

e“1

`ep I |⌦e
q “

Neÿ

e“1

�I⇥ie`ep�
e

i
q (4.65)

for I “ 1, . . . , Nv and we used (4.61) to write the linear functional as a summation over element contributions,
(4.63) to restrict the basis functions to ⌦e, and (4.39) to relate the global basis functions to the element
basis functions. Finally, define the element sti↵ness matrix K̂

e
P M2,2pRq and element load vector f̂

e
P R2

as
K̂

e

ij
:“ Bep�

e

i
,�

e

j
q, f̂

e

i
:“ `ep�

e

i
q, (4.66)

which, for the bilinear form in (4.62), reduce to

K̂
e

ij
“

$
’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’%

1

h2
e

ª
x
e
2

x
e
1

a dx i “ j “ 1

´
1

h2
e

ª
x
e
2

x
e
1

a dx i “ 1, j “ 2

´
1

h2
e

ª
x
e
2

x
e
1

a dx i “ 2, j “ 1

1

h2
e

ª
x
e
2

x
e
1

a dx i “ j “ 2

, f̂
e

i
“

$
’’’’&

’’’’%

ª
x
e
2

x
e
1

ˆ
x
e

2 ´ x

he

˙
f dx i “ 1

ª
x
e
2

x
e
1

ˆ
x ´ x

e

1

he

˙
f dx ` Q̄�eNe i “ 2

(4.67)

for i, j “ 1, 2. The element sti↵ness matrix and load vector reduce the global system to

K̂IJ “

Neÿ

e“1

2ÿ

i“1

2ÿ

j“1

K
e

ij
�I⇥ie�J⇥je , f̂I “

Neÿ

e“1

2ÿ

i“1

f
e

i
�I⇥ie . (4.68)
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Notice that we have directly related the entries of the sti↵ness matrix and load vector to the element sti↵ness
matrix and load vector (exactly as we did for the direct sti↵ness method) and the mesh connectivity ⇥. Thus
there is no need to form the nodal hat functions directly, saving a potentially cumbersome step.

4.6. Finite element method: implementation

With the formulation and description of the finite element method for the linear, one-dimensional model
problem (4.1) complete, we turn to a systematic procedure to implement the finite element method that we
will generalize in later chapters. The basic steps are:

(i) derive the weak formulation of the boundary value problem,

(ii) generate a mesh Eh for the domain ⌦, including mapping the boundary conditions on the domain to
the mesh,

(iii) evaluate the element sti↵ness matrix K̂
e and load vector f̂

e for all elements e “ 1, . . . , Ne,

(iv) assemble into a global sti↵ness matrix and load vector, ignoring constraints coming from essential
boundary conditions, and

(v) impose essential boundary condition.

We covered derivation of the weak formulation (i) in Chapter 3, mesh generation (ii) in one dimension is
trivial (Section 4.3), and the element sti↵ness matrix and load vector (iii) are given in (4.62), (4.66). The
assembled sti↵ness and load vector (iv) are given in terms of the element sti↵ness and load vector in (4.68).
Finally, static condensation is used to impose the essential boundary conditions (v) by partitioning the finite
element system into constrained and unconstrained degrees of freedom and extracting the linear system for
the unconstrained degrees of freedom (4.50).

Example 4.2: Finite element method in one-dimension: Laplace equation

We would be remiss if we did not consider the standard FE example found in every FEM textbook: the
Laplace equation discreted with linear finite elements on a uniform mesh. The Laplace equation is a
special case of the second-order PDE in (4.1) with apxq “ 1, fpxq “ 0 for all x P ⌦ and we consider a unit
domain ⌦ :“ p0, 1q (L “ 1): find u such that

´
d
2
u

dx2
“ 0 in ⌦, up0q “ ū,

ˆ
du

dx

˙

x“1

“ Q̄, (4.69)

where we have made a somewhat arbitrary choice of boundary conditions. We consider a mesh with
Nv “ Ne ` 1 nodes numbered according to Figure 4.2 that is uniform, i.e., all elements the same size
|⌦e| “ h for e “ 1, . . . , Ne. For this scenario, the sti↵ness matrix and load vector can be directly formed
using (4.57) and (4.60), respectively, to obtain

K̂ “
1

h

»

—————–

1 ´1
´1 2 ´1

. . .
. . .

. . .
´1 2 ´1

´1 1

fi

�����fl
P MNv,Nv pRq, f̂ “

»

—————–

0
0
...
0
Q̄

fi

�����fl
P RNv (4.70)

The sti↵ness matrix is tridiagonal, symmetric, and positive semi-definite; however, it is not invertible
since we have no imposed the essential boundary conditions yet (so there are infinitely many solutions).
Alternatively, we could first form the element sti↵ness matrix and load vector from (4.67)

K̂
e

“
1

h

„
1 ´1

´1 1

⇢
, f̂

e
“

„
0

Q̄�eNe

⇢
(4.71)

and assemble these into the appropriate positions in the global sti↵ness matrix using (4.68), which turns out
to be a much easier, systematic procedure amenable to computer implementation. From the connectivity
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Figure 4.8: The solution to (4.69) ( ) and its approximation using a single linear finite element ( ).

matrix ⇥ in (4.13), we have ⇥ie “ e ` i ´ 1 so, by examining (4.68), we see that K̂
e will contribute to

K̂IJ for I, J “ e, e ` 1. These means we will “stamp” the element matrices into the global matrix using
the following pattern (special case of Ne “ 3)

K̂ “

»

——–

K̂
1
11 K̂

1
12

K̂
1
21 K̂

1
22 ` K̂

2
11 K̂

2
12

K̂
2
21 K̂

2
22 ` K̂

3
11 K̂

3
12

K̂
3
12 K̂

3
22

fi

��fl . (4.72)

It is easy to see that the global sti↵ness matrix in (4.70) is the result of stamping the element sti↵ness
matrix (4.71) using this pattern. A similar stamping procedure can be identified to assemble the global
load vector from the element load vectors.

To apply boundary conditions, we see the constrained set if Ic
“ 1 and the unconstrained set is

Iu
“ t2, . . . , Nvu, which means we remove the first column and row of K̂ to form K̂

uu and the first entry
of f̂ to form f̂

u

K̂
uu

“
1

h

»

—————–

2 ´1
´1 2 ´1

. . .
. . .

. . .
´1 2 ´1

´1 2

fi

�����fl
P MNv´1,Nv´1pRq, f̂

u
“

»

—————–

0
0
...
0
Q̄

fi

�����fl
P RNv´1

, (4.73)

and since the essential BC is zero (ûc
“ ū “ 0), the second term in (4.50) vanishes. The reduced sti↵ness

matrix (with essential BCs applied) K̂
uu is tridiagonal, symmetric, and positive definite. As mentioned

previously, the tridiagonal structure is important for e�ciency, while positive definiteness implies the
matrix is invertible (all positive eigenvalues) and the finite element solution is well-defined. We solve the
linear system (4.50) for the unknown coe�cients ûu

“ pû2, . . . , ûNv q and form the finite element solution
as

uh “ û2 2 ` ¨ ¨ ¨ ûNv Nv . (4.74)

For example take Q̄ “ 1 we can compute the solution using, e.g., MATLAB, for a discretization with
any number of elements Ne “ Nv ´ 1. Since the solution of Laplace’s equation in (4.69) is a linear
function (easily determined via integration), the finite element solution is exact using only one element
(Figure 4.8). A non-zero forcing term would make the solution more interesting and require a finer mesh
(more elements) to su�ciently resolve.
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Figure 4.9: The solution to (3.8) ( ) and its approximation using linear finite elements with Ne “ 2 ( ), Ne “ 3
( ), Ne “ 4 ( ), and Ne “ 20 ( ).

Example 4.3: Finite element method in one-dimension: PDE from Chapter 3

For completeness we revisit the PDE (3.8) from Chapter 3

´
d

dx

„
e
x
du

dx
pxq

⇢
“ sinpxq in ⌦, up0q “ 1,

ˆ
e
x
du

dx

˙

x“⇡{2
“ 0, (4.75)

over the domain ⌦ :“ p0,⇡{2q (L “ ⇡{2) whose solution we approximated with the weighted residual
methods and Ritz method using C8

p⌦q basis functions with global support. Here we use the finite
element method to approximate the same problem. For simplicity, we consider a uniform mesh with Ne

elements. The weak formulation of (3.8) is a bilinear form (4.4) with terms

Bpw, uq :“

ª
⇡{2

0

dw

dx
e
x
du

dx
dx, `pwq :“

ª
⇡{2

0
w sinpxq dx. (4.76)

The element sti↵ness matrix and load vector (4.66) are

K̂
e

“
1

h2

„
e
x
e
2 ´ e

x
e
1 e

x
e
1 ´ e

x
e
2

e
x
e
1 ´ e

x
e
2 e

x
e
2 ´ e

x
e
1

⇢
, f̂

e
“

«
cosxe

1 `
sinpxe

1q´sinpxe
2q

h

´ cosxe

2 `
sinpxe

2q´sinpxe
1q

h

�
, (4.77)

which can be assembled to form a global sti↵ness matrix and load vector following the procedure in
the previous example. To apply boundary conditions, we see the constrained set is Ic

“ 1 and the
unconstrained set is Iu

“ t2, . . . , Nvu, i.e.,

K̂
uu
IJ

“ K̂I`1,J`1, K̂
uc
I1 “ K̂I`1,1, f̂

u
I

“ f̂I`1, û
u
I

“ ûI`1, û
c
1 “ 1 (4.78)

for I, J “ 1, . . . , Nv ´ 1. These terms define the linear system in (4.50) that we solve for the unknown û
u

and form the finite element solution as

uh “  1 ` û2 2 ` ¨ ¨ ¨ ûNv Nv . (4.79)

The finite element solution on a range of meshes is shown in the Figure 4.9 along with the exact solution.
This clearly provides an improved approximation that can be systematically refined, as opposed to the
methods in Chapter 3 that use basis functions with global support.

Page 64 of 131



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

4.7. Error estimates

In this section we consider basic error analysis of the finite element method applied to the Poisson equation
over the unit interval ⌦ :“ p0, 1q with homogeneous essential BCs:

´
d
2
u

dx2
“ f in ⌦, up0q “ up1q “ 0, (4.80)

where f : ⌦ Ñ R is given. Since the zero function is a particular solution satisfying the essential BCs, the
weak formulation is: find u P V0 such that

Bpw, uq “ `pwq (4.81)

for all w P V0 and the functionals B : V0
ˆ V0

Ñ R and ` : V0
Ñ R are

Bpw, uq :“

ª

⌦

dw

dx

du

dx
dx, `pwq :“

ª

⌦
wf dx. (4.82)

Then the finite element formulation is: find uh P V0
h
such that

Bpwh, uhq “ `pwhq, (4.83)

for all w P V0
h
, where

V0
h
:“

 
v P C0

p⌦q

ˇ̌
v|K P P1

pKq @K P Eh, vp0q “ vp1q “ 0
(

(4.84)

and Eh is a mesh of ⌦. It can be shown that Bp¨, ¨q defines an inner product on the V0, which allows us to
define the energy norm ~¨~ : V0

Ñ R as: for any v P V0,

~v~ :“
a
Bpv, vq “

˜ª

⌦

ˆ
dv

dx

˙2

dx

¸1{2

. (4.85)

The energy norm is the norm induced by the inner product Bp¨, ¨q. Therefore, from the properties of a norm,
we have ~v~ “ 0 ùñ v “ 0.

The key property to FE error estimates is Galerkin orthogonality : let u P V0 be the solution of the weak
formulation and uh P V0

h
be the solution of the finite element formulation, then

Bpwh, u ´ uhq “ 0 @wh P V0
h
. (4.86)

In words, the finite element error is orthogonal to the space V0
h
in the inner product Bp¨, ¨q. This can be seen

from the following argument: for any wh P V0
h
, we have

0 “ `pwhq ´ Bpwh, uhq “ Bpwh, uq ´ Bpwh, uhq “ Bpwh, u ´ uhq, (4.87)

where the first equality follows because uh is the FE solution, the second equality holds because u is the
solution of the weak formulation and V0

h
Ä V0, and the last equality follows from bilinearity. Now consider

any wh P V0
h
, then

~u ´ uh~
2

“ Bpu´uh, u´uhq “ Bpu´uh, u´whq` Bpu ´ uh, wh ´ uhqlooooooooooomooooooooooon
“0 by Galerkin orthogonality

§ ~u ´ uh~ ~u ´ wh~ , (4.88)

where the Cauchy-Schwartz inequality was used to obtain the final result. Dividing both sides by ~u ´ uh~

we see that
~u ´ uh~ § ~u ´ wh~ @wh P V0

h
, (4.89)

or, equivalently,
~u ´ uh~ “ inf

whPV0
h

~u ´ wh~ . (4.90)
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Thus the FE approximation is optimal in the energy norm, i.e., among all elements in V0
h
, the FE solution

is the closest to the true solution u P V0. This is a significant result on its own, but also provides a means
to estimate the error in the finite element solution. Define the interpolant of u P V0 in V0

h
as

Ihu :“
Nvÿ

I“1

upx̂Iq I . (4.91)

It can be shown that for any v P V0 that

~v ´ Ihv~ § Ch. (4.92)

where C “ maxxP⌦ |v
2
pxq| is a constant (assuming v

2 bounded). Owing to (4.90), the FE approximation
must have a smaller energy norm error than the interpolant because Ihu P V0

h
, i.e.,

~u ´ uh~ § ~u ´ Ihu~ § Ch, (4.93)

which shows that the FE error decreases linearly in the energy norm as the maximum element size is decreased
(in case where using piecewise linear approximation space).

4.8. Summary

This chapter introduced the finite element method in the special case of a linear, second-order partial
di↵erential equation:

1) While simple, the model problem consider can be used to model a number of di↵erent physical phenomena
from deformation of a bar to flow through porous media to heat flow to electrostatics and more.

2) The finite element method is a special case of the Ritz method in that it is based on the weak formulation
of a PDE and uses a Galerkin choice of finite-dimensional test/trial spaces.

3) The finite element subspace consists of continuous, piecewise polynomial functions (linear in this section)
over a mesh, or triangulation, of the domain that satisfy the homogeneous essential boundary conditions.

4) Nodal hat functions are picewise linear functions over the domain (linear functions when restricted to
any element of the mesh) associated with a particular node that possess the Lagrangian property (takes
value 1 at its own node and 0 at all other nodes). They are used to define a convenient basis of the FE
subspace because they are linearly independent and (a subset) span V0

h
. The Lagrangian property implies

that the coe�cient associated with each function is equal to the value of the function at the node.

5) The nodal hat function do not need to be explicitly formed; rather they can be constructed from polyno-
mial (not piecewise) bases over individual elements.

6) The algebraic form of the FE system was derived without considering essential BCs, which were later
imposed via static condensation.

7) For scalar PDEs in one dimension with the natural numbering (Figure 4.2), the sti↵ness matrix is tridi-
agonal, which means it is very sparse and highly specialized solver exist to solve corresponding linear
systems e�ciently.

8) The five main steps of the finite element method are: (i) derive weak formulation, (ii) generate mesh of
the domain, (iii) evaluate element sti↵ness matrix and load vector, (iv) assemble element contributions
into global FE system, and (v) impose essential BCs.

9) The finite element method is optimal in the energy norm, meaning the FE solution is the point in the
trial space with the smallest error as measured by the energy norm.

10) The finite element method with piecewise linear approximation spaces converges at a rate of Ophq in
the energy norm.
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