
University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

AME40541/60541: Finite Element Methods
Homework 7: Due Tuesday, March 30, 2021

Problem 1: (40 points) In this problem, you will implement a basic FEM code that we will enhance
(substantially) in your final project. Before proceeding, carefully review the starter code, including all the
comments, that has been provided on the course website in hwk07´code´starter.zip. I have provided
the following functions:

• create mesh hcube: create msh (xcg, e2vcg) for uniform mesh of d-dimensional hypercube

• create ldof2gdof cg: create ldof2gdof matrix

• assemble nobc mat dense: assemble global matrix from element matrices

• create dbc strct: create essential boundary condition structure (same as Hwk 1)

• create femsp cg: create FE space structure

• visualize fem: visualize FE mesh and solution

You are welcome to use your own version of create ldof2gdof cg.m and assemble nobc mat dense.m you
implemented in Homework 3 if you made them sufficiently general.

Problem 1.1 Implement a function eval unassembled stiff load.m that evaluates and stores the ele-
ment stiffness matrix and load vector for each element in the FE mesh. Starter code is provided on the
course website in the Homework 7 code distribution.

Problem 1.2 Implement a function assemble nobc vec.m that assembles the element load vector into the
global load vector without applying essential boundary conditions. Starter code is provided on the course
website in the Homework 7 code distribution.

Problem 1.3 Implement a function apply bc solve fem.m that applies essential boundary conditions via
static condensation to the global FE system and solves the unknown solution coefficients. Starter code is
provided on the course website in the Homework 7 code distribution.

Problem 1.4 Implement a function solve fem dense.m that uses the finite element method to approximate
the unknown PDE solution at nodes using the functions created in Problems 1.1-1.3. Starter code is provided
on the course website in the Homework 7 code distribution.

Problem 1.5 Use the element developed in Homework 6, Problem 3 to approximate the solution of

´
d2u

dx2
´ u` x2 “ 0

up0q “ 0,

ˆ

du

dx

˙
ˇ

ˇ

ˇ

ˇ

x“1

“ 1

(1)

over the domain Ω “ r0, 1s using the finite element method. Use a mesh consisting of three linear elements
and plot against the exact solution

upxq “
2 cosp1´ xq ´ sinpxq

cosp1q
` x2 ´ 2.

What do you notice about the accuracy of the FEM solution at the nodes vs. interior to elements? Repeat
the analysis using a finite element mesh with 25 linear elements and plot the solution.
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Problem 1.6 Use the element developed in Homework 6, Problem 2 to approximate the solution of

´∆T “ 0 in Ω

∇T ¨ n “ 1 on BΩ1

∇T ¨ n “ 0 on BΩ2

T “ 0 on BΩ3 Y BΩ4,

(2)

over the domain Ω :“ r0, 1s ˆ r0, 1s using the finite element method. Use a mesh consisting of 3 ˆ 3 linear
elements and plot the solution. Repeat the analysis using a finite element mesh of 25 ˆ 25 linear elements
and plot the solution.

Problem 2: (25 points) Consider a single one-dimensional, pp ` 1q-node Lagrangian element with nodes
located as xe1, . . . , x

e
p`1.

(a) What is the polynomial space associated with the element?

(b) Write the expressions for the element basis functions tφe1, . . . , φ
e
p`1u and their derivatives in terms of the

nodal positions.

(c) Implement a function that evaluates all one-dimensional Lagrange polynomials and their derivatives
associated with nodes xe1, . . . , x

e
p`1. Starter code provided in Homework 7 code distribution. Check you

code: all basis functions should possess the nodal/Lagrangian property; in addition, the basis functions
should satisfy

p`1
ÿ

i“1

φei pxq “ 1,
p`1
ÿ

i“1

dφei
dx
pxq “ 0

for any x P rxe1, x
e
p`1s.

(d) Plot the basis functions and their derivatives for p “ 1, . . . , 5 nodes equally spaced in the domain r´1, 1s.

(e) Consider a one-dimensional domain, discretized by 3 of 5-node Lagrangian elements. Create a global
numbering for the mesh and write the e2vcg matrix.

Problem 3: (30 points) The incompressible Navier-Stokes equations model low speed, viscous fluid flow:

´pρνvi,jqj ` ρvjvi,j ` P,i “ 0, vj,j “ 0

for i “ 1, . . . , d, for all x P Ω with the boundary conditions pρνvi,j ´ Pδijqnj “ ρt̄i on BΩ, where vpxq P Rd

is the velocity vector, P pxq P R is the pressure, ρpxq P R is the density of the fluid, νpxq P R is the kinematic
viscosity of the fluid, npxq P Rd is the outward normal to BΩ, and t̄pxq P Rd is the traction boundary
condition. An important non-dimensional quantity in the study of fluid flow is the Reynolds number

Re “
UL

ν
, (3)

where U is the velocity of the fluid with respect to an object, L is the characteristic linear dimension, and
ν is the kinematic viscosity of the fluid. The Reynolds number is the ratio of inertial-to-viscous forces and
is used to predict flow patterns in different fluid flow situations.
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Figure 1: Square domain Ω “ r0, 1s ˆ r0, 1s with boundary BΩ “ BΩ1 Y BΩ2 Y BΩ3 Y BΩ4 and line along which to
evaluate quantities (Γ).

The lid-driven cavity problem is a benchmark test in computational fluid dynamics. Consider flow
through a square domain (Figure 1) with boundary conditions: stationary, no-slip walls (v1 “ v2 “ 0) on
BΩ1 Y BΩ2 Y BΩ3 and a moving, no-slip wall (v1 “ 1, v2 “ 0) on BΩ4. Since the pressure is only determined
up to a constant, we need to prescribe it at one point on the boundary, e.g., take P “ 0 at the point (x1 “ 0,
x2 “ 0). Take the characteristic length scale to be L “ 1 (length/height of domain), the characteristic
velocity to be the velocity of the moving wall U “ 1, the density to be ρpxq “ 1, and the viscosity to be
νpxq “ 0.01.

(a) Use COMSOL to solve for the velocity and pressure distribution of the lid-driven cavity problem; ensure
your mesh is sufficiently refined.

(b) Plot the velocities v1, v2 along the line Γ shown in Figure 1 and the magnitude of the velocity and
vorticity throughout the domain.

(c) How does the flow change as you decrease the viscosity (ν) keeping the length L and lid velocity U
fixed, i.e., increase the Reynolds number? Consider a sequence of decreasing viscosities; for each plot
the velocity magnitude and vorticity throughout the domain.
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