University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

AME40541/60541: Finite Element Methods
Final Project

In this project, you will enhance the finite element code you developed throughout the semester in the
homework assignments into a general FEM code capable of handling unstructured meshes, non-homogeneous
natural boundary conditions, and nonlinear problems. You will then use your code to solve a number of
partial differential equations.

Instructions

o All starter code can be found on the course website in the final project code distribution. Be sure to
carefully read notation.m for a description of all relevant variables. Be sure to run init.m each time
you start MATLAB to add all required directories to your MATLAB path.

e AME40541: You may assume the number of spatial dimensions (d in the document, ndim in the code)
is d = 1,2 and the polynomial degree (p in the document, porder in the code) is p = 1,2, 3 in all tasks.
That is, you only need your finite element code to work in one and two dimensions for polynomial
orders one, two, and three to receive full credit.

e AMEG0541: Your code must work for d = 1,2,3 and p = 1,2, 3.

e You may work in teams of up to four. Each team needs to submit their code to the instructor and
TAs as well as a document that contains the answers to all questions and the required figures. Teams
should not be mixed between the two classes.

e Timeline

Tuesday, April 13, 2021 | Part 1.1-1.2 due
Tuesday, April 20, 2021 | Part 1.3-1.4 due
Tuesday, April 27, 2021 | Part 2 due
Tuesday, May 4, 2021 Part 3 due
Tuesday, May 11, 2021 | Part 4 due
Tuesday, May 18, 2021 | Part 5-7 due

e The final checkpoint will be accepted until May 20, 2021 at 11:59pm without penalty. It will not be
accepted after that time.

e The point value for each part is indicated at the beginning of the section. In total, there are 180 points
for AME40541 and 285 points for AME60541. This will count as 50% of your final grade.

Part 1: (50 points) Since we want our code to be able to handle arbitrarily complex domains, it is necessary
to have simpler elements available in our FEM code. As we discussed in class, mesh generation with simplex
elements (triangles in 2d, tetrahedra in 3d) is a “solved” problem while mesh generation with hypercube
elements is much more difficult.

Part 1.1 (5 points) First, we need to define the geometry of our element, which is given by the element
interior (volume) and its boundary (faces). In addition, nodes are distributed throughout the element based
on its polynomial space; PP simplex elements in d-dimension use interpolation functions that include all
multinomial terms of order p: {7 - &7 | Z?Zl a; < p}. Therefore, the number of nodes in a simplex
element must be the number of unique multinomials

we = (75, 0

where we use N¢, throughout the document to denote the number of nodes in an element. For the special
case of d = 2 (triangle), we have N = (p + 1)(p + 2)/2 nodes, which can easily be verified by referring to
the Pascal triangle.

Page 1 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Since we will use mapped master elements to define the basis functions, we only need to consider the unit

~ el

right simplex. We assume the nodes {Sz}i\[:f are distributed throughout the element and ordered (ascending)
first in the &;-direction, then in the &s-direction, etc., where € = (£1,&s,...,&q) are the coordinates in the
reference domain (Figure 1). Furthermore, let us number the Nfcl = d+1 faces of the simplex element as: face
f is the face with unit normal Ny = —ey for f = 1,...,d, where ey € R? is the canonical unit vector, and

face d + 1 is the remaining face (unit normal Ngi1 = ﬁl). Finally, introduce a matrix Il € My e (N).

where N[is the number of nodes on each element face, whose columns define the element nodes that lie
on a particular face, i.e., II;; is the element node number corresponding to the ith node on face f of the
element.

For the special case of p = 2 simplex elements in d = 2 dimensions (Figure 1), the nodes are

: o] . [05 : 1 : 0 : 0.5 . 0
El = [Og) 62 = I 0 :| ’ 63 = [0]) 64 = [05:| ’ 65 = [05] ; 56 = [1:|)
and the face-to-element vertex mapping and normal vectors are

11 3
~1 0 1 [1
M= |4 2 5], le[] NQ:[] NS:H.
|6 3 6] 0 - vzl
1h 1 1
1
05 05 S 050 % 9
(©)
6 7
O o 0 0O o © e}
1 1 2 1 2 3 4
0 0.5 1 0 0.5 1
& &1

Figure 1: Triangular finite element in reference domain (£;-§2 space) with 3 nodes (p = 1) (left), 6 nodes (p = 2)
(center), and 10 nodes (p = 3) (right). The faces are numbered as: face 1 (——), face 2 (), and face 3 (—).

Tasks for Part 1.1

1) Write a function that defines the geometry of a simplex element of order p in the reference domain in

N,

~ el
d spatial dimensions. Your function should define the nodal positions in the reference domain {&} i

el
the face-to-element vertex mapping II, and the unit normal for each face {Nz}fifcl Your function should
have the following signature:

function [zk, f2v, N] = create_nodes_bndy_-refdom_-simp (ndim, porder)
$CREATE_NODES_BNDY_REFDOM_SIMP Create nodal distribution and boundary of
$NDIM—dimensional simplex element of order PORDER.

o

%$Input arguments

% NDIM, PORDER : See notation.m

o\

%Output arguments

\o

o

ZK, F2V, N : See notation.m

Page 2 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Read all comments and notation.m carefully for instructions regarding the inputs and outputs to the
function.

2) For the d = 2 case (triangular element), plot all nodes of the element with blue circles. On top of these
circles, plot the nodes on face 1 (left edge) with red x’s, the nodes of face 2 (bottom edge) with green o’s,
and the nodes on face 3 (hypotenuse) with black +’s. For your reference, for the special case of p = 2,
you code should return

113)

-1 0o L

2= 8 065 (1) 005 8.2 [1)] fav=14 2 50, Nzlo 1 JP]
o0 6 3 6 Vi

el
Part 1.2 (15 points) Next, we need to define basis functions over the reference domain {wl(ﬁ)}fvz“f for
&€ € Q,, where Q, = R? is the reference/parent element. For this we will use Vandermonde’s approach
(discussed in lecture and Ch. 6). A basis for a simplex element of order p must contain all multinomial

. . . d : . .
terms of order p in d dimensions {7 -+ €57 | Yo7, a; < p}, so we can write our N& basis functions as

Ny d

i) = D ain [| 5}“ (2)
k=1 j=1

where Y € deell(No) with entries Ty;, i = 1,...,d, j = 1,...,N&, such that Z(ii=1 T;; < p for each

j=1,... 7N§<li that is used to sweep over all Ngé permissible exponents. For example:

e in the special case of d = 2 (triangle) and p = 1, we have

Y= |:8 (1) Sl_)j| = %‘(51,52) = 41 + ai2§1 + 041‘352

e in the special case of d = 2 and p = 2, we have

T_[o 0

0 2 1
1 0 1 2] = Yi(&1,82) = @i + @iy + iz + ai4§f + a;5&160 + aw&%

1
0 0

e in the special case of d = 3 (tetrahedron) and p = 1, we have

01 00
Y=]0 0 10 = Y;(&1,8&,83) = a1 + @il + aizée + aiaés.
0 0 0 1

For convenience, we introduce the function w;(€), i =1,..., Nr‘f(li
d
Tsi
Wi (5) = H é.s)
s=1

el
so the basis functions can conveniently be expressed as ¢;(§) = Zgii airwi (€).
~ el ~ ~ ~
Denote the N2, nodes of the pth order simplex element as {él}f\[:f, where & = (£14,...,&4:)T. The nodal
property is

¥i(&;) = bij,
fori,j=1,..., Nfﬁj, which leads to
Nia
> cinwr(€)) = by
k=1

Page 3 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

once the expression for ¢;(£) is used from (2). Let Vw = wj £Z n fssz be the Vandermonde matrix
s=1

~ cl
corresponding to the d-dimensional, pth order bimplex evaluated at {&}i\/ i, then the above constraints can
be written in matrix form as Va© =T Nel s where V', o are the matrices with indices V”, o5, respectively,

and Iya is the Ngj x Ngy identity matrix. Once we compute the coefficients, a = VT, we substitute this

expression into (2) and evaluate at new points {£;}™, where & = (€y,,...,Eq) to give

el el

= %aikwk(éj) = ani (V‘l)ki wi (&) = f (V‘l)ki Vik (3)
k=1 i

where the last expression used the d-dimensional, pth order simplex Vandermonde matrix evaluated at

{&}m Vij = wj (&) = 1_[§SZ“ Therefore, if we define Q;; = ¥ (éj), we have
s=1

Q=v7TVT,

where Q, V are the matrices with indices Qij, f/ij, respectively.
The partial derivatives of the simplex basis functions are also needed to implement the finite element
method. A simple differentiation calculation reveals

@5] k=1 af]
where the partial derivatives of w;(&) are
0 ifY; =0
e = ‘
0¢; Tt [e ity 0.
s=1,5#7

Then, the basis functions evaluated at the points {él m ., take the form

Nel Nel
awz nd awl nd

> a; E Vi Wi,
aé-] (6) “ lagj 1 klj

el
where ka contains the partial derivatives of the Vandermonde matrix evaluated at {Ez}l 2 de, Wi =
0
i (&).

Tasks for Part 1.2
Your task is to write a function that evaluates the basis functions (and their derivatives) of a pth order,
d-dimensional simplex element and test it.

1) First you need to implement a function that evaluates the Vandermonde matrix and its derivative corre-
sponding to the d-dimensional, pth order simplex. Your function should have the following signature:

function [V, dV] = eval_vander_simp (porder, x)
$VANDER_SIMP Compute NDIM—dimensional Vandermonde matrix of order PORDER
$for a simplex and its derivative (NDIM determined from shape of X). The

%$Vandermonde matrix, V, 1s the NX x M matrix of multinomial terms and its
$derivative, dV, is the NX x M x NDIM matrix of the partial derivatives of
gmultinomial terms, where M is the number of multinomial terms required for
$polynomial completeness (all combinations such that the sum of the

Page 4 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

exponents is < porder), and X are the evaluation points.

o
S
o
S

%$Input arguments

PORDER : Polynomial degree of completeness

X : Array (NDIM, NX) : Points at which to evaluate multinomials in
definition of Vandermonde matrix

Output arguments

V : Array (NX, M) : Vandermonde matrix

o® o° o° O° o® o° o° d° o o

dv : Array (NX, M, NDIM) : Derivative of Vandermonde matrix

2) Next, you will need to implement a function that evaluates the basis functions and their derivatives for
a d-dimensional simplex of order p given the coordinates of the element nodes xk and points at which to
evaluate the basis x (these will eventually be quadrature points). Your function should have the following
signature:

function [Q] = eval_interp.simp_-lagrange (xk, x)
$EVAL_INTERP_SIMP_LAGRANGE Evaluate interpolation functions for simplex
$using Lagrange polynomials (number of spatial dimensions and polynomial
$degree of completeness determined from the nodes of the element XK).

o

Input arguments

© 0P

XK : Array (NDIM, NV): Nodes of simplex element.

X : Array (NDIM, NX) : Points at which to evaluate interpolation
function.

Output arguments

°© o° o° o o° o° o°

% Q : Array (NV, NDIM+1l, NX) : Lagrange interpolation functions (NV) and
% their derivative evaluated at each point in X. Q(i, 1, Jj) = value of
% ith interpolation function evaluated at X(:, j), i.e., Q(i, 1, 3J) =
% phi_i(X(3j)). Q(i, 1+k, j) = kth partial derivative of ith

% interpolation function evaluated at X(:, j), i.e., QO(i, 1+k, Jj) =

% d(phi_i)/d(x_k)) (X(:, J).

3) Check the correctness of your implementation using known properties of a Lagrangian basis:
e Lagrangian property: wi(éj) = 0;j

e Partition of unity: for any & € €2,

Ney Niy o
i€ =1, > =& =0
1=1 1=1 65

4) Also check the derivatives of your basis functions are correct by comparing to a finite difference approxi-

mation
i oy i€+ eej) —i(€ — eey)
_(5) ~ ’
0&;

2¢
where ¢ is a small number (but not too small to avoid significant floating point errors), e.g., 1075, and
e € R? is the jth canonical unit vector.

Part 1.3 (15 points) Next we will use the mapped master element to define basis functions of elements in
the physical domain. Consider an arbitrary d-dimensional simplicial domain, 2, < R? (physical element),

Page 5 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

and a d-dimensional regular simplex, Q, R? (reference or parent element) (Figure 2). Define a bijective
mapping between the reference and physical domains as

Ge: Qo — Q.
€ = nge(é),

and let G-1 : Q. — €, denote the inverse mapping, i.e. £ = G (). In addition, it will prove convenient to
introduce the regular (d — 1)-dimensional simplex, I'; = R¢~!, that will be used as the reference domain for
each face of the reference element, 2,. Let

’}/f: FD i aQD’f
r — & =¢(r).

be the bijection that maps I's to the fth face of the master element, 0, ;. Finally, for convenience, we
introduce the mapping from the reference domain I'; to the the physical domain

.Fef : FD - Qe
oo = Fep(r) = Ge(yp(r)).

See Figure 2 for these transformations and their relationships.

&2
s
O Qe —> T’
Iy
(e} E— 61
Fer .
\ Q/
4
To (e)

Q
Lo

Figure 2: Mapping from (d — 1)-dimensional reference simplex element (I's) to each face of the reference element
(0Q0,5) (€ = v¢(r)), the mapping from the d-dimensional reference simplex element () to the physical element
(Qe) (z = Ge(£)), and the composition mapping from the (d — 1)-dimensional reference simplex element (I's) to each
face of the physical element (0€2ey) (x = Fep(r) = Ge(v5(7))).

From this construction, we can define volume and boundary integrals over the physical domain in terms
of integrals over the corresponding reference domain using a change of coordinates (volume) and surface
parametrization (boundary). Consider the integrals

IU:J 0 dv, Is:f Yds,
Qc aﬂef

where 6 : . — R and ¥ : 0y — R. Using the mapping G. for the volume integral and F.s for the

Page 6 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

boundary integral, they can be transformed to the reference domain 2, and I'y, respectively,

I - Leadv _ L 0(Ge(€))ge(€) dE "
I - L L - j IFef () () dr,

where

0Ge
%
0Fe

Foy(r) = S, ou(r) = yfdet (B ()T Fug(r)),

where the derivative of F.; can be expanded as

T () = T) L) = Gulas () FE).

Gc(&) = (5)7 ge(&) = det(Ge(g))

Nel
Let {(w;, &)} denote a quadrature rule over ., where N, eld is the number of quadrature points, {w;},%

el Nf
are the quadrature weights, and {51} "d are the quadrature nodes. Similarly, let {(wl ,Ti)} denote a

Nfc .
quadrature rule over I',, where N, é‘é is the number of quadrature points, {wf 1% are the quadrature weights,
fc

NEe . . .
and {7;}, % are the quadrature nodes. Then, integrals over the reference domains are approximated as

el fc
Nga Naa

LD 1O > 3w € f Ay 3wl

Therefore the integrals in (4) over the physical domains are approximated as

el fc
Nga Nga

~) wib(Ge(€r))ge(€r), Z Wl O(Fer (7i))oes (7).
k=1

Next, we define basis functions over the physical element. Let {i;},” “d define a basis over the d-
dimensional reference element, where v; : 2, — R and N, e}i is the number of nodes in the element 2.

Furthermore, suppose the basis is Lagranglan with nodes {fl}Z “f, ie. wz(éj) = §;;. With these definitions,

el
we define the basis functions over Q. as {¢$}; "f where ¢§ : 2, — R is defined as

o5 () = ¥i(G (@) (5)

From this definition and the integration formulas in (4), any integrals involving the basis ¢$ can be written
solely in terms of the reference domain basis ¥;(€) because the composition of a mapping and its inverse is
the identity map. This implies that we only need to evaluate the basis functions associated with the reference
domains €2, and I'; at the quadrature nodes associated with those domains. From a simple application of the
chain rule of differentiation (first equality) and the inverse function theorem (second equality), the gradient
of the physical basis over) is

065\ Nt i oy OGN o -
)= 2 3, N T = 2 g 6@ (6,)
Finally, we define the mappings G. and F.; using the basis functions associated with 2, and I';
Ny
Ge(&) = D &5hi(€), Fer(r) = Gelys(r)), (7)
i=1

Page 7 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

el
where {ﬁzf}f&f are the nodes associated with the element (2. and 7y can be constructed analytically based

on the geometry of the reference elements I'; and (2,.

Tasks for Part 1.3
Your task is to write a function that evaluates all relevant transformation quantities. Then you will use this
functionality to approximate moments (integrals) over elements with regular and non-regular shapes.

1) Derive the expression for the quantities G (&), Fes(r), for the transformation given in (7). Your answer
Ny

el
should be in terms of the element coordinates {:Ef}ii“ﬂ the basis functions {¢;},%', and the reference

volume-to-face mapping v¢(r).

2) What is the reference volume-to-face mapping v¢(r), f = 1,...,3, for the three faces of the master
triangle?

3) (AMEG60541) What is the reference volume-to-face mapping v¢(r), f = 1,...,4, for the four faces of the
master tetrahedra?

4) Implement a function that evaluates all relevant transformation quantities. Your function should have
the following signature:

function [xq, detG, Gi, xgf, sigf, Gif] = eval_transf_quant_ndim(xe, Qv, Qvf, r2z, f2v)
SEVAL_TRANSF_QUANT_DIM Evaluate transformation quantities for a single

$element given the nodal coordinates of the element in physical space (XE)

%and the basis functions (and their derivatives) of the element.

%$Input arguments

o\°

XE, QV, QVF, R2Z, F2V : See notation.m

© 0 N ook W N
o

o\

o

[
(=]
o\¢

Output arguments

U
N
o ae

XQ, DETG, GI, XQF, SIGF, GIF : See notation.m

You will test this function below when you use the mapped master element concept to compute the area,
centroid, and surface area of known geometries (simplex and hypercube).

5) Check the quadrature formulas you were provided by computing the following moments of €, and T,
using quadrature and comparing to known formulas for the area and centroid of simplex and hypercube
domains

V(Q) = L ¢, () = V(izm) Lngdg, V(L) = L dr, el.) = V(lru) Lmrdr,

Make sure your quadrature rule has a sufficient number of points to compute the integrals exactly. Only
consider the p = 1 elements since these quantities do not depend on the degree of completeness of the
element. Consider both simplices and hypercubes elements in spatial dimensions d = 1,2 (AME40541)
and d = 1,2,3 (AME60541).

e Use the function create_gqrule_gaussleg.m to create quadrature rules for the master simplex and
hypercube of any dimension d. A quadrature rule is a MATLAB structure grule that contains

quadrature weights/nodes for Q, ({(wy, &;) fvjll) and T’y ({(w,{,ii) fvz‘gid)

e Use the function create polysp.nodal.m to create a local function space based on nodal simplex
or hypercube elements of a given dimension d and polynomial degree p. A local function space is a
MATLAB structure 1fcnsp that contains: the nodal coordinates of €, ({éz}f\gi) and T’y ({ﬁz}f\jf),
the face-to-vertex mapping (IT) and unit normals of each face ({IV;}%,), the reference volume-
to-face mapping v¢(r), and the the nodal basis functions evaluated at & ({1/%(5)}5\;5%) and v¢(r)

el
({wl('yf(r))}fv:“f) Note: for simplex elements (etype='simp'), this relies on the code for Parts
1.1-1.2.

Page 8 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

6) Compute the volume, centroid, and surface area

VL) =Le Ao, e(@) — V(;e) fgemdv, S(0) - LQ ds,

of the curved (quadratic) triangle in Figure 2 with nodes

. 10 . 105 G = 1.0 By = -0.3 G = 0.3 B = —0.25
Tr=1o]> *27 |oas]> T lor] T o5 |0 P57 lors|r TOT| 12
using the transformation quantities from transf_data and the local function space structure 1fcnsp.
The moments of this element are V' = 0.7858, C' = (0.1805,0.4993), and S = 4.0158. Repeat for the
quadratic quadrilateral in Homework 4, Problem 3 (nodes can be read directly from the figure). The

moments of this element are V = 41.33, C' = (4.3161,4.6935), and S = 31.395. This will serve as a test
for the functions you wrote in this section.

Part 1.4 (15 points) In this section, we will use a finite element mesh (Figure 3) to evaluate integrals over

complex domains < R%:
I, - J odv, I, — J 9 ds. (8)
Q o0

AVAVAVS g
PAAVAVAVAVAYN O Lk
JAVAVAVAVAVAVAVAY CSRSRRRROA
EVAVAVAN —
NNAVAVAVAVAVAVAVY DORRRREN

-
gﬂqm“mmmmﬂgmﬂMHﬂﬂhﬂ
AVAV,ATA Y
R

Figure 3: Mesh of a circle, square with circular hole, and arbitrary polygon using triangular elements.

We will describe our unstructured mesh using the arrays: xcg, e2vcg, and e2bnd, defined as

o\

XCG : 2D array (NDIM, NNODE) : The position of the nodes in the mesh.
The (i, j)—entry is the position of global node j in the ith dimension.
The global node numbers are defined by the columns of this matrix, e.g.,
the node at xcg(:, Jj) is the jth node of the mesh.

o° e

o

o

E2VCG : 2D array (NNODE_PER_.ELEM, NELEM): The connectivity of the
mesh. The (:, e)—entries are the global node numbers of the nodes
that comprise element e. The local node numbers of each element are
defined by the columns of this matrix, e.g., e2vcg(i, e) is the

o\

o

© 0 N U oA W N e
o°

o

10 % global node number of the ith local node of element e.

11 %

12 3% E2BND: 2D array (NFACE_PER_ELEM, NELEM): The mapping between element
13 % boundaries and global boundaries. The (f, e)—entry is the global
14 % boundary tag on which the fth face of element e lies. If face f of
15 % element e does not touch the global boundary, e2bnd(f, e) is NaN.

With this concept of a mesh, the integrals in (8) can be re-written as

Nei Na N N N
I, = ZJ Odv, I, =) >] J dds =)) 1{5Qefﬁm¢g}f 0 ds,
e=1Y% e=1 f=170e ;N30 e=1f=1 ey

where N is the number of elements in the mesh and 150, ~no0xg) s the indicator function that takes the
value of 0 if 0Qcy N 02 = & and 1 otherwise. Notice that this will, in general, only be an approximation

Page 9 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

to an integral since the region covered by the union of all finite elements will not exactly overlap with €,
except in special cases.

Tasks for Part 1.4

With the transformation function and local function space structure defined in Part 1.3, you can create a
structure array transf_data that contains the transformation quantities for every element in a mesh defined
by xcg, e2vcg, e2bnd using the function create_transf_data.ndim provided. This will create all relevant
data for each element of your mesh. Using this structure array, we are interested computing the following
integrals

V(Q) - L do, e(Q) - ﬁ Lwdv, S(Q) — LQ ds,

i.e., the volume, centroid, and surface area of 2.

1)

2)

Write a function that computes the volume, centroid, and surface area of a domain described by a mesh.
Your function should have the following signature:

1 function [v, ¢, sa] = compute_domain_metrics (transf_data, grule)

2 S%COMPUTE_DOMAIN_METRICS Compute the volume, centroid, and surface

3 %area of a domain (approximated) by the mesh described by TRANSF_DATA.
4 %

5 %Input arguments

6 2

7 % TRANSF_DATA, QRULE : See notation.m

8 %

©
o

$Output arguments

=
= o
)

V : number : Volume of domain
12 %
13 % C : Array (NDIM,) : Centroid of domain
14 %
15 % SA : number : Surface area of domain

Consider a domain Q = [0,1]? for d = 1,2,3. Create a mesh of this domain with 2¢ p = 1 hypercube
elements using create_mesh_hcube and create the corresponding t ransf_data structure array. Compute
the volume, centroid, and surface area of 2 by integrating the appropriate quantities over the mesh
and compare to the known volume, centroid, and surface area of a hypercube. Repeat the integral
calculation for both simplex and hypercube elements. This will serve as another test for parts of your
code (quadrature, transformation of integrals). Use visualize_fem to plot the mesh (1d, 2d). Use
visualize_fem3d to plot in 3d (high-order visualization not supported).

Repeat the previous task for the unit hypersphere in d = 2,3 dimensions (circle for d = 2, sphere for
d = 3). Since this geometry has a curved boundary, you will need to use more elements and the polynomial
degree will have an impact on the accuracy of the integral (provided we use a curved, high-order mesh).
The function create mesh_hsphere creates a mesh of curved elements of a given polynomial degree by
mapping a hypercube to a hypersphere. Consider polynomial degrees p = 1,2, 3,4. How many elements
are needed to get a high-quality approximation of the volume and surface area? Make sure you use enough
quadrature nodes so your element integral computations are exact. Repeat the integral calculation for
both simplex and hypercube elements.

Compute the volume, centroid, and surface area of the Batman symbol and ND logo (Figure 4). Use a
mesh of p = 1 simplex elements provided in the mesh/ meshes directory. The function 1oad mesh loads
the appropriate mesh given its filename prefix ('batman0' for the Batman domain, 'nd0' for the Notre
Dame domain), the element type ('simp' for simplex elements and 'hcube' for hypercube elements),
the refinement level (only 0 supported for now), and the polynomial degree. Use visualize_fem to plot
the mesh. Plot the centroid of the domain as a sanity check for the centroid computation.

Page 10 of 27

University of Notre Dame
M. J. Zahr

Dept Aerospace & Mechanical Engrng

Figure 4: Simplicial mesh (d = 2) of the batman symbol and Notre Dame logo.

5) (AMEG60541) Compute the volume, centroid, and surface area of the cow (filename prefix 'cow'), dragon
(filename prefix 'dragon'), and sculpture (filename prefix 'scultpl0kv') domains (Figure 5). Usep = 1
simplex elements and visualize_fem to plot the mesh. Plot the centroid of the domain for the sculpture

mesh as a sanity check for the centroid computation.

V.
Vo N AYAA
A
O
A

P
Vi N

\ A
035
e
i

)

Vé
5o
%
e

at

7]
i
I/
‘

|\

g
éﬁv
azay
4 i
AV
Y
=

Z5]

[
o
il

/
I
(
I

v
T
e,

=

\
AT
) RV

N
vy
7
¢
A, i
S
1
S

AN,
SO0k

AT

L%

VAN
NS

NN

AV

7
>
A\

ANV

T~
A,

&\
ST

L =
AT YAV s

A v vave AV
NI PEN KOS

5 A(PA'%{‘%AVA_._;«

o=

;' VEWAV“EE%E%’ 5

& A

ol
SRR EXAHIAALR
LSS

2
%

X4
S

Za)
N
/i
%l
7
4
o
i
&
5
5
i
L

VF

L7

ok

\ 2]

IR
O]

7

<

I

1

&z

5

%)
YA\
&

5
%.
!

Ta¥

VA
ZAVAY

30
5
1

NN

N7
2

52
5
X0
L~
<7
v

AN
N
&

O

\Va
<7

™~

25

VA

5

%‘
3\
>
>
e s 1)
eﬂ
A%,

Y.
S

4
<

NAN
Migﬁ_!é—:-

Figure 5: Simplicial mesh (d = 3) of a sculpture and dragon.

Part 2: (AME40541: 30 points, AMEG60541: 50 points) To support our goal in developing a general FEM
code, we will extend the finite element code written in your homework assignment to handle general, second-
order partial differential equations, including those with non-homogeneous natural boundary conditions and

nonlinearities.
Let us consider a general, second-order, static partial differential equation defined on the domain — R?

V-FU,VU;.) = SU,VU;), in{, F(U,VU;t)n =q on 09, (9)

where F(U,VU;¢) € RY-*4 is a nonlinear flux function, S(U,VU;¢) € RY¢ is a nonlinear source term,
U (x) € RM: is the primary solution variable, ¢(x) € R™ are parameters to the flux function and source term,
q(x) € RN¢ is the value of the natural boundary condition, n(zx) € R? is the outward unit normal, N, is the

Page 11 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

number of components in the primary variable U, and x €). Re-writing the PDE and boundary condition
using indicial notation, we have

Fij,j = Si in Q, Fljnj = Qz on 0N} (10)

fori=1,...,N,.

We solely consider a problem with natural boundary conditions to facilitate a convenient and general
implementation. For regions on the boundary where an essential boundary condition is prescribed, the value
of the natural boundary conditions for the corresponding degree of freedom §; will be set to zero and static
condensation will be applied. This has the effect of eliminating the boundary term at the corresponding
degree of freedom and results in exactly the same weak formulation as setting the corresponding test function
to zero.

In the code, we will describe a PDE of the form (10) using a MATLAB structure (claw or eqn) with
four fields: nvar (number of PDE variables, N.), ndim (number of spatial dimension, d), npars (number of
parameters, m), and srcflux (function that returns source term, flux function, and their partial derivatives).
We use function handles, called vol pars_fcn and bnd pars_fen, to specify the parameter function v(x)
and natural boundary conditions g(x), respectively, in the code. Finally, we wrap the conservation law,
parameter function, and natural boundary conditions into a MATLAB structure (prob).

We will consider four PDEs in this project: PDEO from Homework 2, a generic second-order linear PDE,
linear elasticity, and the incompressible Navier-Stokes equation. In the following subsections, we introduce
the four partial differential equations and their flux formulations. We also provide a concrete example of the
data structures used to fully prescribe the PDE and its data.

Part 2.1 PDEO from Homework 2: (5 points) Recall PDEO from Homework 2

d2
——dlé—u+x2:0, O<x<l1
T

a3

We can immediately identify this as a scalar PDE (N, = 1) in one spatial dimension (d = 1). To put this
PDE in flux form (10), we identify

=1.

r=1

du
Ur=u, Fu1= o Si=u—2% g =-1{_. (11)

We take the parameter vector as ¢(z) = 2.

As we will see in Part 4, we will need the partial derivatives of the flux function F' and source term S
with respect to the PDE state U and its gradient VU. It is easy to see these partial derivatives are

0Fn oF 051 051 (12)
ouy 7 oUiy T dUy 7 Uiy
The parameter vector for PDEO is ¢(x) = 22 and the boundary condition is g(x) = —1¢,—1y, which we

specify with the following prob structure:

1 prob.egn = PdeO();
2 prob.vol_pars_fcn
3 prob.bnd._pars_fcn

(x) x72;

=0
= Q@(x, bnd) —1*(x=1—1e—12);

Tasks for Part 2.1
Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see _eqn/Pde0.m):

Page 12 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

function [S, dSdU, dsdQ, F, dFdU, dFdQ] = eval_pdeO_srcflux (U, Q, pars)
$EVAL_PDEO_SRCFLUX Evaluate PDEO source term, flux function and their
$partial derivatives at a point.

> oo

Input arguments

©

© 0 N e U oA W N e
o°

% U : Array (NVAR, 1) : PDE state vector at a point

% Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point
0 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point
12 %

-
w

%$Output arguments

\o

-
'S

S, dsdu, dsdQ, F, dFdU, dFdQ : See notation.m

[
o
o0

Use test_srcflux_findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.2 Second-order, linear PDE: (10 points) A generic second-order linear partial differential equa-
tion takes the form

(—kijuvj)ﬂ' =f in Q, (kijud)ni =g on 09, (13)
where 2 = R? and for each & € R?, the coefficient matrix k(xz) € R¥*?, source term f(x) € R, outward
normal n(x) to €2, and natural boundary condition g(x) € R. This PDE models a number of diffusion-like
processes, most notably heat flow. In Homework 2, you put this into flux form as

Ui =u, Fy=-kju,, Si=f q=-q (14)

Furthermore, for this PDE, we take the parameter vector to be all entries of the coefficient matrix and the
source term
)
)

Ut

t(z) = (k11(x), k21 (), . . ., kaa(z), f(x)). (1

In the two-dimensional case (d = 2), the parameter vector is ¢(x) = (k11(x), ko1(x), k12(x), kaa (),
and the boundary condition is q(x) = —g(z). If we wish to prescribe k(x) = I (constant), f(z) =
sin(x1) cos(xz2), and g(x) = 1 on 0Q; and g(x) = 1 on 02, we specify the following prob structure:

1 prob.eqgqn = LinearEllipticScalar(2);
2 prob.vol pars_fcn = @(x) [1l; 0; 0; 1; sin(x(l))*cos(x(2))]1;
3 prob.bnd.pars_-fcn = @(x, bnd) —x(1)=* (bnd==1) — 1x(bnd==2);

Tasks for Part 2.2
Your tasks for this section are to complete the derivation of the flux formulation of the second-order linear
PDE and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see _.eqn/LinearEllipticScalar.m):

function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval_linelptc.sclr_srcflux (U, Q, pars)
SEVAL_LINELPTC_SCLR_SRCFLUX Evaluate linear elliptic PDE source term, flux
$function and their partial derivatives at a point.

<

$Input arguments

o

U : Array (NVAR, 1) : PDE state vector at a point

©® N o A W N

oe

Page 13 of 27

University of Notre Dame

Dept Aerospace & Mechanical Engrng M. J. Zahr
9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point
0 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point

o

12
13
14

Output arguments

© 0P

o

15 S, dSdu, dsdQ, F, drFdU, dFdQ : See notation.m

Use test_srcflux_findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.3 Linear elasticity: (15 points) The linear elasticity equations govern the deformation of a struc-
ture (infinitesimal strains)

— 0455 = fl in Q, 05N = Ez on OQ, (16)
for i = 1,...,d, where the stress tensor o € R%*?¢ and strain tensor € € R*? are defined as
oij = Cijri€r, €5 = §<ui,j + uj4),
and u; € R is the displacement in the ith direction for i = 1,...,d. We will solely consider a homogeneous,

isotropic material with Cj;ri(x) = A(@)di;0k + p(x)(dikdji + dud;k), where A(x) and p(xz) are the Lamé
parameters. In Homework 2, you put this into flux form as

Ui=w, Fy=-0y, Si=fi, @=-t. (17)

Furthermore, for this PDE, we take the parameter vector to be the Lamé parameters and source term

L(w) ::(A(w)7u(m)7j1(m)v--~7ja(w))' (18)
In the two-dimensional case (d = 2), the parameter vector is ¢(x) = (A(x), u(x), f1(x), f2(x)) and the
boundary condition is g(x) = (—ti(x), —t2(x)). If we wish to prescribe A(x) = p(x) = Lz 502,<0)

f(x) = (0,—1), and t = (0, —1), we specify the following problem structure:

1 prob.eqgqn = LinearElasticity(2);
2 prob.vol_pars_fcn = @(x) [(x(1)>0).x(x(2)<0); (x(1)>0).%(x(2)<0); 0; —11;
3 prob.bnd.pars_-fcn = @(x, bnd) [0; 1];

Tasks for Part 2.3
Your tasks for this section are to complete the derivation of the flux formulation of the linear elasticity PDEs
and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see _.eqn/LinearElasticity.m):

1 function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval_linelast_srcflux (U, Q, pars)
2 S$EVAL_LINELAST_SRCFLUX Evaluate linear elasticity source term, flux
3 %function and their partial derivatives at a point.

4 %

5 S%$Input arguments

6

7 % U : Array (NVAR, 1) : PDE state vector at a point

8 %

9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point
0 %

11 % PARS : Array (NPARS, 1) : Vector of parameters at a point

Page 14 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

12 %

13 Output arguments
14 %
15 % S, dSdu, dSdQ, F, drdu, dFdQ : See notation.m

Use test_srcflux_findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.4 Incompressible Navier-Stokes: (AMEG60541) (20 points) The incompressible Navier-Stokes
equations model the flow of a viscous fluid with constant density

— (pV’Ui)j)j + pv;v; ; + P’i =0, V= 0, in (19)
for ¢ = 1,...,d with the boundary conditions
(pvv; j — Pdi;)nj = pt; on 09, (20)

where v(z) € R? is the velocity vector, P(x) € R is the pressure, p(x) € R is the density of the fluid, v(x) € R
is the kinematic viscosity of the fluid, n(x) € R? is the outward normal to 02, and #(x) € R? is the traction
boundary condition. In Homework 2, you put this into flux form as

P =

U — v, 1<d+1) —prvig+ Péiy i<d+1) pvjuiy i <d+1
P i=d+1’ Y0 i=d+1’ —vss i=d+1

_ ——pi; i<d+1
“=V0 izd+1

Furthermore, for this PDE, we take the parameter vector to be the density and viscosity

vz) = (p(z),v(x)). (21)

In the two-dimensional case (d = 2), the parameter vector is ¢(x) = (p(x),v(x)) and the boundary
condition is g(z) = (—t1(x), —t2(x),0). If we wish to prescribe p(z) = 1, v(z) = 0.1 and t = (1,2), we
specify the following prob structure:

1 prob.egqn = IncompressibleNavierStokes(2);
2 prob.vol pars_fcn = @(x) [1l; 0.1];
3 prob.bnd._pars_fcn @(x, bnd) [—1; —2; 0];

Tasks for Part 2.4
Your tasks for this section are to complete the derivation of the flux formulation of the incompressible
Navier-Stokes equations and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see _eqn/IncompressibleNavierStokes.m).

function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval_ins_srcflux (U, Q, pars)
SEVAL_INS_SRCFLUX Evaluate incompressible Navier—Stokes source term, flux
$function and their partial derivatives at a point.

<

%$Input arguments

o

N o oA W N e

5 U : Array (NVAR, 1) : PDE state vector at a point

Page 15 of 27

University of Notre Dame

Dept Aerospace & Mechanical Engrng M. J. Zahr
8 %
9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point
0 %
1% PARS : Array (NPARS, 1) : Vector of parameters at a point

o\°

12
13

© oe

sOutput arguments

14

o

S, dSdu, dsSdQ, F, drduU, dFdQ : See notation.m

15

Use test_srcflux_findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 3: (AME40541: 10 points, AMEG0541: 25 points) Next we turn to building up a basis for a finite
element using the local function space and transformation from Part 1. Recall that, in addition to the
element geometry, a finite element is defined by the associated function space and degrees of freedom (nodal

values in our case). Let U* € RNt be the collection of nodal degrees of freedom and define the matrix

of basis functions ¥ (&) € RNior*Ne over the reference element Q. that maps the local degrees of freedom
associated with element e to the primary variables evaluated at © = G.(£):

Ngo
U)l, = ®(@)T, Ul =), ®5(=)U;. (22)
j=1
where the basis functions over the physical domain are
(e im (G- 0% Wy [0 0]
#@) - W0 @), @) - S0 @) | Trer @] (23)

In the following subsections, we consider two different families of vector-valued finite elements, a standard
element where all solution components are approximated in the same local function space, and a mixed
element where different components are approximated in different function spaces.

Part 3.1 (10 points) First we consider the a standard element where all solution components are approxi-
mated using the same function space, i.e.,

Nia
Ui(@)lg, =), ¢5(@)U5; (24)
j=1
where {¢1,...,¢ Nel } is a basis of the local function space over (2. defined in terms of the master element

basis {1, ..., 1ye } as ¢ (x) = ¥;(G- (x)) and the element degrees of freedom are

U U
ve=| |, Us=| : |, (25)
N, Uk
where U i 1s the degree of freedom at node i corresponding to Uj(z)|¢, . From this numbering of the degrees
of freedom, it can be seen the matrix of master basis functions must be

1 (€)1,
T(¢) = : (26)
¢N§1d (E)INC

IRNQXN

where Iy, € ° is the identity matrix.

Page 16 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Tasks for Part 3.1

Your task for this part is to implement a function with the following signature that creates the element
basis W (&) and its partial derivatives %(5) from the scalar local function space basis ¥ (£),. .. ,1/11\,03i &),
evaluated at the appropriate quadrature points:

function [Tv, Tvf] = create_elem_basis (nvar, Qv, Qvf)
$CREATE_ELEM_BASIS Create element basis evaluated at point throughout
%$volume (TV) and on each face (TVF) from basis of local function space
$evaluated at corresponding points (QV, QVF).

a°

Input arguments

o

o

NVAR, QV, QVF : See notation.m

© 0 N e A W N e
o

o

—
o

Output arguments

-
-
o° oP

=
S
o\

TV, TVF : See notation.m

Part 3.2 (AMEG60541) (15 points) Next we consider the a mixed element where the solution components
are partitioned into two groups,
_ | V(@)
U@ -] (21)

where V(z) € RM contains the first M components of U(z) and W (z) € R¥=M contains the last N, — M
components of U(x). Each group of variables is approximated using a different function space, i.e.,

NEL Ngq
Vi(@)lg, = D, #5(x)Vy fori=1,..., M, Wi(m)lg, = >, ¢5(x)Wy fori=M+1,...,N. (28)
j=1 j=1

J

where {¢1,..., ¢Nsld} and {(51, ... ,&N:}j} are bases for the two local function spaces considered. They are
defined in terms of master element bases {1, ..., szld} and {1, ... ,wﬁsld}, respectively, as
¢ (@) = ¢i(G, () fori=1,...,Npy, &f(x) = (G () fori=1,..., N (29)
The element degrees of freedom are defined as
. 4 Vr; wi Wi
W=m47V% G VE=] s wEe] W= . (30)
J\EI;;Ll Vj\em Wl%ﬁld (eNc—M)i

where f/ﬁ is the degree of freedom at node i corresponding to Vj(z)|, and Wjei is the degree of freedom at
node ¢ corresponding to Wj((L’)|Q€. From this arrangement the degrees of freedom, the master basis function
matrix must be

[1 (&) I
Vel (.g)IM)
v = Vi) In.—m |’ (31)
| @Nﬁ}j(ijNc—Mi

Tasks for Part 3.2
Your task for this part is to implement a function with the following signature that creates the element
basis ¥ (&) and its partial derivatives %(5) from the scalar local function space basis 11 (€),. .. ’ché €3]

and €),... ’J]Neld (£), evaluated at the appropriate quadrature points:

Page 17 of 27

University of Notre Dame

Dept Aerospace & Mechanical Engrng M. J. Zahr
1 function [Tv, Tvf] = create_elem_basis_mixed2 (nvarl, Qvl, Qvfl,
2 nvar2, Qv2, Qvf2)
3 %CREATE_ELEM_BASIS_MIXED2 Create element basis for mixed element (two
4 %different local function spaces) evaluated at point throughout volume (TV)
5 %and on each face (TVF) from basis of local function spaces evaluated at
6 %corresponding points (QV1, QVF1l, QV2, QVF2).
7%
8 % Input arguments
9 %
10 % NVAR1, QV1, QVF1l : NVAR, QV, QVF (see notation.m) for the first local
11 % function space, e.g., velocity in Navier—Stokes.
12 3%
13 % NVAR2, QV2, QVF2 : NVAR, QV, QVF (see notation.m) for the second local
14 % function space, e.g., pressure in Navier—Stokes.
15 %

-
o
o

Output arguments

17 %
18 % TV, TVEF : See notation.m

Part 4: (40 points) Now that we have all ingredients in place, we turn to the core of our finite element
code. In Homework 2, we derived the weak formulation for the general PDE in (10) as

Q o)
where w(x) € RV- is the vector of test functions for « € €2, arguments are dropped for brevity, and indicial
notation is used (sum over 4,5 = 1,..., N, is implied by repeated index). Breaking the weak form into a
sum of integrals over element domains €2., we have

Nei

Ne
Zj J (—wiijij — U)ZSl) dv + Z
—1YQe

e=1

f wigds = 0, (33)
0.0
from which we can identify the element contribution to the weak form as

B (w,U) - |

(711}151 - wiijij) dv + J wiljz ds.
Qe

EIOMaYI9)

Transferring the integrals to the corresponding reference domain using the master element transformation
leads to

Ni!

6ua _
.Be(fw7 U) = f —U)iSi — 7Fij Je dV + Z 1{‘794“‘797&@}J W;q;Ocf dsS (34)
B amj f=1 T's

Q
where arguments are dropped for brevity (all terms are evaluated at G.(£)).

Let {Qe}évjl define a mesh of Q c R?, ie., Q = Uévjl Q. and Q, N Q= F if e # €/, with Ny elements
and Nyq nodes. Define the global solution vector U e RNt a5 the vector containing all degrees of freedom

(solution variables) associated with a given mesh, where Ngof is the number of degrees of freedom in the

mesh. Similarly, let U® € RNéer contain all local degrees of freedom associated with an element, where N, S

is the number of degrees of freedom in each element. The global and local solution vectors are related by
the 1dof2gdof matrix as A A
Uf =Us,,, whereZ,;. = 1ldof2gdof(i,e)

fori:l,...,Ng1 e=1,...,Ng.

of?
Since the FEM is a Galerkin approximation, the trial and test functions are interpolated using the same

basis functions, i.e., .
Uz)lg, =2(x)"U°, w(x)

Q = ¢ (z) w", (35)

where ¢ € RNt is a vector of all degrees of freedom (test variables) associated with element e. The physical
basis is written in terms of the master basis as (23): ®¢(z) = ¥(G_ ! (x)). The specific form of ¥ will depend
on the type of element used, i.e., (26) for a standard element and (31) for a mixed element.

Page 18 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Substitute the expansions in (35) into the element weak form and identify the term multiplying wf as
the Ith component of the element residual, R®(U*®)

Ncl
Ao (}\Iji fc ~
R{(U.) = JQ (\I/liSi - lFl) ge dV + Z Lioa. s noozp) L V;qioer dS

0x; =
oV 0V L L .
where e 2 € [G."]s; and summation is implied over repeated indices. Then, the element Jacobian
Zj s
(derivative of the element residual with respect to Ue), 25:, is

ORf oo o (98 08; 00\ OV, (OF OF;; 00y
aU,?(U)= LD (i <0Ut Yoot Oqis Oy) ox; (uy Yoot 0qs 0z,))% av, (36)

where ¢ = VU, indicial notation is used (sum over repeated indices is implied), and arguments have been
dropped.

Once all element residuals and Jacobians have been computed, they are assembled into a global nonlinear
system o

RU)=0

where 1%([7) is the residual of the nonlinear system that results from assembling the element residuals R
into a global vector. Similarly, the Jacobian of the global nonlinear system 2—5(0) comes from the assembly
of the element Jacobian matrices 252 (U*°). The global solution vector is then partitioned into constrained

degrees of freedom U. (those with an essential boundary condition) and unconstrained degrees of freedom
U, U= UL UT. The global residual and Jacobian are partitioned similarly

; Ry (1 .17\ 2Bu(T] . T
R(U) = -l?u(qu’ IAJC) oR (ﬁ') — (’?Qu ([AJ“’ IAJC) an ([ALM [Ajc)
RC(UC; UU) ’ aU %(U07 Uu) ggc (UC7 Uu)

The variables U, are known since an essential boundary condition is prescribed at these degrees of freedom
so we can disregard the corresponding equations in the residual, reducing the nonlinear system to

Ru(ﬁw Uc) =0,

with Jacobian matrix 2B (Uu, UC) This system can be solved for the unknown U, using, e.g., the Newton-

0) u
Raphson method, and the global solution vector re-assembled as U = (UL, UT)T.

To close this section, we introduce another critical assembled quantity that is useful in integrating quan-
tities over the domain and for unsteady problems: the mass matrix. Suppose we would like to compute the

following integral

I= f U(z)"U () dv, (37)
Q
where U (x) € RM¢ is the PDE solution in (10). Using the finite element approximation in (22), we have
Nei R R Nei N .
=3 J (U°)"@%(2)®°(x) U dv = Y (U°)" MU, (38)
e=1Y82 e=1

where

Ly f & ()8 ()" dv = j TG (@)W (G, ()T dv = j T(E)W(€) g (6) AV

e

is the element mass matrix. After assembly, this reduces to

I=U"MU, (39)

Page 19 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

where U € RNef is the global (assembled) solution vector and M € RNdor*Naot jg the assembled mass matrix.

Tasks for Part 4

Your task is to complete the core of your FEM code for general, second-order PDEs in (10) and test it using

PDEO.

1) Implement a function that evaluates the volume contribution of the discrete element residual Re(ﬁe) and

its Jacobian %(ﬁe) given the solution coefficients for a single element U¢ and information about the
element (geometry, basis functions, quadrature rule). Your functions should have the following signature:

© W N e T A W N e

P ~ S S S S
L S =)

function [Re, dRe] = intg.elem.claw-vol (Ue, transf_data, elem, elem_data)
$INTG_.ELEM_CLAW_VOL Integrate element Galerkin form (volume term) to
$form the volume contribution to the element residual and Jacobian.

Input arguments

UE : Array (NDOF_PER_ELEM,) : Element solution (primary variables)
TRANSF_DATA, ELEM, ELEM_DATA : See notation.m

Output arguments

RE : Array (NDOF_PER_ELEM,) : Element residual (volume contribution)

o0 o0 o0 o O O O O O OO o oP°

DRE : Array (NDOF_PER_.ELEM, NDOF_PER_ELEM) : Element Jacobian (volume contribution)

Implement a function that evaluates the boundary contribution of the discrete element residual Re(ﬁe)
given information about the element (geometry, basis functions, quadrature rule). Your functions should
have the following signature:

© W N e oA W N e

==
= O

function [Re] = intg.elem_claw-extface (transf_data, elem, elem_data)
$INTG_ELEM_CLAW_EXTFACE Integrate element Galerkin form (boundary term) to
$form the boundary contribution to the element residual and Jacobian.

Input arguments

TRANSF_DATA, ELEM, ELEM.DATA : See notation.m

Output arguments

o0 o0 o o o° o° o° o

RE : Array (NDOF_PER_ELEM,) : Element residual (boundary contribution)

Implement a function that evaluates the element residual and Jacobian for each element in the domain and
stores them in an unassembled (element-wise) format. Your function should have the following signature:

© W N e A W N

o o=
w N = O

function [Re, dRe] = eval_unassembled.resjac.claw.cg (U, transf_data, elem, elem_data,
ldof2gdof)

$EVAL_UNASSEMBLED_RESJAC Evaluate/store element residual vector and

%$Jacobian matrices for each element.

Input arguments

U : Array (NDOF,) : Global (assembled) solution vector
TRANSF_DATA, ELEM, ELEM_DATA, LDOF2GDOF : See notation.m

Output arguments

0 o0 o o o o o° o° o° o°

RE : Array (NDOF_PER_.ELEM, NELEM): Element residual vector for

Page 20 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

14 all elements in mesh
15
16

17

DRE : Array (NDOF_PER_ELEM, NDOF_PER_ELEM, NELEM): Element Jacobian
matrix for all elements in mesh

o0 o o oP

Implement a function that evaluates the assembled element residual and Jacobian. Your function should
have the following signature:

function [R, dR] = eval_assembled.resjac-claw-cg (U, transf_data, elem, elem_data,
ldof2gdof, spmat)

$EVAL_ASSEMBLED_RESJAC_CLAW_CG Evaluate assembled residual vector and

%$Jacobian matrix

Input arguments

° o° o

U : Array (NDOF,) : Global (assembled) solution vector

© 0w N e A W N e

[
(=]

TRANSF_DATA, ELEM, ELEM.DATA, SPMAT : See notation.m

o o° o° o

[
.

o

$Output arguments

)

=
N

[
@

R : Array (NDOF,) : Assembled residual vector PRIOR to static condensation

—
o
o o o

—
o

dR : Array (NDOF, NDOF) : Assembled Jacobian matrix PRIOR to static condensation

Implement a function that evaluates the global (assembled) finite element residual and Jacobian. This
function will depend on the finite element space (femsp) structure; see create_femsp_cg.m. The femsp
structure is central to your finite element code as it contains all required information (both generic and
equation-specific) to evaluate the element residual and Jacobian; create_femsp.cg.m is a wrapper for
many of the functions you wrote in previous parts of the project. Your function should have the following
signature:

function [Ru, dRu] = create_fem.resjac (Uu, femsp)

$CREATE_FEM_RESJAC Create the finite element residual and Jacobian,
$restricted to the free degrees of freedom. When combined with a nonlinear
%$solver, this will approximate the solution of a PDE (described in FEMSP).

Input arguments

UU : Array (NDOF—NDBC,) : Global (assembled) solution vector,
restricted to the free degrees of freedom (via static condensation).

© 0w N e A W N e

[
(=]

FEMSP : See notation.m

[
.

[
w

Output arguments

-
'S

-
o

RU : Array (NDOF—NDBC,) : Finite element residual, restricted to free
degrees of freedom

= e
0 N o

DRU : Sparse matrix (NDOF—NDBC, NDOF—NDBC) : Finite element Jacobian
restricted to free degrees of freedom

=
N
0 o0 o o O o O A O O O A O o o

o
©

This function will be used by solve_fem.m that uses the Newton-Raphson method to solve the final finite
element system after static condensation.

Test your finite element code with PDEO and verify optimal convergence rates. That is, for a sequence
of meshes with 2* elements for & = 1,2, 3,4 and polynomial orders p = 1,...,5, verify that your finite
element solution is approaching the exact solution with the optimal convergence rate O(h?*1), where h
is the finite element size. This can be done by plotting the finite element error versus the element size on
a log-log plot. Once the mesh is sufficiently fine, this should be a straight line. The slope of this line is
the convergence rate.

Page 21 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

The exact solution of PDEO is

_ 2cos(l — x) — sin(x) 22—
u(z) cos(1) " 2

and the L2 finite element error is

e= \/(U ~U*)TM(U - U¥),

where U € RNer is the global (assembled) finite element solution and U* e RVer is the exact solution
interpolated on the finite element mesh. The function solve pde0 is provided for your convenience;
however, it will not run to completion until all the coding tasks in this section are complete.

Part 5: (AME40541: 30 points, AMEG60541: 40 points) In this part of the project, we will use your finite
element code to solve several second-order linear PDEs, e.g., heat flow, over various domains.

Tasks for Part 5
Your tasks for this section are to solve second-order linear PDEs over a disk (and verify convergence rates),
the Batman domain, the ND domain, and a cube (AMEG60541).

1) Consider the Poisson equation on the unit disk
—Au=1 inQ, u=0 on 0Q, (40)
where 2 R? is the unit disk. The exact solution is

1_x2_y2

u(w,y) = —

Starter code is provided in solve_linelptc_sclr_disk0.m.

e Use your FEM code to solve the above Poisson problem. Plot the solution u(x) over the domain
Q and along any line that passes through the center of the disk. Use a mesh consisting of 20 x 20
hypercube elements of order p = 2.

e Complete a convergence study for both simplex and hypercube meshes for polynomial orders p =
1,2,3. Be sure to plot the element size h versus the error in your finite element solution. Assume
the elements are uniformly sized, i.e., h = 4/V(§2)/Ne. Discuss similarities and differences between
the convergence rates and absolute error for a given element size between the simplex and hypercube
meshes.

2) Use your FEM code to solve a second-order linear PDE (13) on the Batman domain (Figure 6) with
boundary conditions: natural boundary condition with g(a) = 10sin(z1) on 0Q; U €2 and an essential
boundary condition u = 0 on 0€23. Take the coefficient matrix to be k11 = 1, koo = 10, and k12 = kop = 0.
In the notation of (13), this corresponds to

1 0 _ 10 sin(x x € 01 U o
k(@) = [0 10] ’ @) =0, a@) = {O - otherwilse i (41)

and u(x) = 0 for & € 0Q3. Use the p = 2 simplicial mesh provided (msh = loadmesh('batman0', ...
"simp', 0, 2)). Plot the solution over the entire domain 2 and along the line T' (Figure 6). Starter
code is provided in solve_linelptc_sclr_batman0O.m.

Page 22 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

—0.25

—0.64

Figure 6: Domain (€2), boundaries (d€2;), and lines along which to evaluate quantities (I';) for Batman symbol
and Notre Dame logo. For each domain, the first two boundaries are shown above and the third boundary is
693 = 69\(691 U 8(22)

3)

Use your FEM code to solve the Poisson equation (13) on the ND logo domain (Figure 6) with boundary
conditions: prescribed solution u = 0 on 0€2;, prescribed solution u = 10 on 023, and homogeneous
natural boundary conditions ¢ = 0 on 0€3. Take the coefficient matrix to be k(x) = Iz (2 x 2 identity
matrix). In the notation of (13), this corresponds to

10

ko = Y| s@-0 a@ o U(w)—{o TEon

(42)
10 =xe€ 892

Use the p = 2 simplicial mesh provided (msh = loadmesh('nd0', 'simp', 0, 2)). Plot the solution
over the entire domain 2 and along the lines I'y, I'y, I's, I'y (Figure 6). Starter code is provided in
solve_linelptc_sclr_nd0.m.

(AMEG0541) Use your FEM code to solve the second-order linear PDE in (13) defined over the unit cube
(2 = [0,1]?) with coefficient matrix

10 0 O
kE(xy=10 1 0
0 0 100
and boundary conditions
_ —T1 — T2 — I3 weé‘Qluéqué’Q4ué’Q5 0 weé’Q3
q(x) = : u(T) =+ :
0 otherwise, sin(2mxy1) cos(2mxe) @ € 0

Boundaries 0€2; and 04 are defined as the boundaries with unit normals e;, —ey, respectively. Bound-
aries 0{)o and 005 are defined as the ez, —es, respectively. Boundaries 0§23 and 0€)g are defined as
the e3, —es, respectively. Plot the solution over the surface over the domain 02 and along the plane
I'={(z,y9,2) | 0<2<1,0<y<1,2=0.5}

Page 23 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

AVAVAVAVAVAVA
\VAVAVAVAY

Figure 7: Solution of Poisson equation on Batman and ND logo domains.

Part 6: (AME40541: 20 points, AME60541: 40 points) In this part of the project, we will use our finite
element code to solve several linear elasticity, e.g., structural deformation, problems over various domains.

Tasks for Part 6
Your tasks for this section are to solve the linear elasticity equations for a multi-material beam and hollow
cylinder (AME60541).

1) Consider a multimaterial beam (Figure 8) with boundary conditions: clamped on 9 (u1 = ug = 0),
no traction on 092y U 0Qy ({1 = t3 = 0), and a distributed force in the —y direction of 0.1 on 093
(t1 = 0,t2 = —0.1). Take the Lamé parameters for material 1 to be Ai(x) = 365, p1(x) = 188 and those
for material 2 to be A1 (@) = 36.5, p1(x) = 18.8.

e Solve for the deformation of the beam using your FEM code. Starter code is provided in solve_ ...
linelast_beamO.m.

e Evaluate the displacements w1, ue along the line I' shown in Figure 8 and plot the magnitude of the
displacement on the deformed geometry.

h o
0.5 6 - S @ W
0 [
o9,
| | |
0 5 10

Figure 8: Multimaterial beam (€2), boundaries (0€2;), and line along which to evaluate quantities (T).

2) (AMEG60541) Consider a hollow cylinder (Figure 9) with boundary conditions: clamped on 0€Q (u; =
ug = uz = 0), no traction on dQ3 (t1 = t2 = t3 = 0), a distributed force in the —z direction of 0.25 on
0y (t; =12 = 0, t3 = —0.25), and a pressure load of 1 on 0Q (£ = —n, where n is the outward unit
normal). Take the Lamé parameters to be A(x) = 0.73, u(z) = 0.376.

e Solve for the deformation of the hollow cylinder using your FEM code. Use p = 2 hypercube
elements. Make sure your mesh is fine enough that your solution is converged.
e Plot the magnitude of the displacement on the surface of the deformed cylinder.

e Plot the displacements uy, us, ug along the line I' shown in Figure 9.

Page 24 of 27

University of Notre Dame

Dept Aerospace & Mechanical Engrng M. J. Zahr
0Qy |
o 10 —
| 1
g 0 ® |00y 25 I
L :
—1} Q
—2 I
O |
€y
| | | | | |
-2 -1 0 1152 -2 0 15
X1 1

Figure 9: Hollow cylinder domain (£2), boundaries (0€2;), and line along which to evaluate quantities (I'); 1 — z2
view (left) and z1 — x3 view (right). The boundaries 01, 0Q3 are the inner, outer cylindrical surfaces, respectively.
The boundaries 0922, 0§24 are the bottom, top “caps” of the cylinder, respectively.

LT

]

Figure 10: Solution of linear elasticity equations of multimaterial beam and hollow cylinder.

Part 7: (AME60541) (40 points) In this part of the project, we will use our finite element code to solve sev-
eral incompressible Navier-Stokes equations, e.g., viscous fluid flow, through various domains. An important
non-dimensional quantity in the study of fluid flow is the Reynolds number
UL

Re = 7, (43)
where U is the velocity of the fluid with respect to an object, L is the characteristic linear dimension, and
v is the kinematic viscosity of the fluid. The Reynolds number is the ratio of inertial-to-viscous forces and
is used to predict flow patterns in different fluid flow situations.

Page 25 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

G 0.5 G 0.5 W3 0.5
o
0 © o @ O—x—0 =
I I I I I I I I I
0 0.5 1 0 0.5 1 0 0.5 1
& &1 &

Figure 11: Mixed (velocity-pressure) triangular finite element in reference domain (£1-€2 space): P2-P! (quadratic
approximation of velocity, linear approximation of pressure) (left), P>-P? (cubic approximation of velocity, quadratic
approximation of pressure) (center), pLps (quartic approximation of velocity, cubic approximation of pressure)
(right). The faces are numbered as: face 1 (—), face 2 (), and face 3 (). There is a velocity degree of
freedom v§ (i = 1,...,N&,) at each (0) and a pressure degree of freedom Pf (i = 1,...,Ng4) at each (x). For both
sets of nodes, the numbering is inherited from the standard numbering in Figure 1.

For stability reasons, we need to consider a mixed element approximation of the solution vector U (x) =
(vi(x),...,va(x), P)T. In particular, we will use an element of order p to approximate the velocity (v(x))
and an element of order p—1 to approximate the pressure field (P(x)) (Figure 11). In the notation of Part 3,
this mean we take M = d and N. = d+ 1. This mixed element representation of the solution implies that we
must have two meshes, one for the velocity degrees of freedom and one for the pressure degrees of freedom.
The elements of both meshes will exactly align, but the nodal positions will not.

Tasks for Part 7
Your tasks for this section are to solve the lid-driven cavity problem and flow through the ND logo.

1) Use your code to solve the lid-driven cavity problem. The lid-driven cavity is defined on a square domain
(Figure 12) with boundary conditions: stationary, no-slip walls (v; = vy = 0) on 09y U Qs U I3 and a
moving, no-slip wall (v; = 1, va = 0) on 0Q4. Since the pressure is only determined up to a constant, we
need to prescribe it at one point on the boundary, e.g., take P = 0 at the point (z; = 0, zo = 0). Take
the characteristic length scale to be L = 1 (length/height of domain), the characteristic velocity to be
the velocity of the moving wall U = 1, and the density to be p(x) = 1.

e Solve for the flow velocity and pressure at Re = 100. Starter code is provided in solve_ins_1dc0.m.

e Plot the velocities v1, vo along the line I' shown in Figure 12 and the magnitude of the velocity
throughout the domain.

e Solve for flow velocity and pressure at Re = 2000 using your code. To solve for this Reynolds
number you will need to use continuation, i.e., use the solution corresponding to a Reynolds number
of Rej as the initial guess for the Newton solver for Reynolds number Reg.1, where kK = 0,1, ...,
Rey, < Repy1, and Reg is sufficiently small that the solution can be found easily from a zero initial
guess (Rep = 100 is usually sufficient).

— Plot the velocity magnitude throughout the domain and superimpose a quiver plot that shows
the direction of the flow.

— Plot both components of the velocity along the the line I' defined in Figure 12.

2) Use your code to solve for flow through the ND logo (Figure 6) with boundary conditions: vertical
inflow on 0Qy (v; = 0, v2 = 1), traction-free outflow on Qs ({3 = &3 = 0), and a no slip wall on 093
(v1 = v = 0). Since the pressure is only determined up to a constant, we need to prescribe it at one
point on the boundary (you choose which point). Take the characteristic length scale to be L = 1, the
characteristic velocity to be the inlet speed U = 1, and the density to be p(x) = 1. Starter code provided
in solve_ins_ndo0.

Page 26 of 27

University of Notre Dame

Dept Aerospace & Mechanical Engrng M. J. Zahr
1l 0y
r
NG R - - === ===========+ -
o 093
Q
0 -
09
| |
0 1

Figure 12: Lid-driven cavity domain (£2), boundaries (0€2;), and line along which to evaluate quantities (I").

e Solve for the flow velocity and pressure at Re = 1300; you will need to use continuation to solve for
this Reynolds number. Use P2-P! elements, i.e., triangular elements with quadratic (p = 2) basis
functions for the velocity field and linear (p = 1) basis functions for the pressure field.

e Plot the velocity magnitude throughout the domain and superimpose a quiver plot that shows the
direction of the flow.

e Plot both components of the velocity along the four lines I'y, I's, I's, 'y defined in Figure 6.

Figure 13: Solution of the incompressible Naiver-Stokes equations: lid-driven cavity flow (Re = 2000) and flow
through ND logo (Re = 1300).

Page 27 of 27

	1
	1.1
	1.2
	1.3
	1.4

	2
	2.1
	2.2
	2.3
	2.4

	3
	3.1
	3.2

	4
	5
	6
	7

