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AME40541/60541: Finite Element Methods
Homework 2: Due Monday, February 15, 2021

Problem 1: (30 points) Consider Truss 0 in Figure 1 and assume the Young’s modulus times the cross-
sectional area for each element is EAe “ e for e “ 1, . . . , 5.

– (10 points) What is the element stiffness matrix Ke
ij for elements 1 and 5?

– (10 points) Identify all entries in the global stiffness matrix to which 3 contributes, i.e., which entries
in K does K3 contribute, where K is the global stiffness matrix. What about element 5?

– (10 points) What are K11, K34, K65, K77, K78, K87, K88 in terms of the element stiffness matrices
Ke

ij?

Problem 2: (20 points) (AME60541 only) Consider a truss structure with elastic boundary conditions,
e.g., Truss 1 (Figure 1). The spring is at rest when the truss is in its undeformed configuration. Recall the
force in a spring is F “ k∆x where ∆x is the deformation of the spring from its rest configuration. How does
the direct stiffness method change when considering elastic boundary conditions? Provide a description in
the context of Truss 1 then generalize the procedure to a general 2d truss structure with an elastic boundary
condition on any global degree of freedom.
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Figure 1: Truss 0 (left) and Truss 1 (right)

Problem 3: (30 points) From S. Govindjee, UC Berkeley. Consider the two-dimensional beam subject to
a transverse sinusoidal load below.

0 L

´c

0

c

qpx, cq

x

y

Page 1 of 2



University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Let upx, yq denote the x-displacement and vpx, yq the y-displacement and qpx, cq denote the load per unit
area. The exact solution of the y-displacement along the centerline of the beam with the boundary conditions

up0, 0q “ vp0, 0q “ vpL, 0q “ 0, qpx, cq “ q0 sin
´πx
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and the geometric condition L " c, is
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This analytical solution was derived under the plane stress assumptions. Select reasonable values for the
geometry (the L{c ratio should be at least 20), material properties (stiffness E and Poisson ratio ν), and
load q0.

(a) What is the analytical solution at px, yq “ pL{2, 0q for the parameters you chose?

(b) Model this system in COMSOL. Be sure to use the plane stress assumption with a thickness of t “ 0.001L
and apply boundary conditions exactly as specified above i.e., do not fix the displacements along an entire
edge. For the discretization, consider both linear triangles and quadrilateral elements on a sequence of
at least four meshes each of increasing refinement. For each mesh, compute the solution and output
vpL{2, 0q.

• Make sure to output the vertical displacement rather than the total displacement, which is the
default (modify Expression to v, rather than solid.disp). If loads are small enough, difference
between the total and vertical displacement will be negligible.

• Model the domain as two rectangles, one over r0, Ls ˆ r´c, 0s and one over r0, Ls ˆ r0, cs. Some
versions of COMSOL with have trouble generating a quadrliateral mesh if an isolated point, e.g.,
at pL{2, 0q, exists. Note: may not be necessary in newer versions of COMSOL.

• COMSOL does not allow you to take the sine of a number with units. Therefore, to prescribe the
distributed load sinpπx{Lq, this must be entered as sin(pi*(x/L[m])) if you are working in units
of meters. Also, be sure to apply the load per unit length to be consistent with the assumptions
under which the analytical solution was derived.

• Be sure to specify the load per unit area (not per unit length).

(c) On a single figure, plot vpL{2, 0q versus the number of elements for both mesh sequences. Also include
the exact solution as a horizontal line (since it does not depend on the number of elements). What do
you observe about the accuracy of triangular vs. quadrilateral elements for bending problems?
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