
Chapter 6

Finite element method: d-dimensions

6.1. Introduction

In this chapter we generalize the formulation, construction, implementation, and error analysis of the finite
element method introduced in Chapter 4 for one-dimensional problems to PDEs over domains in ⌦ Ä Rd

(d • 1) using the variational formalism introduced in Chapter 5. For simplicity, we restrict attention to
linear, second-order, scalar-valued PDEs. The extension to nonlinear, scalar-valued PDEs will be addressed
in Chapter 7; we will not have time to consider higher order PDEs. As we will see, most of the details of the
construction are unchanged in the more complex setting (nonlinear, systems of PDEs), which makes this a
reasonable and highly relevant starting point.

6.2. H
1-conforming finite elements

In this section we provide a formal definition of a finite element and construct the most widely used finite
elements: H1 conforming (nodal) elements.

Definition 6.2.1 (Finite element). Let

(i) K Ä Rd be a compact set with non-empty interior and piecewise smooth boundary (element domain),

(ii) Y be a finite-dimensional function space on K pM :“ dimYq (space of shape functions), and

(iii) D :“ tD1, . . . , DMu is a basis for Y 1 (dual space of Y) (degrees of freedom).

Then pK,Y,Dq is called a finite element.

In this course we will only consider nodal elements. Let N Ä K be a set of N el
nd ordered nodes denoted

⇠̂1, . . . , ⇠̂Nel
nd

with the jth coordinate (j “ 1, . . . , d) of node i (i “ 1, . . . , N el
nd) denoted ⇠̂ji. For now, we only

allow for a single degree of freedom per node (M “ N
el
nd) because we are considering scalar-valued variational

problems, i.e., u in (6.151) is a scalar-valued function. In this setting, let pK,Y,Dq be a nodal finite element
with associated node set NK

h
, then the degrees of freedom of any v P Y are

Dipvq :“ vp⇠̂iq. (6.1)

In the remainder, we use the notation v̂i :“ vp⇠̂iq. Furthermore, let t 1, . . . , N
el
nd

u be a basis of Y that
possesses the nodal property, i.e.,

 ip⇠̂jq “ �ij . (6.2)

Recall this property guarantees the basis functions are linearly independent. In this setting, any v P Y can
be expressed in terms of the degrees of freedom and basis functions as

v “

Mÿ

i“1

Dipvq i “

Mÿ

i“1

v̂i i, (6.3)
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i.e., the coe�cients that expand v in the basis t 1, . . . , N
el
nd

u are equal to the value of the function at the
nodes.

Example 6.1: Linear finite element in one dimension

The linear, one-dimensional finite element used in Chapter 4 is a finite element pK,Y,Dq. The element
domain is simply a closed interval K :“ ra, bs for a, b P R and the local function space is Y :“ P1

pKq. The
nodes of the element are located at the endpoints of K, i.e., N :“ t⇠̂1, ⇠̂2u where ⇠̂1 “ a and ⇠̂2 “ b, and
D “ tD1, D2u are the nodal degrees of freedom associated with these nodes, i.e., Dipvq :“ v̂i :“ vp⇠̂iq for
i “ 1, 2 and any v P Y. The finite element pK,Y,Dq is summarized as

K :“ ra, bs, Y :“ P1
pKq, N :“ ta, bu, D :“ tvpaq, vpbqu. (6.4)

The (unique) nodal basis t 1, 2u of Y associated with the node set N is

 1p⇠q :“
b ´ ⇠

b ´ a
,  2p⇠q :“

⇠ ´ a

b ´ a
. (6.5)

An illustration of this finite element and its nodal basis functions in the special case where a “ ´1, b “ 1
is provided in Figure 6.2.

Example 6.2: Bilinear quadrilateral finite element in two dimensions

As another example we construct the bilinear, one-dimensional finite element used in Homework 2. The
element domain is simply a closed quadrilateral K :“ ra1, b1s ˆ ra2, b2s for a1, a2, b1, b2 P R and the
local function space is Y :“ Q1

pKq. The nodes of the element are located at the corners of K, i.e.,
Nh “ t⇠̂1, . . . , ⇠̂4u, where

⇠̂1 “

„
a1

a2

⇢
, ⇠̂2 “

„
b1

a2

⇢
, ⇠̂3 “

„
a1

b2

⇢
, ⇠̂4 “

„
b1

b2

⇢
(6.6)

and D “ tD1, D2, D3, D4u are the nodal degrees of freedom associated with these nodes, i.e., Dipvq :“ v̂i :“
vp⇠̂iq for i “ 1, 2, 3, 4 and any v P Y. The bilinear quadrilateral finite element pK,Y,Dq is summarized as

K :“ ra1, b1s ˆ ra2, b2s, Y :“ Q1
pKq, N :“

"„
a1

a2

⇢
,

„
b1

a2

⇢
,

„
a1

b2

⇢
,

„
b1

b2

⇢*
,

D :“

"
v

ˆ„
a1

a2

⇢˙
, v

ˆ„
b1

a2

⇢˙
, v

ˆ„
a1

b2

⇢˙
, v

ˆ„
b1

b2

⇢˙*
.

(6.7)

The (unique) nodal basis t 1, 2, 3, 4u of Y associated with the node set N is

 1pr, sq :“
b1 ´ r

b1 ´ a1

b2 ´ s

b2 ´ a2
,  2pr, sq :“

r ´ a1

b1 ´ a1

b2 ´ s

b2 ´ a2
,

 3pr, sq :“
b1 ´ r

b1 ´ a1

s ´ a2

b2 ´ a2
,  4pr, sq :“

r ´ a1

b1 ´ a1

s ´ a2

b2 ´ a2
.

(6.8)

An illustration of this finite element and its nodal basis functions in the special case where a1 “ a2 “ ´1,
b1 “ b2 “ 1 are provided in Figure 6.3, 6.4.

In the remainder of this section we introduce various classes of H1-conforming finite elements that we
will use in this class, namely, polynomial simplex and hypercube elements. For now, we will not worry about
the configuration of the element in the domain. Rather we will define them on a idealized, reference domain,
denoted ⌦˝ Ä Rd. In the next section, we will introduce a mapping to push them to their appropriate
configuration/orientation in the domain ⌦. Since these ideal elements will be used to generate all of the
physical elements in a mesh, we call them master elements. Since we have committed to nodal elements,
we no longer need to discuss the degrees of freedom D since they will be given uniquely from the nodes.
Therefore, amaster finite element is completely defined by p⌦˝,Y˝,N˝q, where ⌦˝ Ä Rd is the master element
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geometry, Y˝ is the function space associated with the master element, and N˝ Ä ⌦˝ is the collection of
N

el
nd nodes that define the element degrees of freedom. In the remainder of this section, we define a number

of useful master finite elements in d “ 1, 2 and higher dimensions. In particular, we define the element
geometry ⌦˝, the distribution of nodes and their numbering N˝, and the associated (usually polynomial)
function space Y˝.

6.2.1 Polynomial spaces

In Chapter 2 we introduced the polynomial space Pp
p⌦q for ⌦ Ä R. In higher dimensions ⌦ Ä Rd (d ° 1)

there many relevant polynomial spaces; however, we will consider the two most common ones Pk
p⌦q and

Qk
p⌦q defined as

Pk
p⌦q :“

$
’’’&

’’’%
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

pp⇠q “

ÿ

↵PNd
0

}↵}1§k

a↵⇠
↵
, ⇠ P ⌦, a↵ P R

,
///.

///-

Qk
p⌦q :“

$
’’’&

’’’%
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

pp⇠q “

ÿ

↵PNd
0

}↵}8§k

a↵⇠
↵
, ⇠ P ⌦, a↵ P R

,
///.

///-
.

(6.9)

It can be shown that these are linear spaces of dimension

dimPk
p⌦q “

ˆ
k ` d

d

˙
, dimQk

p⌦q “ pk ` 1q
d
. (6.10)

Example 6.3: Polynomial spaces in d “ 1 dimension

In d “ 1 dimension, both the Pk
p⌦q and Qk

p⌦q polynomial spaces are identical and equal to

Pk
p⌦q “ Qk

p⌦q “

#
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ pp⇠q “

kÿ

n“0

an⇠
n
, ⇠ P ⌦, an P R

+
(6.11)

and have dimension dimPk
p⌦q “ dimQk

p⌦q “ k ` 1.

Example 6.4: Polynomial spaces in d “ 2 dimension

In d “ 2 dimensions, the polynomial spaces are

Pk
p⌦q “

#
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ pp⇠q “

ÿ

↵1`↵2§k

a↵1↵2⇠
↵1
1 ⇠

↵2
2 , ⇠ P ⌦, a↵1↵2 P R

+

Qk
p⌦q “

#
p P F⌦ÑR

ˇ̌
ˇ̌
ˇ pp⇠q “

ÿ

1§↵1,↵2§k

a↵1↵2⇠
↵1
1 ⇠

↵2
2 , ⇠ P ⌦, a↵1↵2 P R

+ (6.12)

and have dimension dimPk
p⌦q “ pk`1qpk`2q{2 and dimQk

p⌦q “ pk`1q
2. Now we state the monomial

basis of Pk
p⌦q and Qk

p⌦q for the special case of k “ 0, 1, 2

P0
p⌦q “ spant1u, Q0

p⌦q “ spant1u

P1
p⌦q “ spant1, ⇠1, ⇠2u, Q1

p⌦q “ spant1, ⇠1, ⇠2, ⇠1⇠2u

P2
p⌦q “ spant1, ⇠1, ⇠2, ⇠

2
1 , ⇠1⇠2, ⇠

2
2u, Q2

p⌦q “ spant1, ⇠1, ⇠2, ⇠
2
1 , ⇠1⇠2, ⇠

2
2 , ⇠1⇠

2
2 , ⇠

2
1⇠2, ⇠

2
1⇠

2
2u

(6.13)
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Figure 6.1: Master element geometry and boundary numbering for line (d “ 1 hypercube) (left), triangle (d “ 2
simplex) (middle), and quadrilateral (d “ 2 hypercube) (right).

from which we can see the dimensions are

dimP0
p⌦q “ 1, dimQ0

p⌦q “ 1

dimP1
p⌦q “ 3, dimQ1

p⌦q “ 4

dimP2
p⌦q “ 6, dimQ2

p⌦q “ 9

(6.14)

in agreement with the preceeding general formula.

6.2.2 d “ 1 dimension: Pp “ Qp master line element

Element domain

In d “ 1 dimension the only possible element geometry is a line segment. For convenience, we take the
master element domain to be the bi-unit interval centered at zero

⌦˝ :“ r´1, 1s. (6.15)

Then the boundary of the master element is B⌦˝ “ t´1, 1u. We separate these into an ordered set of faces
F˝ “ tB⌦˝,1, B⌦˝,2u, where B⌦˝,1 “ t´1u with associated unit outward normal N˝,1 “ t´1u and B⌦˝,2 “ t1u

with associated unit outward normal N˝,2 “ t1u. The complete geometry of the master line element is
illustrated in Figure 6.1.

Local function space

We take the local function space to be the space of polynomials up to (and including) degree p, i.e., Y˝ :“
Pp

p⌦˝q “ Qp
p⌦˝q (recall in d “ 1 these polynomial spaces are the same). Therefore, the local function space

has dimension dimY˝ “ p ` 1.

Distribution and numbering of nodes

Before we can construct a nodal basis of Y˝, we must distribute N
el
nd “ p ` 1 nodes throughout the element

geometry. To ensure the nodal basis functions are linearly independent, the nodes must not overlap (and
should not be too close to prevent ill-conditioning). Furthermore we insist that a node lies on each face as
this make enforcing global continuity straightforward. For simplicity, we uniformly distribute nodes through
⌦˝, i.e., Nh “ t⇠̂1, . . . , ⇠̂p`1u where

⇠̂i “ ´1 ` 2
i ´ 1

p
(6.16)
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Figure 6.2: Master Pp line element including nodal positions/numbering and nodal basis functions for p “ 1, 2, 3
(left-to-right).

for i “ 1, . . . , p`1 (Figure 6.2). It is well-known that uniform placement of nodes can lead to ill-conditioned
systems for high p; this can be remedied using non-uniform points such the Chebyshev or Gauss-Legendre-
Lobotto nodes.

Construction of nodal element basis functions

Finally, we turn to a construction of basis functions of Y˝ :“ Pp
p⌦˝q that satisfy the nodal property:

 ip⇠̂jq “ �ij for i, j “ 1, . . . , p` 1. Notice that the nodal property constrains the value of each basis function
at p ` 1 (unique) locations; since the basis functions are polynomials of degree p, these constraints uniquely
define them. From this observation, we set out to construct the basis functions by inspection.

To begin, we consider the special case of p “ 1 and observe that  1 must go to zero at ⇠̂2 from which
we postulate it takes the form  1p⇠q “ ↵p⇠ ´ ⇠̂2q for some ↵ P R. Similarly, we postulate  2p⇠q “ �p⇠ ´ ⇠̂1q

for some � P R. It can readily be seen that these are linear functions that satisfy  1p⇠̂2q “  2p⇠̂1q “ 0,
which makes them valid candidates for a nodal basis of P1

p⌦˝q. The only conditions that remain are the
normalization conditions  1p⇠̂1q “  2p⇠̂2q “ 1, which leads to the following expressions for the coe�cients

↵ “
1

⇠̂1 ´ ⇠̂2

, � “
1

⇠̂2 ´ ⇠̂1

(6.17)

to yield the nodal basis

 1p⇠q “
⇠̂2 ´ ⇠

⇠̂2 ´ ⇠̂1

“
1 ´ ⇠

2
,  2p⇠q “

⇠ ´ ⇠̂1

⇠̂2 ´ ⇠̂1

“
⇠ ` 1

2
, (6.18)

where we have used that ⇠̂1 “ ´1 and ⇠̂2 “ 1.
We follow a similar procedure for the p “ 2 case and postulate that

 1p⇠q “ ↵p⇠ ´ ⇠̂2qp⇠ ´ ⇠̂3q,  2p⇠q “ �p⇠ ´ ⇠̂1qp⇠ ´ ⇠̂3q,  3p⇠q “ �p⇠ ´ ⇠̂1qp⇠ ´ ⇠̂2q, (6.19)

where ↵,�, � P R are constants that must be determined. It is easy to verify that  ip⇠̂jq “ 0 for i ‰ j. The
constants are determined to be

↵ “
1

p⇠̂1 ´ ⇠̂2qp⇠̂1 ´ ⇠̂3q

, � “
1

p⇠̂2 ´ ⇠̂1qp⇠̂2 ´ ⇠̂3q

, � “
1

p⇠̂3 ´ ⇠̂1qp⇠̂3 ´ ⇠̂2q

, (6.20)

from the normalization conditions  ip⇠̂iq “ 1 (no summation on i), which leads to the nodal basis functions

 1p⇠q “
p⇠ ´ ⇠̂2qp⇠ ´ ⇠̂3q

p⇠̂1 ´ ⇠̂2qp⇠̂1 ´ ⇠̂3q

“
⇠p⇠ ´ 1q

2

 2p⇠q “
p⇠ ´ ⇠̂1qp⇠ ´ ⇠̂3q

p⇠̂2 ´ ⇠̂1qp⇠̂2 ´ ⇠̂3q

“ p⇠ ` 1qp1 ´ ⇠q

 3p⇠q “
p⇠ ´ ⇠̂1qp⇠ ´ ⇠̂2q

p⇠̂3 ´ ⇠̂1qp⇠̂3 ´ ⇠̂2q

“
⇠p⇠ ` 1q

2

(6.21)
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because the nodes are ⇠̂1 “ ´1, ⇠̂2 “ 0, and ⇠̂3 “ 1 from (6.16). We follow the same procedure precisely to
obtain an expression for the nodal basis functions of Pp

p⌦˝q associated with the nodes N˝ “ t⇠̂1, . . . , ⇠̂p`1u

 ip⇠q “

p`1π

j“1
j‰i

⇠ ´ ⇠̂j

⇠̂i ´ ⇠̂j

“
⇠ ´ ⇠̂1

⇠̂i ´ ⇠̂1

¨ ¨ ¨
⇠ ´ ⇠̂i´1

⇠̂i ´ ⇠̂i´1

⇠ ´ ⇠̂i`1

⇠̂i ´ ⇠̂i`1

¨ ¨ ¨
⇠ ´ ⇠̂p`1

⇠̂i ´ ⇠̂p`1

, (6.22)

see Figure 6.2 for an illustration of the basis functions up to p “ 3. It is a simple exercise to verify that this
collection of functions satisfies the nodal property.

6.2.3 d “ 2 dimensions: Qp master quadrilateral element

Unlike in d “ 1 dimension, there are infinitely many possible element geometries in d ° 1 dimensions; we will
only consider a small, but extremely useful subset of these possibilities. We begin with the Qp quadrilateral
element.

Element domain

The reference domain of the master quadrilateral element is taken to be the bi-unit interval centered at zero
for consistency with the line element

⌦˝ :“ r´1, 1s ˆ r´1, 1s. (6.23)

Notice that the master quadrilateral element is a Cartesian product of the master line element with itself.
The boundary of the master element is B⌦˝ “

î4
i“1 B⌦˝,i, where

B⌦˝,1 :“ t´1u ˆ r´1, 1s, B⌦˝,2 :“ r´1, 1s ˆ t´1u, B⌦˝,3 :“ t1u ˆ r´1, 1s, B⌦˝,4 :“ r´1, 1s ˆ t1u (6.24)

and the corresponding unit outward normals are

N˝,1 :“

„
´1
0

⇢
, N˝,2 :“

„
0

´1

⇢
, N˝,3 :“

„
1
0

⇢
, N˝,4 :“

„
0
1

⇢
. (6.25)

The complete geometry of the master quadilateral element is illustrated in Figure 6.1.

Local function space

We take the local function space to be the space Y˝ :“ Qp
p⌦˝q, i.e., polynomial functions where the largest

exponent is p. The dimension of the local function space is dimY˝ “ pp ` 1q
2. An important property

of this function space is that any function v P Qp
p⌦˝q is a one-dimensional polynomial of degree p when

restricted to any face B⌦˝,k, k “ 1, . . . , 4. To see this we introduce a parametrization of boundary 2 (chosen
arbitrarily), � : r´1, 1s Ñ B⌦˝,2 defined as �psq :“ ps,´1q P B⌦˝,2. Then, for any v P Qp

p⌦˝q, we expand it
as

vp⇠q “

ÿ

↵1§p,↵2§p

a↵1↵2⇠
↵1
1 ⇠

↵2
2 , (6.26)

where aij P R for i, j “ 1, . . . , p` 1. We then restrict v to B⌦˝,2 by composing with the face parametrization
�

fpsq :“ vp�psqq “

ÿ

↵1§p,↵2§p

a↵1↵2�1psq
↵1�2psq

↵2 “

ÿ

↵2§p

˜
ÿ

↵1§p

p´1q
↵1a↵1↵2

¸
s
↵2 , (6.27)

which is clearly a polynomial of degree at most p, i.e., f P Pp
pr´1, 1sq.
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Figure 6.3: Master Qp quadrilateral element including nodal positions and numbering for p “ 1, 2, 3 (left-to-right).

Distribution and numbering of nodes

Before we construct a nodal basis of Y˝, we must distribute N
el
nd “ pp ` 1q

2 nodes throughout the element
domain ⌦˝. To ensure all basis functions are linearly independent, the nodes must not overlap (or be too
close to prevent ill-conditioning). We also require that p ` 1 nodes lie on each of the four faces of the
quadrilateral ⌦˝. Recall from the previous section that functions of Qp

p⌦˝q are one-dimensional polynomials
of degree p when restricted to faces B⌦˝ and are therefore uniquely determined by p ` 1 nodal values. This
gives a convenient way to enforce global continuity between elements: if the nodal values of two abutting
elements match at the p ` 1 nodes on their common face, then the functions will match everywhere on that
face since they will define the same one-dimensional polynomial.

To satisfy these requirements, we define the nodes of the Qp master quadrilateral to be the Cartesian
product of the nodes of the Qp master line element, numbered first in the ⇠1-direction then in the ⇠2-direction
(Figure 6.3 for p “ 1, 2, 3). To make this precise, let tŝ1, . . . , ŝp`1u Ä r´1, 1s be the nodes of the master line
element and introduce to mappings

I : t1, . . . , pp ` 1q
2
u Ñ t1, . . . , p ` 1u, J : t1, . . . , pp ` 1q

2
u Ñ t1, . . . , p ` 1u, (6.28)

where I maps the quadrilateral node number to the node number along the ⇠1-axis and J maps to the
node number along the ⇠2-axis, i.e., the ith quadrilateral node is the Ipiqth node in the ⇠1-direction and the
J piqth node in the ⇠2-direction. To agree with the node numbering in Figure 6.3, we have

Ipkq :“ 1 ` rpk ´ 1q%pp ` 1qs , J pkq :“ 1 `

Z
k ´ 1

p ` 1

^
(6.29)

for k “ 1, . . . , pp ` 1q
2, where % is the modulus operator (remainder after division) and t¨u is the floor

operator. With this notation, the kth quadrilateral node is defined in terms of the line element nodes as

⇠̂k :“

„
⇠̂1k

⇠̂2k

⇢
:“

„
ŝIpkq
ŝJ pkq

⇢
. (6.30)

Example 6.5: Nodes of bilinear Q1
quadrilateral

To define the nodes of Q1 master quadrilateral element, recall the nodes of the Q1 master line element
ŝ1 “ ´1, ŝ2 “ 1 and, in the special case of p “ 1, the quadrilateral-to-line mappings (6.28)-(6.29) are

I “ t1, 2, 1, 2u, J “ t1, 1, 2, 2u. (6.31)
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From this and (6.30), the nodes of the master Q1 quadrilateral element are

⇠̂1 “

„
⇠̂11

⇠̂21

⇢
“

„
ŝIp1q
ŝJ p1q

⇢
“

„
ŝ1

ŝ1

⇢
“

„
´1
´1

⇢
, ⇠̂2 “

„
⇠̂12

⇠̂22

⇢
“

„
ŝIp2q
ŝJ p2q

⇢
“

„
ŝ2

ŝ1

⇢
“

„
1

´1

⇢
,

⇠̂3 “

„
⇠̂13

⇠̂23

⇢
“

„
ŝIp3q
ŝJ p3q

⇢
“

„
ŝ1

ŝ2

⇢
“

„
´1
1

⇢
, ⇠̂4 “

„
⇠̂14

⇠̂24

⇢
“

„
ŝIp4q
ŝJ p4q

⇢
“

„
ŝ2

ŝ2

⇢
“

„
1
1

⇢
,

(6.32)

which clearly agrees with Figure 6.3.

Example 6.6: Nodes of biquadratic Q2
quadrilateral

To define the nodes of Q2 master quadrilateral element, recall the nodes of the Q2 master line element
ŝ1 “ ´1, ŝ2 “ 0, ŝ3 “ 1 and, in the special case of p “ 2, the quadrilateral-to-line mappings (6.28)-(6.29)
are

I “ t1, 2, 3, 1, 2, 3, 1, 2, 3u, J “ t1, 1, 1, 2, 2, 2, 3, 3, 3u. (6.33)

From this and (6.30), the nodes of the master Q2 quadrilateral element are

⇠̂1 “

„
⇠̂11

⇠̂21

⇢
“

„
ŝIp1q
ŝJ p1q

⇢
“

„
ŝ1

ŝ1

⇢
“

„
´1
´1

⇢
, ⇠̂2 “

„
⇠̂12

⇠̂22

⇢
“

„
ŝIp2q
ŝJ p2q

⇢
“

„
ŝ2

ŝ1

⇢
“

„
0

´1

⇢
,

⇠̂3 “

„
⇠̂13

⇠̂23

⇢
“

„
ŝIp3q
ŝJ p3q

⇢
“

„
ŝ3

ŝ1

⇢
“

„
1

´1

⇢
, ⇠̂4 “

„
⇠̂14

⇠̂24

⇢
“

„
ŝIp4q
ŝJ p4q

⇢
“

„
ŝ1

ŝ2

⇢
“

„
´1
0

⇢
,

⇠̂5 “

„
⇠̂15

⇠̂25

⇢
“

„
ŝIp5q
ŝJ p5q

⇢
“

„
ŝ2

ŝ2

⇢
“

„
0
0

⇢
, ⇠̂6 “

„
⇠̂16

⇠̂26

⇢
“

„
ŝIp6q
ŝJ p6q

⇢
“

„
ŝ3

ŝ2

⇢
“

„
1
0

⇢
,

⇠̂7 “

„
⇠̂17

⇠̂27

⇢
“

„
ŝIp7q
ŝJ p7q

⇢
“

„
ŝ1

ŝ3

⇢
“

„
´1
1

⇢
, ⇠̂8 “

„
⇠̂18

⇠̂28

⇢
“

„
ŝIp8q
ŝJ p8q

⇢
“

„
ŝ2

ŝ3

⇢
“

„
0
1

⇢
,

⇠̂9 “

„
⇠̂19

⇠̂29

⇢
“

„
ŝIp9q
ŝJ p9q

⇢
“

„
ŝ3

ŝ3

⇢
“

„
1
1

⇢
,

(6.34)

which clearly agrees with Figure 6.3.

Construction of element basis functions

Lastly we turn to a construction of the nodal basis of Y˝ :“ Qp
p⌦˝q. Given the tensor product structure of

the master quadrilateral domain and its nodes, we construct the nodal basis via a Cartesian product of the
nodal basis functions of the master line element. Again, let tŝ1, . . . , ŝp`1u be the nodes of the Pp master line
element, I and J be the quadrilateral-to-line nodal mapping from the previous section, and t ̃1, . . . ,  ̃p`1u

be the corresponding nodal basis, i.e.,  ̃ipŝjq “ �ij for i, j “ 1, . . . , p ` 1. Then we define the nodal basis
functions t 1, . . . , N

el
nd

u of the Qp quadrilateral to be

 ip⇠q :“  ̃Ipiqp⇠1q ̃J piqp⇠2q. (6.35)

Using the expression in (6.22) for the one-dimensional nodal basis, this becomes

 ip⇠q “

¨

˚̊
˝

p`1π

j“1
j‰Ipiq

⇠1 ´ ŝj

ŝIpiq ´ ŝj

˛

‹‹‚

¨

˚̋
p`1π

k“1
k‰J piq

⇠2 ´ ŝk

ŝJ piq ´ ŝk

˛

‹‚ (6.36)

To verify this choice of basis has the nodal property, we evaluate  i at node ⇠̂j

 ip⇠̂jq “  ̃Ipiqp⇠̂1jq ̃J piqp⇠̂2jq “  ̃IpiqpŝIpjqq ̃J piqpŝJ pjqq “ �IpiqIpjq�J piqJ pjq “ �ij , (6.37)
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Figure 6.4: Nodal basis functions of Q1 master quadrilateral element.

Figure 6.5: Nodal basis functions of Q2 master quadrilateral element.

where the last equality follows because the product �IpiqIpjq�J piqJ pjq only survives if Ipiq “ Ipjq (the ⇠1
index of nodes i and j must match) and J piq “ J pjq (the ⇠2 index of nodes i and j must match), which can
only happen if i “ j. The nodal basis functions for the Q1, Q2, and Q3 master quadrilateral are shown in
Figures 6.4-6.6.

Example 6.7: Bilinear Q1
quadrilateral nodal basis

Recall the quadrilateral-to-line mappings for the bilinear quadrilateral (6.28)-(6.29). Then the nodal basis
functions of the Q1 quadrilateral (Figure 6.4) using the tensor product formula in (6.36) are

 1p⇠q “  ̃1p⇠1q ̃1p⇠2q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ2

ŝ2 ´ ŝ1
“

1

4
p1 ´ ⇠1qp1 ´ ⇠2q

 2p⇠q “  ̃2p⇠1q ̃1p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ2

ŝ1 ´ ŝ2
“

1

4
p⇠1 ` 1qp1 ´ ⇠2q

 3p⇠q “  ̃1p⇠1q ̃2p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ2

ŝ1 ´ ŝ2
“

1

4
p1 ´ ⇠1qp⇠2 ` 1q

 4p⇠q “  ̃2p⇠1q ̃2p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ1

ŝ2 ´ ŝ1
“

1

4
p⇠1 ` 1qp⇠2 ` 1q,

(6.38)

where the last equality used that the nodes of the P1 master element are ŝ1 “ ´1 and ŝ2 “ 1.
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Figure 6.6: Nodal basis functions of Q3 master quadrilateral element.

Example 6.8: Biquadratic Q2
quadrilateral nodal basis

Recall the quadrilateral-to-line mappings for the biquadratic quadrilateral (6.28)-(6.29). Then the nodal
basis functions of the Q2 quadrilateral (Figure 6.5) using the tensor product formula in (6.36) are

 1p⇠q “  ̃1p⇠1q ̃1p⇠2q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠1 ´ ŝ3

ŝ1 ´ ŝ3

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ3

ŝ1 ´ ŝ3
“
⇠1p⇠1 ´ 1q⇠2p⇠2 ´ 1q

4

 2p⇠q “  ̃2p⇠1q ̃1p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠1 ´ ŝ3

ŝ2 ´ ŝ3

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ3

ŝ1 ´ ŝ3
“

p⇠1 ` 1qp1 ´ ⇠1q⇠2p⇠2 ´ 1q

2

 3p⇠q “  ̃3p⇠1q ̃1p⇠2q “
⇠1 ´ ŝ1

ŝ3 ´ ŝ1

⇠1 ´ ŝ2

ŝ3 ´ ŝ2

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ3

ŝ1 ´ ŝ3
“
⇠1p⇠1 ` 1q⇠2p⇠2 ´ 1q

4

 4p⇠q “  ̃1p⇠1q ̃2p⇠2q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠1 ´ ŝ3

ŝ1 ´ ŝ3

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ3

ŝ2 ´ ŝ3
“
⇠1p⇠1 ´ 1qp⇠2 ` 1qp1 ´ ⇠2q

2

 5p⇠q “  ̃2p⇠1q ̃2p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠1 ´ ŝ3

ŝ2 ´ ŝ3

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ3

ŝ2 ´ ŝ3
“ p⇠1 ` 1qp1 ´ ⇠1qp⇠2 ` 1qp1 ´ ⇠2q

 6p⇠q “  ̃3p⇠1q ̃2p⇠2q “
⇠1 ´ ŝ1

ŝ3 ´ ŝ1

⇠1 ´ ŝ2

ŝ3 ´ ŝ2

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ3

ŝ2 ´ ŝ3
“
⇠1p⇠1 ` 1qp⇠2 ` 1qp1 ´ ⇠2q

2

 7p⇠q “  ̃1p⇠1q ̃3p⇠2q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠1 ´ ŝ3

ŝ1 ´ ŝ3

⇠2 ´ ŝ1

ŝ3 ´ ŝ1

⇠2 ´ ŝ2

ŝ3 ´ ŝ2
“
⇠1p⇠1 ´ 1q⇠2p⇠2 ` 1q

4

 8p⇠q “  ̃2p⇠1q ̃3p⇠2q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠1 ´ ŝ3

ŝ2 ´ ŝ3

⇠2 ´ ŝ1

ŝ3 ´ ŝ1

⇠2 ´ ŝ2

ŝ3 ´ ŝ2
“

p⇠1 ` 1qp1 ´ ⇠1q⇠2p⇠2 ` 1q

2

 9p⇠q “  ̃3p⇠1q ̃3p⇠2q “
⇠1 ´ ŝ1

ŝ3 ´ ŝ1

⇠1 ´ ŝ2

ŝ3 ´ ŝ2

⇠2 ´ ŝ1

ŝ3 ´ ŝ1

⇠2 ´ ŝ2

ŝ3 ´ ŝ2
“
⇠1p⇠1 ` 1q⇠2p⇠2 ` 1q

4

(6.39)

where the last equality used that the nodes of the P2 master element are ŝ1 “ ´1, ŝ2 “ 0, and ŝ3 “ 1.
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6.2.4 d “ 2 dimensions: Pp triangle elements

Next we introduce the most common, versatile two-dimensional finite element, the triangle.

Element domain

The reference domain of the master triangle element is taken to be the unit right triangle

⌦˝ :“
 
⇠ P Rd

ˇ̌
⇠1 • 0, ⇠2 • 0, ⇠1 ` ⇠2 § 1

(
. (6.40)

The boundary of the master triangle consists of three faces B⌦˝ “
î3

i“1 B⌦˝,i, where

B⌦˝,1 :“ t0u ˆ r0, 1s, B⌦˝,2 :“ r0, 1s ˆ t0u, B⌦˝,3 :“ tps, 1 ´ sq | s P r0, 1su (6.41)

and the corresponding unit outward normals are

N˝,1 :“

„
´1
0

⇢
, N˝,2 :“

„
0

´1

⇢
, N˝,3 :“

1
?
2

„
1
1

⇢
. (6.42)

The complete geometry of the master triangle element is illustrated in Figure 6.1.

Local function space

We take the local function space to be Y˝ :“ Pp
p⌦˝q. The dimension of the local function space is

dimY˝ “
pp ` 1qpp ` 2q

2
. (6.43)

An important property of this function space is every v P Pp
p⌦˝q is a one-dimensional polynomial of degree

p when restricted to any line � “ tpa1 ` b1s, a2 ` b2sq | s P Ru for any a1, a2, b1, b2 P R2. To see this, let
� : R Ñ � be a parametrization of � defined as �psq :“ pa1 ` b1s, a2 ` b2sq. Then, for any v P Pp

p⌦˝q, we
expand in a monomial basis as

vp⇠q “

ÿ

↵1`↵2§p

a↵1↵2⇠
↵1
1 ⇠

↵2
2 . (6.44)

We restrict v to � by composing with the parametrization � to obtain

fpsq :“ vp�psqq “

ÿ

↵1`↵2§p

a↵1↵2�1psq
↵1�

↵2
2 “

ÿ

↵1`↵2§p

a↵1↵2pa1 ` b1sq
↵1pa2 ` b2sq

↵2 , (6.45)

where clearly the largest monomial term is s↵1`↵2 and since ↵1 ` ↵2 § p, this is a polynomial of degree at
most p. Since all boundaries of the master triangular element are striaght lines, this implies that functions
of Pp

p⌦˝q restricted to the faces of the master element are one-dimensional polynomials of degree at most p.

Distribution and numbering of nodes

Before we construct a nodal basis of Y, we must distribute N
el
nd “ pp ` 1qpp ` 2q{2 nodes throughout the

element domain ⌦˝. To ensure all basis functions are linearly independent, the nodes must not overlap (or
be too close to prevent ill-conditioning). Similar to the quadrilateral element, we require that p` 1 nodes lie
on each of the three faces of the triangle ⌦˝. Again, this comes from the fact that functions of Pp

p⌦˝q are
one-dimensional polynomials of degree p when restricted to faces B⌦˝ and are therefore uniquely determined
by p ` 1 nodal values, which gives a convenient way to enforce global continuity (ensure the nodal values
of abutting elements agree at the p ` 1 nodes). A convenient and systematic way to populate the master
triangle with nodes is to:

(1) uniformly distribute p ` 1 nodes tŝ1, . . . , ŝp`1u throughout the unit interval r0, 1s, i.e., ŝi “ pi ´ 1q{p,

(2) form their tensor product following the procedure in Section 6.2.3 to yield pp`1q
2 nodes t⇣1, . . . , ⇣pp`1q2u

in the unit square r0, 1s
2, and
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0 1

0

1

⇠̂1 ⇠̂2

⇠̂3

⇠1

⇠
2

0 0.5 1

0

0.5

1

⇠̂1 ⇠̂2 ⇠̂3

⇠̂4 ⇠̂5

⇠̂6

⇠1

⇠
2

0 0.33 0.67 1

0

0.33

0.67

1

⇠̂1 ⇠̂2 ⇠̂3 ⇠̂4

⇠̂5 ⇠̂6 ⇠̂7

⇠̂8 ⇠̂9

⇠̂10

⇠1

⇠
2

Figure 6.7: Master Pp triangle element including nodal positions and numbering for p “ 1, 2, 3 (left-to-right).

(3) retain only the nodes that lie in the master triangle domain ⌦˝ and re-number sequentially (preserve
ordering) to obtain the nodes t⇠1, . . . , ⇠Nel

nd
u.

This procedure will generate nodes in the master triangle that are uniformly spaced with p ` 1 nodes lying
on each boundary (Figure 6.7 for p “ 1, 2, 3).

Example 6.9: Nodes of linear P1
triangle

From (6.43) with p “ 1, there are 3 nodes associated with the P1 master triangle. The only locations we
can place these nodes to ensure each face has 2 nodes is at the triangle vertices

⇠̂1 “

„
0
0

⇢
, ⇠̂2 “

„
1
0

⇢
, ⇠̂3 “

„
0
1

⇢
, (6.46)

which clearly agrees with Figure 6.7.

Example 6.10: Nodes of quadratic P2
triangle

From (6.43) with p “ 2, there are 6 nodes associated with the P2 master triangle and each face must
contain p`1 “ 3 nodes. Following the procedure outlined in this section, we define equally spaced nodes in
the unit interval ŝ1 “ 0, ŝ2 “ 0.5, ŝ3 “ 1, which leads to the following nodes in the unit square (following
the procedure in Section 6.2.3 to construct nodes in R2 as tensor products of those in R):

⇣1 “

„
0
0

⇢
, ⇣2 “

„
0.5
0

⇢
, ⇣3 “

„
1
0

⇢
,

⇣4 “

„
0
0.5

⇢
, ⇣5 “

„
0.5
0.5

⇢
, ⇣6 “

„
1
0.5

⇢
,

⇣7 “

„
0
1

⇢
, ⇣8 “

„
0.5
1

⇢
, ⇣9 “

„
1
1

⇢
.

(6.47)

The only nodes that lie in the master triangle domain are ⇣i for i P t1, 2, 3, 4, 5, 7u, so we re-number these
nodes sequentially (retaining their original ordering) as the nodes of the master triangle

⇠1 “

„
0
0

⇢
, ⇠2 “

„
0.5
0

⇢
, ⇠3 “

„
1
0

⇢
,

⇠4 “

„
0
0.5

⇢
, ⇠5 “

„
0.5
0.5

⇢
, ⇠6 “

„
0
1

⇢
,

(6.48)

which clearly agrees with Figure 6.7.
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Figure 6.8: Nodal basis functions of P1 master triangle element.

Construction of element basis functions

Unfortunately the triangle does not posses the Cartesian product structure that we utilized to build up
the nodal basis functions of the Qp quadrilateral from the nodal basis of the Pp line elements. Instead,
we introduce a systematic procedure, known as Vandermonde’s method, to construct the nodal basis. Let
t 1, . . . , N

el
nd

u denote the nodal basis of the local function space Y˝ of the master triangle ⌦˝. Since each

 i P Pp
p⌦˝q, it can can be expanded in a monomial basis that includes all terms up to those with exponents

that sum to p, i.e., t⇠
↵

1 ⇠
�

2 | ↵ ` � § pu, so we can write our N el
nd basis functions as

 ip⇠q “

N
el
ndÿ

k“1

Ĉik⇠
↵k
1 ⇠

�k
2 (6.49)

where ↵,� P NN
el
nd

0 are vectors of natural numbers such that ↵i ` �i § p for i “ 1, . . . , N el
nd that are used to

sweep over all N el
nd permissible exponents.

Denote the N
el
nd nodes of the pth order simplex element as t⇠̂iu

N
el
nd

i“1 , where ⇠̂i “ p⇠̂1i, ⇠̂2iq
T . The nodal

property is
 ip⇠̂jq “ �ij ,

for i, j “ 1, . . . , N el
nd, which leads to

N
el
ndÿ

k“1

Ĉik ⇠̂
↵k
1j ⇠̂

�k
2j “ �ij

once the expression for  ip⇠q is used from (6.81). Let V̂ij “ ⇠
↵j

1i ⇠
�j

2i be the Vandermonde matrix corresponding

to the d-dimensional, pth order simplex evaluated at t⇠̂iu
N

el
nd

i“1 , then the above constraints can be written in

matrix form as V̂ Ĉ
T

“ I
N

el
nd
, where V̂ , Ĉ are the matrices with indices V̂ij , Ĉij , respectively, and I

N
el
nd

is

the N
el
nd ˆ N

el
nd identity matrix. Once we compute the coe�cients, Ĉ “ V̂

´T , we substitute this expression
into (6.49) to give the final expression for

 ip⇠q “

N
el
ndÿ

k“1

Ĉik⇠
↵k
1 ⇠

�k
2 “

N
el
ndÿ

k“1

´
V̂

´1
¯

ki

⇠
↵k
1 ⇠

�k
2 . (6.50)

The nodal basis functions for the P1, P2, and P3 master triangle are shown in Figures 6.8-6.10.

Example 6.11: Linear P1
triangle nodal basis

To provide a concrete example, we consider the P1 master triangle. The vectors used to sweep over the
admissible monomials are

↵ “ p0, 1, 0q, � “ p0, 0, 1q, (6.51)

which leads to the following monomial expansion of the basis functions

 ip⇠q “ Ĉi1⇠
↵1
1 ⇠

�1
2 ` Ĉi2⇠

↵2
1 ⇠

�2
2 ` Ĉi3⇠

↵3
1 ⇠

�3
2 “ Ĉi1⇠

0
1⇠

0
2 ` Ĉi2⇠

1
1⇠

0
2 ` Ĉi3⇠

0
1⇠

1
2 “ Ĉi1 ` Ĉi2⇠1 ` Ĉi3⇠2, (6.52)
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Figure 6.9: Nodal basis functions of P2 master triangle element.

Figure 6.10: Nodal basis functions of P3 master triangle element.
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which clearly lies in P1
p⌦˝q. The corresponding Vandermonde matrix is

V “

»

–
1 0 0
1 1 0
1 0 1

fi

fl , (6.53)

which leads to the following matrix of coe�cients

Ĉ “

»

–
1 ´1 ´1
0 1 0
0 0 1

fi

fl . (6.54)

Combining these coe�cients with the expansion in (6.49) we have

 1p⇠q “ 1 ´ ⇠1 ´ ⇠2

 2p⇠q “ ⇠1

 3p⇠q “ ⇠2.

(6.55)

It is a simple exercise to show these possess the nodal property with respect to the nodes of the P1 master
triangle defined in Example 6.9. These nodal basis functions are shown in Figure 6.8.

Example 6.12: Quadratic P2
triangle nodal basis

Next we consider the P2 master triangle. The vectors used to sweep over the admissible monomials are

↵ “ p0, 1, 0, 2, 1, 0q, � “ p0, 0, 1, 0, 1, 2q, (6.56)

which leads to the following monomial expansion of the basis functions

 ip⇠q “ Ĉi1⇠
↵1
1 ⇠

�1
2 ` Ĉi2⇠

↵2
1 ⇠

�2
2 ` Ĉi3⇠

↵3
1 ⇠

�3
2 ` Ĉi3⇠

↵4
1 ⇠

�4
2 ` Ĉi3⇠

↵5
1 ⇠

�5
2 ` Ĉi3⇠

↵6
1 ⇠

�6
2

“ Ĉi1⇠
0
1⇠

0
2 ` Ĉi2⇠

1
1⇠

0
2 ` Ĉi3⇠

0
1⇠

1
2 ` Ĉi4⇠

2
1⇠

0
2 ` Ĉi5⇠

1
1⇠

1
2 ` Ĉi6⇠

0
1⇠

2
2

“ Ĉi1 ` Ĉi2⇠1 ` Ĉi3⇠2 ` Ĉi4⇠
2
1 ` Ĉi5⇠1⇠2 ` Ĉi6⇠

2
2 ,

(6.57)

which clearly lies in P1
p⌦˝q. The corresponding Vandermonde matrix is

V “

»

——————–

1 0 0 0 0 0
1 0.5 0 0.25 0 0
1 1 0 1 0 0
1 0 0.5 0 0 0.25
1 0.5 0.5 0.25 0.25 0.25
1 0 1 0 0 1

fi

������fl
, (6.58)

which leads to the following matrix of coe�cients

Ĉ “

»

——————–

1 ´3 ´3 2 4 2
0 4 0 ´4 ´4 0
0 ´1 0 2 0 0
0 0 4 0 ´4 ´4
0 0 0 0 4 0
0 0 ´1 0 0 2

fi

������fl
. (6.59)
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Combining these coe�cients with the expansion in (6.49) we have

 1p⇠q “ 1 ´ 3p⇠1 ` ⇠2q ` 2p⇠1 ` ⇠2q
2

 2p⇠q “ 4⇠1p1 ´ ⇠1 ´ ⇠2q

 3p⇠q “ ⇠1p´1 ` 2⇠1q

 4p⇠q “ 4⇠2p1 ´ ⇠1 ´ ⇠2q

 5p⇠q “ 4⇠1⇠2

 6p⇠q “ ⇠2p´1 ` 2⇠2q.

(6.60)

It is a simple exercise to show these possess the nodal property with respect to the nodes of the P2 master
triangle defined in Example 6.10. These nodal basis functions are shown in Figure 6.9.

6.2.5 d dimensions: Qp hypercube elements

In d ° 2 dimensions, the number of possible geometries explodes, i.e., in d “ 3 could have tetrahedra,
cubes, prisms, pyramids. Unfortunately we do not have time to develop all these elements; instead, we focus
on elements that generalize to any number of dimensions. We introduce a systematic procedure to define
the element domain, local function space, nodes, and construct nodal basis functions. We being with the
hypercube element, the d-dimensional generalization of a quadrilateral.

Element domain

The reference domain of the master hypercube element is taken to be the bi-unit interval centered at zero

⌦˝ :“
 
⇠ P Rd

ˇ̌
´1 § ⇠i § 1, i “ 1, . . . , d

(
. (6.61)

The master hypercube element is the Cartesian product of the master line element with itself d times. The
boundary of the master element is B⌦˝ “

î2d
i“1 B⌦˝,i, where

B⌦˝,i :“
 
⇠ P Rd

ˇ̌
⇠i “ ´1, ´ 1 § ⇠j § 1, j ‰ i

(

B⌦˝,d`i :“
 
⇠ P Rd

ˇ̌
⇠i “ 1, ´ 1 § ⇠j § 1, j ‰ i

( (6.62)

and the corresponding unit outward normals are

N˝,i :“ ´ei, N˝,d`i :“ ei. (6.63)

for i “ 1, . . . , d. Notice that this definition coincides with the master line element for d “ 1 and quadrilateral
element for d “ 2. The complete geometry of the master hypercube element is illustrated in Figure 6.1
(d “ 1, 2) and Figure 6.11 (d “ 3).

Local function space

We take the local function space to be the space Y˝ :“ Qp
p⌦˝q, i.e., polynomial functions where the largest

exponent is p. The dimension of the local function space is dimY˝ “ pp ` 1q
d. Similar to the d “ 2 case,

functions that belong to Qp
p⌦˝q are polynomials in d ´ 1 dimension where the largest exponent is p when

restricted to any face of ⌦˝. To see this we introduce a parametrization of boundary 1 (chosen arbitrarily),
� : r´1, 1s

d´1
Ñ B⌦˝,1 defined as �ps1, . . . , sd´1q :“ p´1, s1, . . . , sd´1q P B⌦˝,1. Then, for any v P Qp

p⌦˝q,
we expand it in a monomial basis as

vp⇠q “

ÿ

↵PNd

max↵§p

a↵⇠
↵1
1 ¨ ¨ ¨ ⇠

↵d
d

, (6.64)

where a↵ P R for ↵ P Nd, max↵ § p. We restrict v to B⌦˝,1 by composing with the face parametrization �

fpsq “ vp�psqq “

ÿ

↵PNd

max↵§p

“ a↵�1psq
↵1 ¨ ¨ ¨ �dpsq

↵d “

ÿ

↵2,...,↵d§p

˜
ÿ

↵1§p

a↵p´1q
↵1

¸
s
↵2
1 ¨ ¨ ¨ s

↵d´1

d´1 , (6.65)

Page 92 of 131



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

0

1 0

1
0

1

⇠1

⇠2

⇠
3

´1

1 ´1

1
´1

1

⇠1

⇠2

⇠
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Figure 6.11: Master element geometry for d “ 3 simplex (tetrahedra) (left) and d “ 3 hypercube (hexahedron)
(right).

which is clearly a polynomial of degree at most p in d ´ 1 dimensions, i.e., f P Qp
pr´1, 1s

d´1
q.

Distribution and numbering of nodes

Before we construct a nodal basis of Y˝, we must distribute N
el
nd “ pp ` 1q

d nodes throughout the element
domain ⌦˝. To ensure all basis functions are linearly independent, the nodes must not overlap (or be too
close to prevent ill-conditioning). We also require that pp ` 1q

d´1 nodes lie on each of the 2d faces of the
hypercube ⌦˝. Again, this is because any element of Qp

p⌦˝q restricted to a face will be uniquely determined
by its value at pp ` 1q

d´1 nodes, which gives a straightforward way to enforce global continuity.
Mimicing the construction of the nodes for the Qp quadrilateral, we define the nodes of the Qp master

hypercube as the Cartesian product of the nodes of the Qp master line element with itself d times, numbered
first in the ⇠1-direction, then ⇠2, etc (Figure 6.13). To make this precise, let tŝ1, . . . , ŝp`1u Ä r´1, 1s be the
nodes of the master line element and introduce

Ii : t1, . . . , pp ` 1q
d
u Ñ t1, . . . , p ` 1u, i “ 1, . . . , d, (6.66)

where Ii maps the hypercube node number to the node number along the ⇠i-axis, i.e., the ith hypercube
node is the Ijpiqth node in the ⇠j-direction (in the d “ 2 case, I1 and I2 are precisely I and J , respectively,
in (6.28)). For our node numbering that varies first in the ⇠1-direction, then ⇠2, etc., these mappings are

Iipkq :“ 1 `

[
k ´ 1 ´

∞
d

j“i`1pIjpkq ´ 1qpp ` 1q
j´1

pp ` 1qi´1

_
, (6.67)

i “ 1, . . . , d. With this notation, the kth hypercube node is defined in terms of the line element nodes as

⇠̂k “

»

—–
⇠̂1k
...
⇠̂dk

fi

�fl “

»

—–
ŝI1pkq

...
ŝIdpkq

fi

�fl . (6.68)

Example 6.13: Nodes of trilinear Q1
hexahedral

To define the nodes of Q1 master hexahedral element, recall the nodes of the Q1 master line element
ŝ1 “ ´1, ŝ2 “ 1 and, in the special case of p “ 1, the hypercube-to-line mappings (6.66)-(6.67) are

I1 “ t1, 2, 1, 2, 1, 2, 1, 2u, I2 “ t1, 1, 2, 2, 1, 1, 2, 2u, I3 “ t1, 1, 1, 1, 2, 2, 2, 2u. (6.69)
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Figure 6.12: Master Qp hexahedra element including nodal positions and numbering for p “ 1, 2, 3 (left-to-right).

From this and (6.68), the nodes of the master Q1 hexahedral element are

⇠̂1 “

»

–
⇠̂11

⇠̂21

⇠̂31

fi

fl “

»

–
ŝI1p1q
ŝI2p1q
ŝI3p1q

fi

fl “

»

–
ŝ1

ŝ1

ŝ1

fi

fl “

»

–
´1
´1
´1

fi

fl , ⇠̂2 “

»

–
⇠̂12

⇠̂22

⇠̂32

fi

fl “

»

–
ŝI1p2q
ŝI3p2q
ŝI3p2q

fi

fl “

»

–
ŝ2

ŝ1

ŝ1

fi

fl “

»

–
1

´1
´1

fi

fl

⇠̂3 “

»

–
⇠̂13

⇠̂23

⇠̂33

fi

fl “

»

–
ŝI1p3q
ŝI2p3q
ŝI3p3q

fi

fl “

»

–
ŝ1

ŝ2

ŝ1

fi

fl “

»

–
´1
1

´1

fi

fl , ⇠̂4 “

»

–
⇠̂14

⇠̂24

⇠̂34

fi

fl “

»

–
ŝI1p4q
ŝI2p4q
ŝI3p4q

fi

fl “

»

–
ŝ2

ŝ2

ŝ1

fi

fl “

»

–
1
1

´1

fi

fl ,

⇠̂5 “

»

–
⇠̂15

⇠̂25

⇠̂35

fi

fl “

»

–
ŝI1p5q
ŝI2p5q
ŝI3p5q

fi

fl “

»

–
ŝ1

ŝ1

ŝ2

fi

fl “

»

–
´1
´1
1

fi

fl , ⇠̂6 “

»

–
⇠̂16

⇠̂26

⇠̂36

fi

fl “

»

–
ŝI1p6q
ŝI3p6q
ŝI3p6q

fi

fl “

»

–
ŝ2

ŝ1

ŝ2

fi

fl “

»

–
1

´1
1

fi

fl

⇠̂7 “

»

–
⇠̂17

⇠̂27

⇠̂37

fi

fl “

»

–
ŝI1p7q
ŝI2p7q
ŝI3p7q

fi

fl “

»

–
ŝ1

ŝ2

ŝ2

fi

fl “

»

–
´1
1
1

fi

fl , ⇠̂8 “

»

–
⇠̂18

⇠̂28

⇠̂38

fi

fl “

»

–
ŝI1p8q
ŝI2p8q
ŝI3p8q

fi

fl “

»

–
ŝ2

ŝ2

ŝ2

fi

fl “

»

–
1
1
1

fi

fl ,

(6.70)

which clearly agrees with Figure 6.12.

Construction of element basis functions

Finally we construct the nodal basis of Y˝ “ Qp
p⌦˝q using the tensor product structure of the master hyper-

cube element. Let tŝ1, . . . , ŝp`1u be the nodes of the Pp master line element, I1, . . . , Id be the hypercube-
to-line nodal mapping from the previous section, and t ̃1, . . . ,  ̃du be the corresponding nodal basis, i.e.,
 ̃ipŝjq “ �ij for i, j “ 1, . . . , p ` 1. Then we define the nodal basis functions t 1, . . . , N

el
nd

u of the Qp

hypercube element to be

 ip⇠q :“
dπ

j“1

 ̃Ijpiqp⇠jq. (6.71)

Using the expression in (6.22) for the one-dimensional nodal basis, this becomes

 ip⇠q “

dπ

k“1

¨

˚̊
˝

p`1π

j“1
j‰Ikpiq

⇠k ´ ŝj

ŝIkpiq ´ ŝj

˛

‹‹‚. (6.72)
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To verify this choice of basis has the nodal property, we evaluate  i at node ⇠̂j

 ip⇠̂jq “

dπ

k“1

 ̃Ikpiqp⇠kjq “

dπ

k“1

 ̃IkpiqpŝIkpjqq “

dπ

k“1

�IkpiqIkpjq “ �ij , (6.73)

where the last equality follows because the product
±

d

k“1 �IkpiqIkpjq only survives if Iipiq “ Iipjq for i “

1, . . . , d, which can only happen if i “ j.

Example 6.14: Trilinear Q1
hexahedral nodal basis

Recall the hypercube-to-line mappings for the trilinear hexahedral element (6.66)-(6.67). Then the nodal
basis functions of the Q1 hexahedral element using the tensor product formula in (6.73) are

 1p⇠q “  ̃1p⇠1q ̃1p⇠2q ̃1p⇠3q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠3 ´ ŝ2

ŝ1 ´ ŝ2
“

1

8
p1 ´ ⇠1qp1 ´ ⇠2qp1 ´ ⇠3q

 2p⇠q “  ̃2p⇠1q ̃1p⇠2q ̃1p⇠3q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠3 ´ ŝ2

ŝ1 ´ ŝ2
“

1

8
p1 ` ⇠1qp1 ´ ⇠2qp1 ´ ⇠3q

 3p⇠q “  ̃1p⇠1q ̃2p⇠2q ̃1p⇠3q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠3 ´ ŝ2

ŝ1 ´ ŝ2
“

1

8
p1 ´ ⇠1qp1 ` ⇠2qp1 ´ ⇠3q

 4p⇠q “  ̃2p⇠1q ̃2p⇠2q ̃1p⇠3q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠3 ´ ŝ2

ŝ1 ´ ŝ2
“

1

8
p1 ` ⇠1qp1 ` ⇠2qp1 ´ ⇠3q

 5p⇠q “  ̃1p⇠1q ̃1p⇠2q ̃2p⇠3q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠3 ´ ŝ1

ŝ2 ´ ŝ1
“

1

8
p1 ´ ⇠1qp1 ´ ⇠2qp1 ` ⇠3q

 6p⇠q “  ̃2p⇠1q ̃1p⇠2q ̃2p⇠3q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ2

ŝ1 ´ ŝ2

⇠3 ´ ŝ1

ŝ2 ´ ŝ1
“

1

8
p1 ` ⇠1qp1 ´ ⇠2qp1 ` ⇠3q

 7p⇠q “  ̃1p⇠1q ̃2p⇠2q ̃2p⇠3q “
⇠1 ´ ŝ2

ŝ1 ´ ŝ2

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠3 ´ ŝ1

ŝ2 ´ ŝ1
“

1

8
p1 ´ ⇠1qp1 ` ⇠2qp1 ` ⇠3q

 8p⇠q “  ̃2p⇠1q ̃2p⇠2q ̃2p⇠3q “
⇠1 ´ ŝ1

ŝ2 ´ ŝ1

⇠2 ´ ŝ1

ŝ2 ´ ŝ1

⇠3 ´ ŝ1

ŝ2 ´ ŝ1
“

1

8
p1 ` ⇠1qp1 ` ⇠2qp1 ` ⇠3q.

(6.74)

where the last equality used that the nodes of the P1 master element are ŝ1 “ ´1 and ŝ2 “ 1.

6.2.6 d dimensions: Pp simplex elements

Finally, we turn to the most versatile class of elements, simplices, the d-dimensional generalization of a
triangle.

Element domain

The reference domain of the master simplex element is taken to be

⌦˝ :“

#
⇠ P Rd

ˇ̌
ˇ̌
ˇ

dÿ

i“1

⇠i § 1, ⇠i • 0, i “ 1, . . . , d

+
. (6.75)

The boundary of the master element is B⌦˝ “
î

d`1
i“1 B⌦˝,i, where

B⌦˝,i :“
 
⇠ P Rd

ˇ̌
⇠i “ 0, 0 § ⇠j § 1, j ‰ i

(

B⌦˝,d`1 :“

#
⇠ P Rd

ˇ̌
ˇ̌
ˇ

dÿ

j“1

⇠j “ 1, 0 § ⇠j § 1, j “ 1, . . . , d

+
.

(6.76)

and the corresponding unit outward normals are

N˝,i :“ ´e
piq
, N˝,d`1 :“

dÿ

i“1

1
?

d
e

piq (6.77)
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for i “ 1, . . . , d. Notice that even though a d “ 1 dimensional simplex is a line (⌦˝ “ r0, 1s), it does not
coincide with the master line element introduced in Section 6.2.2 . The complete geometry of the master
simplex element is illustrated in Figure 6.1 (d “ 2 triangle) and Figure 6.11 (d “ 3 tetrahedra).

Local function space

We take the local function space to be Y˝ :“ Pp
p⌦˝q. The dimension of the local function space is

dimY˝ “

ˆ
p ` d

d

˙
. (6.78)

Similar to the d “ 2 case, functions that belong to Pp
p⌦˝q are polynomials of degree p in d ´ 1 dimensions

when restricted to any plane.

Distribution and numbering of nodes

Before we construct a nodal basis of Y˝, we must distribute

N
el
nd “

ˆ
p ` d

d

˙
(6.79)

nodes throughout the element domain ⌦˝. To ensure all basis functions are linearly independent, the nodes

must not overlap (or be too close to prevent ill-conditioning). We also require that

ˆ
p ` d ´ 1

d ´ 1

˙
nodes lie

on each of the faces of the simplex ⌦˝. Again, this is because any element of Pp
p⌦˝q restricted to a face

will be uniquely determined by its value at

ˆ
p ` d ´ 1

d ´ 1

˙
nodes, which gives a straightforward way to enforce

global continuity. A systematic procedure to populate the master simplex with nodes is the straightforward
generalization of the procedure in Section 6.2.4 to populate the master triangle with nodes:

(1) uniformly distribute p ` 1 nodes tŝ1, . . . , ŝp`1u throughout the unit interval r0, 1s,

(2) form their tensor product following the procedure in Section 6.2.5 to yield pp`1q
d nodes t⇣1, . . . , ⇣pp`1qdu

nodes in the unit hypercube r0, 1s
d, and

(3) retain only the nodes that lie in the master simplex domain ⌦˝ and re-number sequentially (preserving
order) to obtain the nodes t⇠1, . . . , ⇠Nel

nd
u.

This procedure will generate nodes in the master simplex that are uniformly spaced with

ˆ
p ` d ´ 1

d ´ 1

˙
on

each boundary (Figure 6.13 for p “ 1, 2, 3).

Example 6.15: Nodes of linear P1
tetrahedra

From (6.78) with p “ 1, there are

ˆ
p ` d

d

˙
“

ˆ
4

1

˙
“ 4 nodes associated with the P1 master tetrahedra.

The only locations we can place them to ensure each face has

ˆ
p ` d ´ 1

d ´ 1

˙
“

ˆ
3

2

˙
“ 3 nodes is at the

tetrahedra vertices

⇠̂1 “

»

–
0
0
0

fi

fl , ⇠̂2 “

»

–
1
0
0

fi

fl , ⇠̂3 “

»

–
0
1
0

fi

fl , ⇠̂4 “

»

–
0
0
1

fi

fl , (6.80)

which clearly agrees with Figure 6.13.
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Figure 6.13: Master Pp tetrahedra element including nodal positions and numbering for p “ 1, 2, 3 (left-to-right).

Construction of element basis functions

Finally we generalize Vandermonde’s method introduced in Section 6.2.4 to define a nodal basis of Pp
p⌦˝q

(⌦˝ Ä Rd), which we denote t 1, . . . , N
el
nd

u. Since each  i P Pp
p⌦˝q, it can be expanded in a monomial

basis that includes all terms up to those with exponents that sum to p, i.e., t⇠
↵1
1 ¨ ¨ ¨ ⇠

↵d
d

|
∞

d

i“1 ↵i § pu, so
we can write our N el

nd basis functions as

 ip⇠q “

N
el
ndÿ

k“1

Ĉik

dπ

j“1

⇠
⌥jk

j
(6.81)

where ⌥ P NdˆN
el
nd

0 is a matrix of natural numbers such that
∞

d

i“1⌥ij § p for each j “ 1, . . . , N el
nd that

is used to sweep over all N el
nd permissible exponents. For convenience, we introduce the function !ip⇠q,

i “ 1, . . . , N el
nd

!ip⇠q “

dπ

s“1

⇠
⌥si
s

,

so the basis functions can conveniently be expressed as  ip⇠q “
∞N

el
nd

k“1 Ĉik!kp⇠q.

Example 6.16: Monomial expansion in P1
pR2

q

To demostrate the general monomial expansion in (6.81) agrees with known special cases we consider
p “ 1, d “ 2 (P1 triangle). In this case, we take

⌥ “

„
0 1 0
0 0 1

⇢
, (6.82)

which leads to the following monomial expansion of the basis functions

 ip⇠q “ Ĉi1⇠
⌥11
1 ⇠

⌥21
2 ` Ĉi2⇠

⌥12
1 ⇠

⌥22
2 ` Ĉi3⇠

⌥13
1 ⇠

⌥23
2 “ Ĉi1⇠

0
1⇠

0
2 ` Ĉi2⇠

1
1⇠

0
2 ` Ĉi3⇠

0
1⇠

1
2 “ Ĉi1 ` Ĉi2⇠1 ` Ĉi3⇠2,

(6.83)
where the monomial terms are

!1p⇠q “ 1, !2p⇠q “ ⇠1, !3p⇠q “ ⇠2. (6.84)
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Example 6.17: Monomial expansion in P2
pR2

q

Next we consider the special case p “ 2, d “ 2 (P2 triangle). In this case, we take

⌥ “

„
0 1 0 2 1 0
0 0 1 0 1 2

⇢
, (6.85)

which leads to the following monomial expansion of the basis functions

 ip⇠q “ Ĉi1⇠
⌥11
1 ⇠

⌥21
2 ` Ĉi2⇠

⌥12
1 ⇠

⌥22
2 ` Ĉi3⇠

⌥13
1 ⇠

⌥23
2 ` Ĉi4⇠

⌥14
1 ⇠

⌥24
2 ` Ĉi5⇠

⌥15
1 ⇠

⌥25
2 ` Ĉi6⇠

⌥16
1 ⇠

⌥26
2

“ Ĉi1⇠
0
1⇠

0
2 ` Ĉi2⇠

1
1⇠

0
2 ` Ĉi3⇠

0
1⇠

1
2 ` Ĉi4⇠

2
1⇠

0
2 ` Ĉi5⇠

1
1⇠

1
2 ` Ĉi6⇠

0
1⇠

2
2

“ Ĉi1 ` Ĉi2⇠1 ` Ĉi3⇠2 ` Ĉi4⇠
2
1 ` Ĉi5⇠1⇠2 ` Ĉi6⇠

2
2 ,

(6.86)

where the monomial terms are

!1p⇠q “ 1, !2p⇠q “ ⇠1, !3p⇠q “ ⇠2, !4p⇠q “ ⇠
2
1 , !5p⇠q “ ⇠1⇠2, !6p⇠q “ ⇠

2
2 . (6.87)

Example 6.18: Monomial expansion in P1
pR3

q

Finally we consider the special case p “ 1, d “ 3 (P1 tetrahedra). In this case, we take

⌥ “

»

–
0 1 0 0
0 0 1 0
0 0 0 1

fi

fl , (6.88)

which leads to the following monomial expansion of the basis functions

 ip⇠q “ Ĉi1⇠
⌥11
1 ⇠

⌥21
2 ⇠

⌥31
3 ` Ĉi2⇠

⌥12
1 ⇠

⌥22
2 ⇠

⌥32
3 ` Ĉi3⇠

⌥13
1 ⇠

⌥23
2 ⇠

⌥33
3 ` Ĉi4⇠

⌥14
1 ⇠

⌥24
2 ⇠

⌥34
3

“ Ĉi1⇠
0
1⇠

0
2⇠

0
3 ` Ĉi2⇠

1
1⇠

0
2⇠

0
3 ` Ĉi3⇠

0
1⇠

1
2⇠

0
3 ` Ĉi4⇠

0
1⇠

0
2⇠

1
3

“ Ĉi1 ` Ĉi2⇠1 ` Ĉi3⇠2 ` Ĉi4⇠3,

(6.89)

where the monomial terms are

!1p⇠q “ 1, !2p⇠q “ ⇠1, !3p⇠q “ ⇠2, !4p⇠q “ ⇠3. (6.90)

Denote the N el
nd nodes of the pth order simplex element as t⇠̂iu

N
el
nd

i“1 , where ⇠̂i “ p⇠̂1i, . . . , ⇠̂diq
T . The nodal

property is
 ip⇠̂jq “ �ij ,

for i, j “ 1, . . . , N el
nd, which leads to

N
el
ndÿ

k“1

Ĉik!kp⇠̂jq “ �ij

once the expression for  ip⇠q is used from (6.81). Let V̂ij “ !jp⇠̂iq “

dπ

s“1

⇠̂
⌥sj

si
be the Vandermonde matrix

corresponding to the d-dimensional, pth order simplex evaluated at t⇠̂iu
N

el
nd

i“1 , then the above constraints can

be written in matrix form as V̂ Ĉ
T

“ I
N

el
nd
, where V̂ , Ĉ are the matrices with indices V̂ij , Ĉij , respectively,

and I
N

el
nd

is the N
el
nd ˆN

el
nd identity matrix. Once we compute the coe�cients, Ĉ “ V̂

´T , we substitute this

expression into (6.81) to give the final expression for

 ip⇠q “

N
el
ndÿ

k“1

Ĉik!kp⇠q “

N
el
ndÿ

k“1

´
V̂

´1
¯

ki

!kp⇠q. (6.91)
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Example 6.19: Linear P1
tetrahedra nodal basis

To provide a concrete example, we consider the P1 master tetrahedron (d “ 3). In Example 6.18, we
provided a concrete expression for the monomial terms !i, i “ 1, . . . , 4, which we use to construct the
Vandermonde matrix as

V “

»

——–

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

fi

��fl , (6.92)

which leads to the following matrix of coe�cients

Ĉ “

»

——–

1 ´1 ´1 ´1
0 1 0 0
0 0 1 0
0 0 0 1

fi

��fl . (6.93)

Combining these coe�cients with the expansion in (6.81) we have

 1p⇠q “ 1 ´ ⇠1 ´ ⇠2 ´ ⇠3,  2p⇠q “ ⇠1,  3p⇠q “ ⇠2,  4p⇠q “ ⇠3. (6.94)

It is a simple exercise to show these possess the nodal property with respect to the nodes of the P1 master
tetrahedra defined in Example 6.15.

Remark 6.1. We have used Vandermonde’s procedure to derive the analytical form of the nodal basis func-
tions; however, it is much more useful (and e�cient) as a numerical procedure to (numerically) evaluate the
nodal basis functions at points throughout the element domain ⌦˝ as we will see.

Remark 6.2. The Vandermonde matrix becomes ill-conditioned for high polynomial degrees p since the
monomial basis becomes linearly dependent (numerically). To improve the conditioning of the final system,
we could expand the basis functions  i in an orthogonal basis of Pp (replacing step (6.81)) and repeat the
procedure.

6.3. Physical finite element via domain mapping

Now that we have introduced several master elements, we must address the question of how to use these to
define the actual physical finite elements that will define our discretization. The approach is to introduce a
bijection from a master element domain to the physical element domain and use properties of the mapping
and master element to completely define the physical (mapped) element.

6.3.1 Mapped finite element

Now that we have introduced several master elements, we must address We begin with a definition of a
physical (mapped) finite element.

Definition 6.3.1 (Mapped finite element). Let p⌦˝,Y˝,D˝q pdimY˝ “ Mq be a master nodal finite element
with nodes N˝ “ t⇠̂1, . . . , ⇠̂Mu and let G : ⌦˝ Ñ K map (bijection) the master element domain ⌦˝ Ä Rd to
the physical element domain K Ä Rd. Then, pK,Y,Dq is the mapped (physical) finite element, where

(1) the element domain K Ä Rd is defined by mapping the master element domain

K :“ Gp⌦˝q, (6.95)

(2) the local function space Y is defined in terms of Y˝ and the mapping G as

Y :“ Y˝ ˝ G´1 :“ tf P FKÑR | Dh P Y˝ such that fpxq “ hpG´1
pxqq @x P Ku, (6.96)
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(3) D are the nodal degrees of freedom associated with the node set

N :“ GpN˝q :“ tGp⇠̂1q, . . . ,Gp⇠̂M qu. (6.97)

Let B˝ :“ t 1, . . . , Mu Ä Y˝ be the nodal basis of the local function space Y˝ associated with the node
set N˝. Then define the following collection of vectors B :“ t�1, . . . ,�Mu Ä Y, where

�ipxq :“  ipG´1
pxqq x P K. (6.98)

The dimension of the local function space of the physical element is the same as that of the master el-
ement (dimY “ dimY˝ “ M). Furthermore, B is a nodal basis of Y associated with the node set N
(Proposition 6.1). For convenience, define

x̂i :“ Gp⇠̂iq (6.99)

for i “ 1, . . . ,M , which allows us to write N “ tx̂1, . . . , x̂Mu.

Proposition 6.1. The dimension of the local function space associated with the phyiscal (mapped) element

is the same as the master element

dimY “ dimY˝ “ M. (6.100)

Furthermore, B is a nodal basis of Y corresponding to the node set N .

Proof. To establish this proposition, we need to prove two statements: (1) B is a basis of Y and (2) t�1, . . . ,�Mu

possess the nodal property with respect to the node set N . Because B contains M vectors, dimY “ M will
follow from (1) (B basis of Y). We consider these separately.

• First we prove B is a basis of Y. Suppose there exists ↵1, . . . ,↵M P R such that
∞

M

i“1 ↵i�ipxq “ 0 for
all x P K. Then

0 “

Mÿ

i“1

↵i�ipxq “

Mÿ

i“1

↵i ipG´1
pxqq “

Mÿ

i“1

↵i ip⇠q, (6.101)

where we used the definition of �i (6.98) and defined ⇠ “ G´1
pxq P ⌦˝. From the fact that B˝ is a

basis of Y˝, the above condition implies ↵1 “ ¨ ¨ ¨ “ ↵M “ 0. Thus, B is linearly independent. Now
take any f P Y. From the defintion of Y (6.96), there must exist h P Y˝ such that for any x P K,

fpxq “ hpG´1
pxqq. Because h P Y˝, we can expand it in the basis B˝ as h “

∞
M

i“1 ↵i i. Then

fpxq “ hpG´1
pxqq “

Mÿ

i“1

↵i ipG´1
pxqq “

Mÿ

i“1

↵i�ipxq, (6.102)

which establishes Y Ä spanB. We can easily see that spanB Ä Y by following this procedure in
reverese. Therefore Y “ spanB. Because B is linearly independent and spans Y, it is a basis of Y and
therefore the dimension of Y is the number of vectors in B: dimY “ M .

• To establish the nodal property, we have

�ipx̂jq “  ipG´1
px̂jqq “  ipG´1

pGp⇠̂jqqq “  ip⇠̂jq “ �ij , (6.103)

where the first two equalities follow from the definition of �i and x̂j , the third equality follows from the
fact that the composiiton of a map with its inverse is the identity map, and the last equality follows
from the nodal property of �i.

Example 6.20: Mapped P1
triangle element

We construct a physical (mapped) P1 triangle element by mapping the P1 master triangle element from
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Figure 6.14: Element domain of the P1 physical (mapped) triangle element under the a�ne transformation (6.104).

Figure 6.15: Nodal basis functions of P1 physical triangle element defined by mapping the P1 master triangle using
the a�ne mapping (6.104).

Section 6.2.4 using the a�ne mapping

Gp⇠q “

„
1 ` 2⇠1 ´ ⇠2

1 ` 3⇠1 ` 2⇠2

⇢
, G´1

pxq “
1

7

„
2px1 ´ 1q ` px2 ´ 1q

´3px1 ´ 1q ` 2px2 ´ 1q

⇢
. (6.104)

The physical element domain is shown in Figure 6.14 and the nodes of the mapped element are given by

x̂1 “ Gpẑ1q “

„
1
1

⇢
, x̂2 “ Gpẑ2q “

„
3
4

⇢
, x̂3 “ Gpẑ3q “

„
0
3

⇢
, (6.105)

where ẑ1, ẑ2, ẑ3 are the nodes of the master P1 triangle element (Section 6.2.4). The local function space
is P1

p⌦˝q ˝ G´1; the nodal basis functions given by (6.98) are shown in Figure 6.15.

While this definition of mapped element is su�ciently abstract to encapsulate the finite elements of
interest in this course, it does not answer how to construct the mapping G in a practical setting. Recall that
G is a vector-valued function (d components) over the master element domain ⌦˝ and G can be any bijection.
It turns out to be particularly convenient to use the local t is convenient to use the local element to define G;
however, it need not be the same local function space that will be used to approximate the solution of the
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Figure 6.16: Element geometry and nodal basis functions of P2 physical line element defined by mapping the P2

master line element using the local function space of the master element; the nodes in (6.107) define the mapping
according to (6.106).

PDE. In this course, we will use the same local function space for the mapping and solution approximation;
this is called an isoparametric element. In this setting, we represent the mapping (componentwise) using
the local function space G P rY˝s

d, which can be expanded in the nodal basis B˝ as

G “

Mÿ

i“1

Gp⇠̂iq i “

Mÿ

i“1

x̂i i. (6.106)

From this we see that G is completely defined from the coordinates of the transformed reference nodes x̂i;
thus, to completely specify the mapping, we only need to define the positions to which the master nodes N˝
are mapped (must simpler than explicitly prescribing a vector-valued function).

Example 6.21: P2
line element

We consider a P2 line element defined by a P2 mapping of the P2 master line element. Let p⌦˝,Y˝,N˝q

be the P2 master line element introduced in Section 6.2.2. In addition, let N “ tx̂1, x̂2, x̂3u be the nodes
of the physical element (Figure 6.16)

x̂1 “ 0, x̂2 “ 1, x̂3 “ 3. (6.107)

Then the geometry mapping is given by

Gp⇠q “

3ÿ

i“1

x̂i ip⇠q “  2p⇠q ` 3 3p⇠q, (6.108)

which leads to the element domain K “ Gp⌦˝q (Figure 6.16). Furthermore, the basis functions are defined
according to (6.98) (Figure 6.16).

Example 6.22: Q2
quadrilateral element

We consider a Q2 quadrilateral element defined by a Q2 mapping of the Q2 master quadrilateral element.
Let p⌦˝,Y˝,N˝q be the Q2 master quadrilateral element introduced in Section 6.2.3. In addition, let
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Figure 6.17: Mapped P2 triangle and Q2 quadrilateral elements from Examples 6.22-6.23.

N “ tx̂1, . . . , x̂9u be the nodes of the physical element (Figure 6.17)

x̂1 “

„
0.0
0.0

⇢
, x̂2 “

„
0.6
0.4

⇢
, x̂3 “

„
1.2
0.2

⇢
,

x̂4 “

„
0.2
0.8

⇢
, x̂5 “

„
0.8
1.0

⇢
, x̂6 “

„
1.6
1.0

⇢
,

x̂7 “

„
0.0
1.6

⇢
, x̂8 “

„
0.6
1.4

⇢
, x̂9 “

„
1.2
1.8

⇢
.

(6.109)

Then the geometry mapping is given by

Gp⇠q “

9ÿ

i“1

x̂i ip⇠q, (6.110)

which leads to the element domain K “ Gp⌦˝q (Figure 6.17). Furthermore, the basis functions are defined
according to (6.98) (Figure 6.18).

Example 6.23: P2
triangle elements

We consider a P2 triangle element defined by a P2 mapping of the P2 master triangle element. Let
p⌦˝,Y˝,N˝q be the P2 master triangle element introduced in Section 6.2.4. In addition, let N “

tx̂1, . . . , x̂6u be the nodes of the physical element (Figure 6.17)

x̂1 “

„
0.0
0.0

⇢
, x̂2 “

„
0.5
0.15

⇢
, x̂3 “

„
1.0
0.7

⇢

x̂4 “

„
´0.3
0.5

⇢
, x̂5 “

„
0.3
0.75

⇢
, x̂6 “

„
´0.25
1.2

⇢
.

(6.111)

Then the geometry mapping is given by

Gp⇠q “

6ÿ

i“1

x̂i ip⇠q, (6.112)

which leads to the element domain K “ Gp⌦˝q (Figure 6.17). Furthermore, the basis functions are defined
according to (6.98) (Figure 6.19).
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Figure 6.18: Nodal basis functions of Q2 mapped quadrilateral element from Example 6.22.

In the remainder of this section, we discuss the implications that mapped formulation has on the eval-
uation of derivatives and integrals. For convenience in the following sections, we introduce the mapping
deformation gradient G : ⌦˝ Ñ Md,dpRq and Jacobian g : ⌦˝ Ñ R defined as

G :“
BG
B⇠

, g :“ detG. (6.113)

6.3.2 Derivatives with respect to mapped coordinates

As we saw in Chapter 4, the finite element equations require the (spatial) derivatives of the basis functions.
In the present setting this translates to the derivatives of �ipxq. To generalize the discussion, consider any
f P FKÑR where f “ h ˝ G´1 for some h P F⌦˝ÑR. Then, by the chain rule, we have

Bf

Bxj

pxq “

dÿ

k“1

Bh

B⇠k
pG´1

pxqq
B

“
G´1

‰
k

Bxj

pxq. (6.114)

To simplify the second term in the product, we use the inverse function theorem that gives the following
identity „

BG
B⇠

p⇠q

⇢´1

“
B

“
G´1

‰

Bx
pGp⇠qq. (6.115)

Therefore we can reduce the complicated expression for the derivative in (6.114) to

Bf

Bxj

pxq “

dÿ

k“1

Bh

B⇠k
pG´1

pxqq
“
G

´1
p⇠q

‰
kj

, (6.116)

where G
´1

p⇠q “ rGp⇠qs
´1 is the inverse of the mapping deformation gradient. Applying this expression to

the mapped nodal basis functions we have

B�i

Bxj

pxq “

dÿ

k“1

B i

B⇠k
pG´1

pxqq
“
G

´1
p⇠q

‰
kj

. (6.117)
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Figure 6.19: Nodal basis functions of P2 mapped triangle element from Example 6.23.

6.3.3 Volume integrals over mapped domain

Given that volume integrals are fundamental to the finite element method, we consider how the use of
mapped finite elements will impact the development. Consider the integral of any function ✓ P FKÑR over
the mapped element domain K “ Gp⌦˝q

Iv “

ª

K

✓pxq dx. (6.118)

The change of variables formula of integration gives

Iv “

ª

⌦˝

✓pGp⇠qqgp⇠q d⇠ (6.119)

where g :“ detG is the mapping Jacobian. This shows that any integral over the physical domain K can
be conveniently re-written as an integral over the master domain ⌦˝. Furthermore, if the function can be
written as a function ⇡ P F⌦˝ÑR composed with the inverse mapping, i.e., ✓ “ ⇡ ˝ G´1, this reduces to an
integral of ⇡ over ⌦˝

Iv “

ª

⌦˝

✓pGp⇠qqgp⇠q d⇠ “

ª

⌦˝

⇡pG´1
ppGp⇠qqqgp⇠q d⇠,“

ª

⌦˝

⇡p⇠qgp⇠q d⇠. (6.120)

Example 6.24: Integrals in one-dimension

Consider the special case of d “ 1. In this case, K “ ra, bs Ä R is an arbitrary interval and ⌦˝ “ r´1, 1s.
Let G : ⌦˝ Ñ ra, bs be any bijective mapping. Then (6.119) reduces to

Iv “

ª
b

a

✓pxq dx “

ª

⌦˝

✓pGp⇠qqG1
p⇠q d⇠, (6.121)

which is the familiar change of variables formula for one-dimensional integrals.

Example 6.25: Volume integral over mapped triangle

Suppose we wish to compute the volume and centroid of mapped triangle in Example 6.20. The volume
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and centroid are given by

V “

ª

K

dx, c “
1

V

ª

k

x dx, (6.122)

which fit the form of (6.118) with ✓pxq “ 1 for the volume and ✓pxq “ x for the centroid. First, we must
compute the deformation gradient and Jacobian of the mapping, which are both constant in this case
because the mapping is a�ne

Gp⇠q “

„
2 ´1
3 2

⇢
, gp⇠q “ 7. (6.123)

Then the change of variable formula gives

V “ g

ª

⌦˝

d⇠, c “
g

V

ª

⌦˝

Gp⇠q d⇠. (6.124)

We can easily see the volume is simply V “ 7{2 because the transformed integral is just the volume of
the reference element (“ 1{2). The centroid reduces to

c1 “ 2

ª

⌦˝

p1 ` 2⇠1 ´ ⇠2q d⇠, c2 “ 2

ª

⌦˝

p1 ` 3⇠1 ` 2⇠2q d⇠, (6.125)

where the expression for Gp⇠q in (6.104) was used. Since these integrals are manageable (integrals over
unit right triangle), we compute them directly to get: c1 “ 4{3, c2 “ 8{3.

6.3.4 Surface integrals over mapped domain

In addition to volume integrals, surface integrals frequently arise in the finite element method when consid-
ering non-homogeneous natural boundary conditions. Consider the surface integral

Ib “

ª

BKf

✓ ds, (6.126)

where ✓ P FKÑR, K “ Gp⌦˝q is the mapped element, and BKf is the fth face of the mapped element, i.e.,
the mapping G applied to the fth face of ⌦˝

BKf :“ GpB⌦˝,f q :“ tGp⇠q | ⇠ P B⌦˝,fu . (6.127)

Before continuing, we observe that BKf is a pd ´ 1q-dimensional surface embedded in Rd. To re-write the
integral Ib in a computable form, we introduce a parametrization of BKf . To begin, we introduce a pd ´ 1q-
dimensional reference domain �˝ Ä Rd´1 and a mapping from �˝ to each face of the master element domain,
i.e.,

�f : �˝ Ñ B⌦˝,f . (6.128)

We assume only one face reference domain is required to parametrize all faces of the master element; this is
true for regular polytopes where all each face has the same geometry, e.g., simplices (each face is a simplex in
Rd´1) and hypercubes (each face is a hypercube in Rd´1). More general constructions are straightforward,
but tedious.

Example 6.26: Boundary parametrization of master element

• Recall the two-dimensional hypercube (quadrilateral) in Figure 6.1 with the face numbering disucssed
in Section 6.2.3. The boundary parametrizations of the master quadrilateral is

�1prq “ p´1, rq, �2prq “ pr,´1q, �3prq “ p1, rq, �4prq “ pr, 1q (6.129)

for r P �˝ “ r´1, 1s (master hypercube in d “ 1).

• Recall the two-dimensional simplex (triangle) in Figure 6.1 with the face numbering disucssed in
Section 6.2.4. The boundary parametrizations of the master triangle is

�1prq “ p0, rq, �2prq “ pr, 0q, �3prq “ pr, 1 ´ rq (6.130)
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for r P �˝ “ r0, 1s (master simplex in d “ 1).

• Recall the d-dimensional hypercube with face numbering discussed in Section 6.2.5. The boundary
parametrizations of the master hypercube is

�1prq “ p´1, r1, r2, . . . , rd´1q

�2prq “ pr1,´1, r2, . . . , rd´1q

¨ ¨ ¨

�dprq “ pr1, r2, . . . , rd´1,´1q

�d`1prq “ p1, r1, r2, . . . , rd´1q

�d`2prq “ pr1, 1, r2, . . . , rd´1q

¨ ¨ ¨

�2dprq “ pr1, r2, . . . , rd´1, 1q

(6.131)

for r P �˝ (master hypercube in Rd´1).

• Recall the d-dimensional simplex with face numbering discussed in Section 6.2.6. The boundary
parametrizations of the master simplex is

�1prq “ p0, r1, r2, . . . , rd´1q

�2prq “ pr1, 0, r2, . . . , rd´1q

¨ ¨ ¨

�dprq “ pr1, r2, . . . , rd´1, 0q

�d`1prq “ pr1, r2, . . . , rd´1, 1 ´

d´1ÿ

i“1

riq

(6.132)

for r P �˝ (master simplex in Rd´1).

With this notion of a parametrization of the faces of the master element B⌦square,f , a parametrization
of the faces of the physical element BKf can be defined as a composition of master face parametrization �f
and the domain mapping G: Hf : �˝ Ñ BKf , i.e.,

Hf “ G ˝ �f . (6.133)

The deformation gradient of this face mapping is a function Hf : �˝ Ñ Md,d´1pRq

Hf prq :“
BHf

Br
prq “

BG
B⇠

p�f prqq
B�f

Br
prq “ Gp�f prqq

B�f

Br
prq (6.134)

for r P �˝. Furthermore, the surface element �f : �˝ Ñ R, used to transform surface integrals, is defined as

�f prq :“
b
HprqTHprq (6.135)

for r P �˝. Now the surface integral Ib can be re-written as a standard integral over �˝ as

Ib “

ª

�˝

✓pHf prqq�f prq dr. (6.136)

This shows that any suface integral over the physical element face BKf can be conveniently re-written as
a standard integral over the reference domain �˝. Notice that in the case of d “ 2, this agrees with the

well-known definition of a line integral because �f prq “

›››H1
f

prq

››› and �˝ “ ra, bs Ä R (a and b depend on

whether considering simplex or hypercube). Finally, consider the case where the integrand can be written
as a function ⇡ P F⌦˝ÑR composed with the inverse mapping, i.e., ✓ “ ⇡ ˝G´1; the above integral reduces to

Ib “

ª

�˝

✓pHf prqq�f prq dr “

ª

�˝

⇡pG´1
pGp�f prqqqq�f prq dr “

ª

�˝

⇡p�f prqq�f prq dr. (6.137)
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Example 6.27: Surface integral over mapped triangle

Let us return to Example 6.20 and compute the following surface integral

Ib “

ª

BK2

sinpx1q cospx2q ds, (6.138)

which clearly fits the form of (6.126). From Example 6.26, we see the boundary parametrization of B⌦˝,f
(master triangle) is �2prq “ pr, 0q. Combining this boundary parametrization with the mapping G from
Example 6.20, we see that

H2prq “ Gp�2prqq “

„
1 ` 2r
1 ` 3r

⇢
, H2prq “

„
2
3

⇢
, �2prq “

?

13. (6.139)

Finally, this leads to the transformed integral

Ib “

?

13

ª 1

0
sinp1 ` 2rq cosp1 ` 3rq dr “

?
13

10
r5 cosprq ´ cosp5r ` 2qs

1
0 « ´1.2506, (6.140)

where we used the reference pd ´ 1q-dimensional simplex �˝ “ r0, 1s.

6.4. Mesh

With the notions of master and physical (mapped) elements established, we can provide a complete de-
scription of a finite element mesh. Consider a domain ⌦ Ä Rd with boundary B⌦ partitioned into Nb

non-overlapping portions B⌦1, . . . , B⌦Nb

B⌦ “

Nb§

s“1

B⌦s, B⌦s X B⌦s1 “ H ps ‰ s
1
q. (6.141)

Example 6.28: Domains and boundaries

A few examples of domains and their boundaries in one- and two-dimensions are:

• One-dimensional domain and boundaries (Figure 6.20)

⌦ “ pa, bq, B⌦1 “ tau, B⌦2 “ tbu (6.142)

• Two-dimesional square domain (Figure 6.20)

⌦ “ pa1, b1q ˆ pa2, b2q (6.143)

with boundaries
B⌦1 “ ta1u ˆ pa2, b2q

B⌦2 “ pa1, b1q ˆ ta2u

B⌦3 “ tb1u ˆ pa2, b2q

B⌦4 “ pa1, b1q ˆ tb2u

(6.144)

• Batman domain (Figure 6.21) with three boundaries B⌦1, B⌦2, and B⌦3 :“ B⌦zpB⌦1 Y B⌦2q

• Notre Dame domain (Figure 6.21) with three boundaries B⌦1, B⌦2, and B⌦3 :“ B⌦zpB⌦1 Y B⌦2q.

The partitioning of the boundary B⌦ into pieces B⌦i was arbitrary. Usually the boundary is partitioned
into pieces such that boundary conditions can be conveniently specified.
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⌦
B⌦1 B⌦2

⌦B⌦1

B⌦2

B⌦3

B⌦4

Figure 6.20: One-dimensional domain and two-dimensional square domain and their boundaries.

⌦

B⌦1 B⌦2

⌦

B⌦1

B⌦2

Figure 6.21: Batman and Notre Dame domains and their boundaries.
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A mesh Eh of ⌦ is an ordered collection of Nel non-overlapping elements (open sets) ⌦e Ä ⌦, e “ 1, . . . , Ne

that cover the domain, that is,

Eh :“ t⌦eu
Nel

e“1 , ⌦ “

Ne§

e“1

⌦e, ⌦e X ⌦e1 “ H pe ‰ e
1
q. (6.145)

In practice, the elements are usually generalized polytopes (polygons if d “ 2, polyhedra if d “ 3) consisting
of smooth surfaces (faces) connected at their boundaries to form smooth curves (edges) and sharp corners
(vertices). Often the elements are straight-sided, i.e., the faces are planes and the edges are straight lines.
Generalized polytopes are usually generated by applying a transformation to a standard (straight-sided)
polytope, i.e., the mapped master elements (Section 6.3.1). For the remainder, we assume the elements
are generalized polytope for concreteness (the finite element method can be formulated for more general
elements). Furthermore, we assume all elements of the mesh are the same generalized regular polytope.
Regular polytopes are the most highly symmetrical: all face are the samed generalized polytope in d ´ 1
dimensions, e.g., simplices and hypercubes. This turns out to be a rather restrictive assumption since it
limits the elements that can be used for d ° 2; however, having elements where are faces have the same
geometry substantially simplifies the implementation of the finite element method. The assumption that
all elements are the same polytope implies all elements have the same number of faces, edges, and vertices,
which also turns out to be convenient from an implementation viewpoint.

Example 6.29: Meshes

Meshes consisting of striaght-sided simplex elements (triangles for d “ 2, and tetrahedra for d “ 3) of
complex domains are shows in Figures 6.22-6.23.

Figure 6.22: Simplicial mesh (d “ 2) of the batman symbol and Notre Dame logo.
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B⌦1 B⌦2 B⌦1 B⌦2

Figure 6.24: Left : Inadmissible mesh because the interior of an element face touches two boundaries. Right : An
admissible mesh because, even though a single element touches multiple boundaries, the interior of a face does not.

Figure 6.23: Simplicial mesh (d “ 3) of a sculpture and dragon.

Let N
el
fc denote the number of faces per element and Fe

h
the ordered collection of faces of element ⌦e,

i.e., B⌦ef Ä B⌦e for f “ 1, . . . , N el
fc

Fe

h
:“ tB⌦efu

N
el
fc

f“1, B⌦e “

N
el
fc§

f“1

B⌦ef . (6.146)

Recall that element faces intersect at element edges or vertices. One final assumption we make for implemen-
tation convenience is that each element face interior intersects at most one domain boundary (Figure 6.24).

The diameter of an element ⌦e is the supremum distance between pairs of points, i.e.,

diamp⌦eq :“ sup
x,yP⌦e

}x ´ y} . (6.147)

The diameter of a triangle is the length of the longest edge, while the diameter of a quadrilateral is the
length of the longest diagonal.

The finite element subspace can be defined abstractly in terms of only elements; however, given our
restrction to nodal finite elements, we require the concept of nodes. For each element ⌦e P Eh, let N e

h
be

an ordered collection of N el
nd points tx̂

e

1, . . . , x̂
e

N
el
nd

u Ä ⌦e called nodes or vertices; we say x
e

i
is the i (local)

node of element ⌦e. A thorough discussion of how nodes are distributed throughout a master element and
transformed to a physical element is provided in Section 6.2. We denote the union of all element nodes as

Nh “

Nel§

e“1

N e

h
(6.148)

and endow this set of Nnd :“ |Nh| nodes with an ordering called the global node numbering; we say x̂i P Nh

is the ith global node. Similar to Chapter 4, we describe the relationship between the global and local node

Page 111 of 131



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Table 6.1: Mesh data structure xcg (left) and e2vcg (right) corresponding to the P1 mesh of the unit circle in
Figure 6.25.

node x1 x2

1 ´0.97 0.26
2 ´0.88 ´0.5
3 ´0.50 0.87
4 ´0.37 ´0.21
5 ´0.26 ´0.97
6 ´0.22 0.37
7 0.21 ´0.37
8 0.26 0.97
9 0.37 0.22
10 0.50 ´0.87
11 0.87 0.50
12 0.97 ´0.26

element node 1 node 2 node 3
1 4 5 7
2 4 6 1
3 7 6 4
4 12 7 10
5 7 5 10
6 1 6 3
7 3 6 8
8 9 11 8
9 8 6 9
10 9 6 7
11 9 7 12
12 12 11 9
13 2 4 1
14 5 4 2

numbering using the connectivity matrix ⇥ P M
N

el
nd,Nel

pNq. This leads to the following relationship between
local and global nodes

x̂
e

i
“ x̂⇥ie . (6.149)

For convenience, we also introduce the set of nodes that lie on the domain boundary B⌦i

N Bi
h

:“ Nh X B⌦i. (6.150)

To encode a mesh that satisfies our assumptions (homogeneous regular polytopes), we use three arrays:
xcg, e2vcg, e2bnd. The first array xcg has size d ˆ Nnd and encodes the positions of the global nodes; the
ith column is the position of the ith global node. The second array e2vcg, size N

el
nd ˆ Nel encodes how the

nodes are connected to form elements; the pi, eq entry contains the global node number of the ith local node
of element e, i.e., e2vcg(i, e)“ ⇥ie. Notice that if we did not choose all elements to be of the same type,
this data structure would be more complex because there could be a di↵erent number of nodes associated
with each element. The last array e2bnd, size N

el
fc ˆ Nel, encodes which faces lie on which boundary, i.e.,

e2bnd(f, e)=i if face f of element e lies on boundary B⌦i. Notice that without the assumption that all
element faces (interiors) intersect exactly one boundary, this data structure would be more complex.

Example 6.30: Mesh data structures

Figure 6.25 shows two meshes of the unit circle. For the mesh consisting of P1 triangular elements, the
data structure xcg and e2vcg are shown in Table 6.1.

This completes our definition of a mesh. Notice that we have only introduced the concept of a mesh
and how to store it on a computer. We have made no attempt to discuss how to generate a mesh of a
general domain as this can be quite di�cult depending requirements on the mesh, most importantly, the
desired element geometry. Mesh generation is largely considered a solved problem when using straight-sided
simplicial elements; however, it is very much an open problem for curved meshes or other types of element
geometries, e.g., hypercubes. In this class, we will use the popular open-source mesh generation software
written MATLAB known as DistMesh.
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Figure 6.25: Mesh of the unit circle using Nel “ 14 P1 (left) and P2 (right) triangular elements. Nodes are shown
with blue circles and element faces/edges are indicated with black lines. The node and element numbers are included
on the P1 mesh but omitted on the P2 mesh for clarity. The faces of the mesh on which the essential boundary
condition is applied is indicated with a thick red line.

6.5. Finite element formulation

Consider a domain ⌦ Ä Rd with boundary B⌦ partitioned as B⌦ “ B⌦D Y B⌦N and the following abstract
variational problem:

find u P V such that Bpw, uq “ `pwq for all w P V0
, (6.151)

where B : H1
p⌦q ˆ H

1
p⌦q Ñ R is a bilinear form, ` : H1

p⌦q Ñ R is a linear functional, and V,V0
Ä H

1
p⌦q

are the following subsets

V :“
 
f P H

1
p⌦q

ˇ̌
f |B⌦D

“ g
(
, V0 :“

 
f P H

1
p⌦q

ˇ̌
f |B⌦D

“ 0
(
. (6.152)

The function g P L
2
pB⌦q is the prescribed essential boundary condition, V is an a�ne subspace, and V0 is a

linear subspace. Since V is a�ne, it can be written as V “ '`V0 for any ' P V. Following the procedure in
Chapter 5, the variational problem can be converted to a bilinear form with the same test and trial space:

find ū P V0 such that Bpw, ūq “ ¯̀pwq :“ `pwq ´ Bpw,'q for all w P V0
. (6.153)

We assume the bilinear form B is continuous and coercive on V0 and the linear functional ¯̀ is continuous on
V0. Then the Lax-Milgram theorem guarantees (6.153) (and therefore (6.151)) possesses a unique solution.

The finite element method introduces a finite-dimensional linear subspace V0
h

Ä V0, which leads to the
variational Galerkin formulation:

find uh P Vh such that Bpwh, uhq “ `pwhq for all wh P V0
h
, (6.154)

where Vh :“ ' ` V0
h
for any ' P V. The FE variational problem possesses a unique solution (Lax-Milgram

theorem) since the properties of the bilinear form (continuity, coercivity) and linear functional (continuity)
are inherited by virtue of V0

h
being a linear subspace of V0. Similar to Chapter 4, the finite element subspace

is defined by partitioning the domain into elements and introducing a local, finite-dimensional function space
over each element.

Consider a mesh of ⌦ with elements t⌦eu
Nel
e“1 and nodes N “ tx̂1, . . . , x̂Nndu, which we use to define a

collection of finite elements p⌦e,Ye,Neq. The local function space, Ye Ä C0
p⌦eq, is constructed by mapping

a master finite element (Section 6.2) and Ne “ tx̂
e

1, . . . , x̂N
el
nd

u Ä N are the nodes associated with element

⌦e. Then we define the finite element subspace V0
h

Ä V0 as

V0
h
:“

 
f P H

1
p⌦q

ˇ̌
f |⌦e

P Yp⌦eq @⌦e P Eh, f |B⌦D
“ 0

(
. (6.155)
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It can be shown (Example 5.1) that any f P V0
h
is continuous, i.e., V0

h
Ä C0

p⌦q; in the following sections, when
we construct the finite element space, special attention will be given to enforcing this continuity requirement.
Furthermore, V0

h
Ä V0 is a finite-dimensional linear subspace (N̄dof :“ dimV0

h
).

Let t�1, . . . ,�N̄dof
u be a basis for V0

h
, then any u P Vh can be written as

u “ '`

N̄dofÿ

I“1

û
u
I
�I . (6.156)

In finite-dimensional setting, the variational problem (6.151) is equivalent to

find uh P Vh such that Bp�I , uhq “ `p�Iq for I “ 1, . . . , N̄dof (6.157)

by Proposition 3.1, which reduces to

N̄dofÿ

J“1

Bp�I ,�JqûJ “ `p�Iq ´ Bp�I ,'q. (6.158)

This can be written compactly as a linear system of equations

K̂
uu
û
u

“ b̂
u
, (6.159)

where we defined K̂
uu

P MN̄dof,N̄dof
pRq and b̂

u
P RN̄dof as

K̂
uu
IJ

:“ Bp�I ,�Jq, f̂
u
I
:“ `p�Iq, b̂

u
I
:“ f̂

u
I

´ Bp�I ,'q (6.160)

for I, J “ 1, . . . , N̄dof. In the next section, we provide a concrete construction of the finite element subspace
V0
h
and a nodal basis from the finite elements.

6.6. Construction of finite element subspace

Following the approach in Chapter 4, we first construct a collection of function t 1, . . . , Nndu, called shape

functions, whose span includes the finite element subspace V0
h
, i.e.,

V0
h

Ä spant 1, . . . , Nndu. (6.161)

We require each shape function to be continuous, be a member of Ye when restricted to ⌦e, and possess the
nodal property

 I P C0
p⌦q,  I |⌦e

P Ye,  Ipx̂Jq “ �IJ for J “ 1, . . . , Nnd (6.162)

for I “ 1, . . . , Nnd. These properties are su�cient to establish the inclusion of V0
h
in the span of the shape

functions (6.161). We construct the global shape function from the element level. Let t�
e

1, . . . ,�
e

N
el
nd

u be

a nodal basis of Ye corresponding to the node set Ne. Because we require  I |⌦e
P Ye, we can expand

 I |⌦e
P Ye in the nodal element basis as

 I |⌦e
“

N
el
ndÿ

i“1

↵
e

Ii
�
e

i
. (6.163)

The nodal property of the element basis implies

 I |⌦e
px̂

e

j
q “

N
el
ndÿ

i“1

↵
e

Ii
�
e

i
px̂

e

j
q “ ↵

e

j
(6.164)

Observe that continuity within an element ⌦e follows directly from Ye Ä C0
p⌦eq; however, continuity across

elements is more delicate. In the case where Ye is a (mapped) polynomial space, continuity across elements
will be guaranteed if the functions in abutting elements agree at enough points (determined by polynomial
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Figure 6.26: Global nodal basis functions  I (left-to-right : I “ 1, 6, 9, 10) for various nodes in the P1 mesh in
Figure 6.25.

Figure 6.27: Global nodal basis functions  I for various nodes in the P2 mesh in Figure 6.25.

degree) on the shared surface (element face). This is precisely why in Section 6.2 we constructed master
elements with enough nodes on each face such that a polynomial in pd ´ 1q-dimensions is uniquely defined
by the nodal values of the face. Therefore, the di�cult issue of enforcing global continuity reduces to simply
requiring any function v P V0

h
is single-valued at every node in the mesh N , which can be written compactly

using the connectivity of the mesh
vpx̂

e

j
q “ vpx̂⇥jeq. (6.165)

Using this relationship to enforce global continuity and the nodal property of the shape functions, we arrive
at

 I |⌦e
px̂

e

j
q “  I |⌦e

px̂⇥jeq “ �I⇥je . (6.166)

Combining (6.164) and (6.166), we arrive at the following compact representation of the expansion coe�cients
of the shape functions

↵
e

Ij
“ �I⇥je , (6.167)

which in turn leads to the following global basis functions in terms of the local ones

 I |⌦e
“

N
el
ndÿ

i“1

�I⇥ie�
e

i
. (6.168)

Remark 6.3. This procedure defines the global (nodal) shape functions by “patching together” nodal basis
functions of the local function space Ye associated with the finite element p⌦e,Ye,Neq in a manner that
ensures global continuity. This is the analog to the approach taken in Chapter 4 to construct the piecewise
linear hat functions.

Example 6.31: P1
and P2

shape functions on mesh of unit circle

The global shape functions for P1 and P2 triangle elements on the meshes in Figure 6.25 are shown in
Figure 6.26 and 6.27, respectively. It is easy to see the basis functions are continuous and possess the
nodal property. Furthermore, the P1 shape function in Figure 6.26 are linear when restricted to any
element; the P2 shape functions in Figure 6.26 are mapped quadratic functions when restricted to any
element. Also observe that any particular shape function  I is only non-zero in elements that contain the

node,, i.e., x̂I P N e.

Now we can construct a basis t�1, . . . ,�N̄dof
u of the finite element subspace Vh from the shape functions

t 1, . . . , Nndu. Since we have (6.161), the only property missing ingredient is the boundary condition. Let
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Ic Ä t1, . . . , Nndu be the (ordered) set of node numbers corresponding to nodes on the essential boundary
B⌦D (constrained), i.e.,

Ic “ ti P N | x̂i P NDu (6.169)

and let Iu “ t1, . . . , NnduzIc be the remaining (unconstrained) nodes with cardinality |Iu| “ N̄dof. Now we
claim the following definition of the global basis functions will ensure �I |B⌦D

“ 0:

�I “  IupIq, I “ 1, . . . , N̄dof. (6.170)

This definition of �I directly inherits continuity, �I |⌦e
P Ye, and the nodal property from the complete

set of shape function; we only need to verify the boundary condition. First we notice that all of the basis
functions �I , I “ 1, . . . , N̄dof are zero at any node on B⌦D, i.e., for any J P Ic we have

�Ipx̂Jq “  IupIqpx̂Jq “ 0 (6.171)

due to the nodal property of  and fact that J P Ic ùñ J R Iu. Due to our assumption that the interior
of an element face touches at most one domain boundary, this implies �I is zero at all nodes on all element
faces lying on B⌦D, which in turn implies �Ipxq “ 0 for any x on those faces (at least for the elements
introduced in Section 6.2).

Example 6.32: Partition of degrees of freedom for P1
mesh in Figure 6.25

By examining the P1 mesh of the unit circle in Figure 6.25 we can easily see that

Ic “ t1, 3, 8, 11, 12u, Iu “ t2, 4, 5, 6, 7, 9, 10u. (6.172)

Furthermore, from the basis functions shown in Figure 6.26, we see that for any non-boundary node I,
the corresponding basis function is zero on the boundary,  Ipxq “ 0 for x P B⌦. This show the choice of
basis function in (6.170) satisfies the boundary condition, �I |B⌦D

“ 0.

We can also use the shape functions to define the a�ne o↵set ', defined as any function in V such that
'|B⌦D

“ g, as

' “

ÿ

IPIc

gpx̂Iq I . (6.173)

Due to the nodal property of the shape functions, we clearly have 'px̂Iq “ gpx̂Iq; however, in general, away
from nodes it is not guaranteed that 'pxq “ gpxq. Therefore this is a useful approximation to the a�ne
o↵set that lies in our finite-dimensional space.

With the approximation in (6.173), the finite element solution uh in (6.156) can be written as

uh “

ÿ

IPIc

gpx̂Iq I `

N̄dofÿ

I“1

û
u
I
 IupIq,“

ÿ

IPIc

gpx̂Iq I `

ÿ

IPIu

ûI I “

Nndÿ

I“1

ûI I , (6.174)

where we used (6.170) and the following definitions

û
u
I

“ ûIupIq, for I “ 1, . . . , N̄dof, û
c
I

“ gpx̂IcpIqq, for I “ 1, . . . , Nnd ´ N̄dof. (6.175)

Example 6.33: Essential boundary conditions for P1
mesh in Figure 6.25

Recall the P1 mesh of the unit circle in Figure 6.25) with the essential boundary condition applied on the
red segments. Then the a�ne o↵set approximation on the mesh given in (6.173) is

' “ gpx̂1q 1 ` gpx̂3q 3 ` gpx̂8q 8 ` gpx̂11q 11 ` gpx̂12q 12 (6.176)

This approximation is shown in Figure 6.28 for the essential boundary condition gpxq “ sinpx1q cospx2q

for both meshes.
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Figure 6.28: Approximation of the a�ne o↵set ' of the P1 and P2 meshes corresponding to the essential boundary
condition gpxq “ sinpx1q cospx2q.

6.7. Assembly of finite element matrices

Now we return to the finite element formulation in Section 6.5 to derive expressions for the terms in the
global finite element system from element quantities. We begin by following the approach in Chapter 4 of
breaking the bilinear weak formulation into a summation of element contributions

Bpw, uq “

Neÿ

e“1

Bepw, uq, `pwq “

Neÿ

e“1

`epwq, (6.177)

where Be : V0
ˆ V Ñ R is the restriction of the bilinear functional B to element ⌦e P Eh and `e : V0

Ñ R is
the restriction of ` to ⌦e; the additive decomposition follows from the fact that the terms in weak formulation
are volume/boundary integrals. Furthermore, the restricted bilinear form only depend on the value of the
input functions over the corresponding element, i.e.,

Bepw, uq “ Bepw|⌦e
, u|⌦e

q, `epwq “ `epw|⌦e
q (6.178)

for any w P V0 and u P V, which again follows trivially from the fact these terms are integral over ⌦e and
B⌦e.

Example 6.34: Additive decomposition of Poisson bilinear form

Recall the bilinear form of the Poisson equation from Chapter 5

Bpw, uq :“

ª

⌦
w,iu,i dx, `pwq :“

ª

⌦
wf dx `

ª

B⌦N

whds. (6.179)

Both terms can be decomposed into the form of (6.177) as

Bepw, uq :“

ª

⌦e

w,iu,i dx, `epwq :“

ª

⌦e

wf dx `

ª

B⌦eXB⌦N

whds. (6.180)

using the additive property of volume and surface integrals. From this decomposition, the property in
(6.178) follows trivially since the integrals only depend on the functions in the element ⌦e.

Next we define the finite element sti↵ness matrix K̂ P MNnd,NndpRq and load vector f̂ P RNnd as

K̂IJ :“ Bp I , Jq, f̂I :“ `p Iq. (6.181)

We can re-write these in terms of the element basis functions as

K̂IJ “

Nelÿ

e“1

Bep I , Jq “

Nelÿ

e“1

Bep I |⌦e
,  J |⌦e

q “

Nelÿ

e“1

N
el
ndÿ

i“1

N
el
ndÿ

j“1

Bep�
e

i
,�

e

j
q�I⇥ie�J⇥je , (6.182)
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and

f̂I “

Nelÿ

e“1

`ep Iq “

Nelÿ

e“1

`ep I |⌦e
q “

Nelÿ

e“1

N
el
ndÿ

i“1

`ep�
e

i
q�I⇥ie , (6.183)

which is a particularly useful form because it gives the explicit expression for the global quantities in terms
of the element basis functions and the connectivity of the mesh. From these terms, we can extract the terms
required to define the finite element system in (6.159) using the relationship between the global basis �I and
shape function  I in (6.170):

K̂
uu
IJ

“ Bp�I ,�Jq “ Bp IupIq, IupJqq “ K̂IupIq,IupJq

f̂
u
I

“ `p�Iq “ `p IupIqq “ f̂IupIq
(6.184)

for I, J “ 1, . . . , N̄dof, where we used the definition in K̂
uu and f̂

u in (6.160). To complete the finite element
system in (6.159), we consider the following term required to define the right-hand side

Bp�I ,'q “ Bp IupIq,
ÿ

JPIc

gpx̂Jq Jq “

ÿ

JPIc

Bp IupIq, Jqgpx̂Jq “

Nnd´N̄dofÿ

J“1

K̂
uc
IJ
û
c
J
, (6.185)

where we defined
K̂

uc
IJ

:“ Bp IupIq, IcpJqq “ K̂IupIq,IcpJq, û
c
J
:“ gpx̂IcpJqq (6.186)

for I “ 1, . . . , N̄dof and J “ 1, . . . , Nnd ´ N̄dof. Notice that this is exactly the static condensation approach
introduced in Chapter 1 whereby the degrees of freedom are partitioned into those that are constrained and
unconstrained and a reduced system for the unconstrained degrees of freedom is extracted.

Example 6.35: Finite element system for P1
mesh in Figure 6.25

The P1 triangle mesh of the unit circle in Figure 6.25 has Nnd “ 12 nodes with an essential boundary
condition prescribed on N̄dof “ 5 of them (recall the constrained and unconstrained degrees of freedom in
(6.172)). Then terms of the final finite element system are (K̂ is the 12ˆ12 sti↵ness matrix that depends
on the particular weak formulation):

K̂
uu

“

»

—————————–

K̂2,2 K̂2,4 K̂2,5 K̂2,6 K̂2,7 K̂2,9 K̂2,10

K̂4,2 K̂4,4 K̂4,5 K̂4,6 K̂4,7 K̂4,9 K̂4,10

K̂5,2 K̂5,4 K̂5,5 K̂5,6 K̂5,7 K̂5,9 K̂5,10

K̂6,2 K̂6,4 K̂6,5 K̂6,6 K̂6,7 K̂6,9 K̂6,10

K̂7,2 K̂7,4 K̂7,5 K̂7,6 K̂7,7 K̂7,9 K̂7,10

K̂9,2 K̂9,4 K̂9,5 K̂9,6 K̂9,7 K̂9,9 K̂9,10

K̂10,2 K̂10,4 K̂10,5 K̂10,6 K̂10,7 K̂10,9 K̂10,10

fi

���������fl

, f̂
u

“

»

—————————–

f̂2

f̂4

f̂5

f̂6

f̂7

f̂6

f̂10

fi

���������fl

(6.187)

and

K̂
uc

“

»

—————————–

K̂2,1 K̂2,3 K̂2,8 K̂2,11 K̂2,12

K̂4,1 K̂4,3 K̂4,8 K̂4,11 K̂4,12

K̂5,1 K̂5,3 K̂5,8 K̂5,11 K̂5,12

K̂6,1 K̂6,3 K̂6,8 K̂6,11 K̂6,12

K̂7,1 K̂7,3 K̂7,8 K̂7,11 K̂7,12

K̂9,1 K̂9,3 K̂9,8 K̂9,11 K̂9,12

K̂10,1 K̂10,3 K̂10,8 K̂10,11 K̂10,12

fi

���������fl

, û
c

“

»

————–

gpx̂1q

gpx̂3q

gpx̂8q

gpx̂11q

gpx̂12q

fi

����fl
. (6.188)

6.8. Sparse storage of global sti↵ness matrix

At this point we have extensively covered the procedure to assemble the global sti↵ness matrix K̂ from
element sti↵ness matrices Ke and connectivity ⇥ using (6.182). However, we have only briefly mentioned a
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particularly critical property of the sti↵ness matrix that makes the FEM competitive for di�cult problems
where meshes with many elements are required: its sparsity.

A sparse matrix is one in which many of its entries are zero. In such a situation, it is wasteful to ignore
the sparsity of a matrix and simply store and operate on it as though it were dense: this requires storing
and performing (potentially many) operations with 0. Substantial savings can be realized by only storing
the non-zero entries of the matrix along with information needed to map the non-zeros to the appropriate
position in the matrix. A number of di↵erent sparsity structures exist, each with their own advantages
and disadvantages (regarding the e�ciency with which data is stored/access/operated), for only storing the
non-zero values of the matrix. Examples include coordinate or triplet format, compressed sparse column/row

(CSC/CSR), skyline matrix storage, and block variants of most of these options.
The simplest sparsity structure is known as coordinate (COO) or triplet format and the only one we will

discuss in this course. Let A P MnˆnpRq be a square matrix (square not required) and let nz denote the
number of non-zeros in the matrix. The COO format stores three arrays of size nz: the nonzeros of the
matrix, v P Rnz , the row number of each entry in v, r P Nnz , and the column number of each entry in v,
c P Nnz . The cost of directly storing A is n2 while the cost of storing A using COO format is 3nz (actually
less if you account for that 2nz entries that must be stored are natural numbers, rather than real numbers).
Therefore, if we are only concerned about storage (not the cost of accessing entries or operating with them),
it pays o↵ to use COO format if

nz §
n
2

3
. (6.189)

Example 6.36: Sparse matrix in COO

Consider the matrix

A “

»

——–

10 0 0 7
3 9 0 0
0 7 8 0
7 0 2 7

fi

��fl . (6.190)

There are nz “ 9 non-zeros in this matrix. The COO format is

v “

»

————————————–

10
3
7
9
7
8
2
7
7

fi

������������fl

, r “

»

————————————–

1
2
4
2
3
3
4
1
4

fi

������������fl

, c “

»

————————————–

1
1
1
2
2
3
3
4
4

fi

������������fl

. (6.191)

In Example 6.8, we ordered the arrays columnwise. While this is not required for the COO format, it can
significantly reduce the time required to, e.g., find Aij , which requires a search through these three vectors.
While COO is the simplest sparsity structure to understand, it is not the most e�cient in terms of storage
or performing operations; however, storing the data in a meaningful order can help minimize the impact of
these ine�ciencies.

Example 6.37: Sparsity structure of FE sti↵ness matrices

To demonstrate that FE sti↵ness matrices are extremely sparse, we consider a second-order, scalar PDE
discretized on various meshes without essential boundary conditions:

• Square mesh (p “ 1): This mesh consists of 16 nodes and 9 Q1 quadrilateral elements; mesh and
sti↵ness sparsity structrue shown in Figure 6.29.

• Square mesh (p “ 2): This mesh consists of 49 nodes and 9 Q2 quadrilateral elements; mesh and
sti↵ness sparsity structrue shown in Figure 6.29.

• Staypuft (p “ 1): This mesh consists of 27000 nodes and 102392 P1 tetrahedra elements; mesh
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and sti↵ness sparsity structrue shown in Figure 6.29. The ratio of entries in the matrix to non-zero
entries is n

2
{nz “ 2260 " 3 and there is a clear benefit to using sparse storage. Dense storage

requires roughly 5.8GB, while COO sparse storage only requires 7MB. This is the most dramatic
example we have seen and clearly sparse storage is a necessity, not an option for a mesh of this size.

Figure 6.29: Mesh and sparsity structure for several domains (scalar PDE).

6.9. Numerical quadrature

As we have seen to this point in the course, integration is central to the FEM; however, as the complexity
of our PDE and our FE basis increase, it quickly becomes inpractical to analytically compute the integrals
that arise. Therefore we turn to numerical integration or quadrature to approximate the integrals that arise
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in the element sti↵ness matrix and load vector.
Suppose we wish to integrate a function f P F⌦ÑR, where R Ä Rd. A quadrature rule is a collection of

quadrature nodes z1, . . . , zNqd Ä R and weights w1, . . . , wNqd such that

I “

ª

R
f dV «

Nqdÿ

k“1

wkfpzkq. (6.192)

A major computational cost of a finite element simulation comes from integrating the element terms, which
drives us to seek optimal quadrature rules, i.e., quadrature rules that are as accurate as possible for a fixed
number of quadrature points. We measure the accuracy of a quadrature by the highest degree polynomial it

can integrate exactly.

6.9.1 Quadrature in one dimension

First, notice the integral of f over an arbitrary line segment ra, bs can be transformed to an integral over the
inteval r´1, 1s as

ª
b

a

fpxq dx “
b ´ a

2

ª 1

´1
hpzq dz, (6.193)

where hpzq “ fpbpz ` 1q{2 ´ apz ´ 1q{2q. If f is polynomial, h is a polynomial of the same degree so this
transformation does not alter our notion of accuracy of a quadrature rule. Therefore, without loss of
generality, we can consider quadrature rules for the integral in (6.192) over the interval R “ r´1, 1s.

Newton-Cotes formulas

The Newton-Cotes formulas are a collection of quadrature rules that utilize equally spaced quadrature nodes
and are a staple of any numerical analysis class. They are derived by fitting a polynomial of degree q to
the function f using its value at the nqd equally spaced quadrature nodes and integrating the resulting
polynomial. This is implies q “ nqd ´ 1 and the resulting quadrature rule will be exact for polynomials of
degree q (nqd “ q`1 quadrature points). While simple, these quadrature rules are not optimal and therefore
not desired if the function is expensive to evaluate.

Example 6.38: Trapezoidal rule

The trapezoidal rule
w1 “ w2 “ 1, z1 “ ´1, z2 “ 1 (6.194)

is the Newton-Cotes formula with nqd “ 2

I « w1fpz1q ` w2fpz2q “ fp´1q ` fp1q, (6.195)

which is clearly the area of the trapezoid with base r´1, 1s and sides fp´1q and fp1q. It exactly integrates
any linear function.

Example 6.39: Simpson’s rule

Simpson’s rule

w1 “
1

3
, w2 “

4

3
, w3 “

1

3
, z1 “ ´1, z2 “ 0, z3 “ 1 (6.196)

is the Newton-Cotes formula with nqd “ 3

I « w1fpz1q ` w2fpz2q ` w3fpz3q “
1

3
pfp´1q ` 4fp0q ` fp1qq . (6.197)

It exactly integrates any quadratic function.
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Consider a quadrature rule with nqd points tpwi, ziqu
nqd

i“1 and the corresponding approximation of I (6.192)

I «

nqdÿ

k“1

wkfpzkq. (6.198)

It should be clear that there are 2nqd tunable parameters, the nqd quadrature nodes and weights, that can be
used to fit a polynomial to f . However, the Newton-Cotes formula require the quadrature nodes be equally
spaced which reduces the tunable parameters to nqd (weights only). Therefore it comes as no surprise that
we can only integrate polynomials of degree q “ nnd ´ 1 exactly.

Gaussian quadrature

The Gaussian quadrature rules remove the restriction that the nodes be equally spaced and the construction
proceeds as follows. Consider a polynomial P P Pq

pr´1, 1sq that we wish to integrate exactly. We expand P

as
P pzq “ a0 ` a1z ` ¨ ¨ ¨ aqz

q (6.199)

and require
ª 1

´1
P pzq dz “

nqdÿ

k“1

wkP pzkq, (6.200)

i.e., the condition for the quadrature rule to integrate P exactly. Using the expansion of P pzq on each side
of the equality, we arrive at

ª 1

´1
pa0 ` a1z ` ¨ ¨ ¨ aqz

q
q dz “

nqdÿ

k“1

wk pa0 ` a1zk ` ¨ ¨ ¨ ` qqz
q

k
q . (6.201)

Since the left side of the equality is a (definite) integral of a polynomial, we can reduce this to

„
a0z `

a1

2
z
2

` ¨ ¨ ¨ `
aq

q ` 1
z
q`1

⇢1

´1

“

nqdÿ

k“1

wk pa0 ` a1zk ` ¨ ¨ ¨ ` aqz
q

k
q . (6.202)

Moving all terms to the same side of the equation and compressing in summation form, we have

qÿ

i“0

ai

˜„
z
i`1

i ` 1

⇢1

´1

´

nqdÿ

k“1

wkz
i

k

¸
“ 0. (6.203)

Because we require the quadrature rule be exact for any polynomial of degree q, the coe�cients a0, . . . , aq

are arbitrary, which means the equation will only be true if each term is equal to zero, i.e.,

„
z
i`1

i ` 1

⇢1

´1

“

nqdÿ

k“1

wkz
i

k
(6.204)

for i “ 0, . . . , q. After evaluating the expression on the left-hand side, we arrive at the following nonlinear
system of equations for wk and zk

nqÿ

k“1

wkz
i

k
“

$
&

%

2

i ` 1
i even

0 i odd
(6.205)

for i “ 0, . . . , q. This is a system of q ` 1 nonlinear equations in 2nqd unknowns, which can be solved using
nonlinear iterations (Chapter 7); a unique solution requires q “ 2nqd ´1. This means a polynomial of degree
q “ 2nqd ´ 1 can be integrated exactly with nqd quadrature points. Because Gaussian quadrature rules
depend on the solution of this nonlinear system, they are usually tabulated.
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Table 6.2: Gaussian quadrature rules for r´1, 1s

q nqd w zk

1 1 2.000000000000000 0.000000000000000
3 2 1.000000000000000 -0.577350269189626

1.000000000000000 0.577350269189626
5 3 0.555555555555556 -0.774596669241483

0.888888888888889 0.000000000000000
0.555555555555556 0.774596669241483

7 4 0.347854845137454 -0.861136311594053
0.652145154862546 -0.339981043584856
0.652145154862546 0.339981043584856
0.347854845137454 0.861136311594053

9 5 0.236926885056189 -0.906179845938664
0.478628670499366 -0.538469310105683
0.568888888888889 0.000000000000000
0.478628670499366 0.538469310105683
0.236926885056189 0.906179845938664

Example 6.40: Gaussian quadrature over r´1, 1s

The one-point Gaussian quadrature rule is the midpoint rule: w1 “ 2, z1 “ 0 (midpoint rule). The
two-point Gaussian quadrature rule is: w1 “ w2 “ 1, z1 “ ´1{

?
3, z2 “ 1{

?
3. These and higher order

quadrature rules are listed in Table 6.2 and Figure 6.30. Notice that the endpoints of the interval t´1, 1u

are not quadrature nodes; this is usually the case for optimal quadrature rules.

6.9.2 Quadrature over r´1, 1sd

In the special case where the integration domain is R “ r´1, 1s
d, or more generally, a tensor product of one-

dimensional domains, a quadrature rule for R can be constructed from tensor products of one-dimensional
quadrature rules. To see this, we first consider the case d “ 2 and let tpw̃i, s̃iqu

nqd,1

i“1 be the quadrature rule
associated with the one-dimensional domain r´1, 1s. Then we have

ª

r´1,1s2
fpzq dz “

ª 1

´1

ª 1

´1
fpz1, z2q dz1 dz2 «

ª 1

´1

nqd,1ÿ

j“1

w̃jfps̃j , z2qdz2 «

nqd,1ÿ

k“1

nqd,1ÿ

j“1

w̃jw̃kfps̃j , s̃kq. (6.206)

Since the one-dimensional quadrature rule integrates polynomials of degree q “ 2nqd ´ 1 exactly, it is easy
to see this procedure will integrate any f P Qq

pr´1, 1s
2
q exactly (the « in the above equation would be

replaced with “ because any f P Qq
pr´1, 1s

d
q, it is a polynomial of degree at most q in each component).

To make a stronger connection to the form of a quadrature rule in (6.192) (single summation), we
introduce tpwk, zkqu

nqd

k“1 where nqd “ n
2
qd,1 and require

nqdÿ

i“1

wifpziq “

nqd,1ÿ

k“1

nqd,1ÿ

j“1

w̃jw̃kfps̃j , s̃kq. (6.207)

This is clearly satisfied if we take

wi “ w̃Ipiqw̃J piq, zi “

„
s̃Ipiq
s̃J piq

⇢
, (6.208)

where
I : t1, . . . , n2

qd,1u Ñ t1, . . . , nqd,1u, J : t1, . . . , n2
qd,1u Ñ t1, . . . , nqd,1u (6.209)

map between the overall quadrature node number to the quadrature node in the z1-direction (I) and z2-
direction (J ). Since the order in which the quadrature nodes are traversed is unimportant (sum over all in
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´1 0 1

⇠1

´1 0 1

⇠1

´1 0 1

⇠1

´1 0 1

⇠1

Figure 6.30: Gaussian quadrature nodes over the interval r´1, 1s.

the end), there is some flexiblity in defining these mappings; however, for consistency with Section 6.2.3, we
choose

Ipkq :“ 1 ` rpk ´ 1q%nqd,1s, J pkq :“ 1 `

Z
k ´ 1

nqd,1

^
. (6.210)

This procedure easily generalized to higher dimensions; however, we omit the details.

Remark 6.4. Since we chose the master hypercube element ⌦˝ to be the bi-unit hypercube r´1, 1s
d, these

quadrature rules are all one needs if solely considering hypercube elements. By using the mapped element
approach, all integrals get converted to the master hypercube ⌦˝ “ r´1, 1s

d. Simplices or master elements
with other geometries require more general quadrature rules, which we consider in the next section.

Example 6.41: Gaussian quadrature over r´1, 1s
2

The one-point Gaussian quadrature rule is: w1 “ 2, z1 “ p0, 0q (midpoint rule). The four-point Gaussian
quadrature rule is: w1 “ w2 “ w3 “ w4 “ 1, z1 “ p´1{

?
3,´1{

?
3q, z2 “ p1{

?
3,´1{

?
3q, z3 “

p´1{
?
3, 1{

?
3q, z4 “ p1{

?
3, 1{

?
3q. These Gaussian quadrature rules and higher order ones are shown in

Figure 6.31.

6.9.3 Quadrature in multiple dimensions

For more general domains, it is more di�cult to derive optimal quadrature rules. In this section we consider
a general, systematic procedure to construct quadrature rules from a quadrature rule of r´1, 1s

d. While this
procedure will be general, it is by no means optimal. Suppose we wish to construct a quadrature rule for
the domain R Ä Rd and suppose there exists a mapping G : r´1, 1s

d
Ñ R. Then the integral over R can be

transfered to an integral over r´1, 1s
d using the change of variables formula

ª

R
fpzq dz “

ª

r´1,1sd
fpGpz̃qq detGpz̃q dz̃. (6.211)
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⇠
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⇠
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Figure 6.31: Gaussian quadrature nodes over the domain r´1, 1s2.

Furthermore, let tpw̃k, z̃kqu
nqd

k“1 be a quadrature rule associated with the bi-unit box r´1, 1s
d. Then we can

approximate the above integral as

ª

R
fpzq dz “

ª

r´1,1sd
fpGpz̃qq detGpz̃q dz̃ «

nqdÿ

k“1

w̃kfpGpz̃kqqdetGpz̃kq “

nqdÿ

k“1

wkfpzkq, (6.212)

where
wk :“ w̃k detGpz̃kq, zk :“ Gpz̃kq. (6.213)

Thus tpwk, zkqu
nqd

k“1 is a quadrature rule for the region R.

Remark 6.5. The quadrature rule is suboptimal because, even if the original quadrature rule tpw̃k, z̃kqu
nqd

k“1
could exactly integrate a polynomial of degree q, the new quadrature rule tpwk, zkqu

nqd

k“1 would not be able
to exactly integrate it exactly because the integrand to which the original quadrature rule is applied is
pf ˝ GqdetG, which is only a polynomial if G is also a polynomial, but will have much higher degree than f

(unless G is linear).

Example 6.42: Gaussian quadrature rule for master triangle

Consider the master triangle in Section 6.2.4. It is easy to see the following mapping

Gpz̃1, z̃2q “
1

4

„
2p1 ` z̃1q

p1 ` z̃2qp1 ´ z̃1q

⇢
(6.214)

transforms the master hypercube r´1, 1s
d into the master triangle (6.40). The Jacobian of the mapping

is
detGpz̃1, z̃2q “ p1 ´ z̃1q{4. (6.215)

From these two quantities, any quadrature rule for r´1, 1s
2 can be transformed into a quadrature rule for

the master triangle using (6.214) (Figure 6.32). A similar procedure can be used in higher dimensions to
obtain a quadrature rule for a general simplex from the quadrature rule of r´1, 1s

d.
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Figure 6.32: Gaussian quadrature nodes over the right unit triangle using the transformation of the Gaussian quadra-
ture rule of r´1, 1s2 (Figure 6.31) in (6.213). Notice that the nodes bunch up near the point where the edge as
collapsed.

6.10. Summary

This chapter introduced the finite element method in d-dimensions for linear, scalar-valued partial di↵erential
equations:

• The concept of a finite element was introduced and a number of master elements (line, quadrilateral,
triangle, d-hypercube, d-simplex) with fixed idealized domain were introduced along with the local
function space and distribution of the nodes throughout the element. We also detailed a construction
of nodal basis functions for each elements (and local function space).

• The concept of a physical or mapped finite element was introduced as a (bijective) mapping applied
to a master element, which is used to generate all elements of a mesh and allows for a general class of
elements (including those with curved boundaries).

• A finite element mesh was introduced as a collection of mapped elements and the associated nodes.
The concept of element boundaries/faces was introduce and restrictions placed on the mesh to facilitate
a convenient implementation.

• The finite element formulation in this setting largely follows the procedure from Chapter 4 and leads
to familiar expressions for the global basis functions in terms of element ones and the concept of
assembling the global sti↵ness matrix and load vector from element contributions. Application of
essential boundary condition leads to a form of static condensation (Chapter 1).

• The practical issue of storing the FE sti↵ness matrix in a sparse format to significantly reduce the
memory burden was introduced and the significance was demonstrated on a number of FE meshes.

• Finally, we introduced the concept of numerical quadrature which will be helpful in reducing the
integrals that arise in the weak and Galerkin forms to a weighted summation of the integrand evaluated
at a number of (quadrture) points. The Gaussian quadrature rules were construction and shown to be
optimal in one-dimension and for tensor products of one-dimensional domains.
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