
University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

AME40541/60541: Finite Element Methods
Final Project

In this project, you will enhance the finite element code you developed throughout the semester in the
homework assignments into a general FEM code capable of handling unstructured meshes, non-homogeneous
natural boundary conditions, and nonlinear problems. You will then use your code to solve a number of
partial differential equations.

Instructions

• All starter code can be found on the course website in the final project code distribution. Be sure to
carefully read notation.m for a description of all relevant variables. Be sure to run init.m each time
you start MATLAB to add all required directories to your MATLAB path.

• AME40541: You may assume the number of spatial dimensions (d in the document, ndim in the code)
is d “ 1, 2 and the polynomial degree (p in the document, porder in the code) is p “ 1, 2, 3 in all tasks.
That is, you only need your finite element code to work in one and two dimensions for polynomial
orders one, two, and three to receive full credit.

• AME60541: Your code must work for d “ 1, 2, 3 and p “ 1, 2, 3.

• You may work in teams of up to four. Each team needs to submit their code to the instructor and
TAs as well as a document that contains the answers to all questions and the required figures. Teams
should not be mixed between the two classes.

• Timeline

Tuesday, April 13, 2021 Part 1.1-1.2 due
Tuesday, April 20, 2021 Part 1.3-1.4 due
Tuesday, April 27, 2021 Part 2 due
Tuesday, May 4, 2021 Part 3 due
Tuesday, May 11, 2021 Part 4 due
Tuesday, May 18, 2021 Part 5-7 due

• The final checkpoint will be accepted until May 20, 2021 at 11:59pm without penalty. It will not be
accepted after that time.

• The point value for each part is indicated at the beginning of the section. In total, there are 180 points
for AME40541 and 285 points for AME60541. This will count as 50% of your final grade.

Part 1: (50 points) Since we want our code to be able to handle arbitrarily complex domains, it is necessary
to have simplex elements available in our FEM code. As we discussed in class, mesh generation with simplex
elements (triangles in 2d, tetrahedra in 3d) is a “solved” problem while mesh generation with hypercube
elements is much more difficult.

Part 1.1 (5 points) First, we need to define the geometry of our element, which is given by the element
interior (volume) and its boundary (faces). In addition, nodes are distributed throughout the element based
on its polynomial space; Pp simplex elements in d-dimension use interpolation functions that include all
multinomial terms of order p: tξα1

1 ¨ ¨ ¨ ξαd

d |
řd
i“1 αi ď pu. Therefore, the number of nodes in a simplex

element must be the number of unique multinomials

N el
nd “

ˆ

p` d

d

˙

, (1)

where we use N el
nd throughout the document to denote the number of nodes in an element. For the special

case of d “ 2 (triangle), we have N el
nd “ pp ` 1qpp ` 2q{2 nodes, which can easily be verified by referring to

the Pascal triangle.

Page 1 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Since we will use mapped master elements to define the basis functions, we only need to consider the unit

right simplex. We assume the nodes tξ̂iu
Nel

nd
i“1 are distributed throughout the element and ordered (ascending)

first in the ξ1-direction, then in the ξ2-direction, etc., where ξ “ pξ1, ξ2, . . . , ξdq are the coordinates in the
reference domain (Figure 1). Furthermore, let us number the N el

fc “ d`1 faces of the simplex element as: face
f is the face with unit normal Nf “ ´ef for f “ 1, . . . , d, where ef P Rd is the canonical unit vector, and
face d ` 1 is the remaining face (unit normal Nd`1 “

1?
d
1). Finally, introduce a matrix Π P MN fc

nd,N
el
fc
pNq.

where N fc
nd is the number of nodes on each element face, whose columns define the element nodes that lie

on a particular face, i.e., Πif is the element node number corresponding to the ith node on face f of the
element.

For the special case of p “ 2 simplex elements in d “ 2 dimensions (Figure 1), the nodes are

ξ̂1 “

„

0
0



, ξ̂2 “

„

0.5
0



, ξ̂3 “

„

1
0



, ξ̂4 “

„

0
0.5



, ξ̂5 “

„

0.5
0.5



, ξ̂6 “

„

0
1



,

and the face-to-element vertex mapping and normal vectors are

Π “

»

–

1 1 3
4 2 5
6 3 6

fi

fl , N1 “

„

´1
0



, N2 “

„

0
´1



, N3 “
1
?

2

„

1
1



.

0 0.5 1

0

0.5

1

1 2

3

ξ1

ξ 2

0 0.5 1

0

0.5

1

1 2 3

4 5

6

ξ1

ξ 2

0 0.5 1

0

0.5

1

1 2 3 4

5 6 7

8 9

10

ξ1

ξ 2

Figure 1: Triangular finite element in reference domain (ξ1-ξ2 space) with 3 nodes (p “ 1) (left), 6 nodes (p “ 2)
(center), and 10 nodes (p “ 3) (right). The faces are numbered as: face 1 (), face 2 (), and face 3 ().

Tasks for Part 1.1

1) Write a function that defines the geometry of a simplex element of order p in the reference domain in

d spatial dimensions. Your function should define the nodal positions in the reference domain tξ̂ku
Nel

nd

k“1,

the face-to-element vertex mapping Π, and the unit normal for each face tNiu
Nel

fc
i“1. Your function should

have the following signature:

function [zk, f2v, N] = create nodes bndy refdom simp(ndim, porder)
%CREATE NODES BNDY REFDOM SIMP Create nodal distribution and boundary of
%NDIḾ dimensional simplex element of order PORDER.
%
%Input arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

% NDIM, PORDER : See notation.m
%
%Output arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

% ZK, F2V, N : See notation.m

Page 2 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Read all comments and notation.m carefully for instructions regarding the inputs and outputs to the
function.

2) For the d “ 2 case (triangular element), plot all nodes of the element with blue circles. On top of these
circles, plot the nodes on face 1 (left edge) with red x’s, the nodes of face 2 (bottom edge) with green ˝’s,
and the nodes on face 3 (hypotenuse) with black +’s. For your reference, for the special case of p “ 2,
you code should return

zk “

„

0 0.5 1 0 0.5 0
0 0 0 0.5 0.5 1



, f2v “

»

–

1 1 3
4 2 5
6 3 6

fi

fl , N “

«

´1 0 1?
2

0 ´1 1?
2

ff

.

Part 1.2 (15 points) Next, we need to define basis functions over the reference domain tψipξqu
Nel

nd
i“1 for

ξ P Ω˝, where Ω˝ Ă Rd is the reference/parent element. For this we will use Vandermonde’s approach
(discussed in lecture and Ch. 6). A basis for a simplex element of order p must contain all multinomial

terms of order p in d dimensions tξα1
1 ¨ ¨ ¨ ξαd

d |
řd
i“1 αi ď pu, so we can write our N el

nd basis functions as

ψipξq “

Nel
nd
ÿ

k“1

αik

d
ź

j“1

ξ
Υjk

j (2)

where Υ P Md,Nel
nd
pN0q with entries Υij , i “ 1, . . . , d, j “ 1, . . . , N el

nd, such that
řd
i“1 Υij ď p for each

j “ 1, . . . , N el
nd that is used to sweep over all N el

nd permissible exponents. For example:

• in the special case of d “ 2 (triangle) and p “ 1, we have

Υ “

„

0 1 0
0 0 1



ùñ ψipξ1, ξ2q “ αi1 ` αi2ξ1 ` αi3ξ2

• in the special case of d “ 2 and p “ 2, we have

Υ “

„

0 1 0 2 1 0
0 0 1 0 1 2



ùñ ψipξ1, ξ2q “ αi1 ` αi2ξ1 ` αi3ξ2 ` αi4ξ
2
1 ` αi5ξ1ξ2 ` αi6ξ

2
2

• in the special case of d “ 3 (tetrahedron) and p “ 1, we have

Υ “

»

–

0 1 0 0
0 0 1 0
0 0 0 1

fi

fl ùñ ψipξ1, ξ2, ξ3q “ αi1 ` αi2ξ1 ` αi3ξ2 ` αi4ξ3.

For convenience, we introduce the function ωipξq, i “ 1, . . . , N el
nd

ωipξq “
d
ź

s“1

ξΥsi
s ,

so the basis functions can conveniently be expressed as ψipξq “
řNel

nd

k“1 αikωkpξq.

Denote the N el
nd nodes of the pth order simplex element as tξ̂iu

Nel
nd

i“1 , where ξ̂i “ pξ̂1i, . . . , ξ̂diq
T . The nodal

property is
ψipξ̂jq “ δij ,

for i, j “ 1, . . . , N el
nd, which leads to

Nel
nd
ÿ

k“1

αikωkpξ̂jq “ δij

Page 3 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

once the expression for ψipξq is used from (2). Let V̂ij “ ωjpξ̂iq “
d
ź

s“1

ξ̂
Υsj

si be the Vandermonde matrix

corresponding to the d-dimensional, pth order simplex evaluated at tξ̂iu
Nel

nd
i“1 , then the above constraints can

be written in matrix form as V̂ αT “ INel
nd

, where V̂ , α are the matrices with indices V̂ij , αij , respectively,

and INel
nd

is the N el
nd ˆN

el
nd identity matrix. Once we compute the coefficients, α “ V̂ ´T , we substitute this

expression into (2) and evaluate at new points tξ̃iu
m
i“1 where ξ̃i “ pξ̃1i, . . . , ξ̃diq to give

ψipξ̃jq “

Nel
nd
ÿ

k“1

αikωkpξ̃jq “

Nel
nd
ÿ

k“1

´

V̂ ´1
¯

ki
ωkpξ̃jq “

Nel
nd
ÿ

k“1

´

V̂ ´1
¯

ki
Ṽjk (3)

where the last expression used the d-dimensional, pth order simplex Vandermonde matrix evaluated at

tξ̃iu
m
i“1: Ṽij “ ωjpξ̃iq “

d
ź

s“1

ξ̃
Υsj

si . Therefore, if we define Qij “ ψipξ̃jq, we have

Q “ V̂ ´T Ṽ T ,

where Q, Ṽ are the matrices with indices Qij , Ṽij , respectively.
The partial derivatives of the simplex basis functions are also needed to implement the finite element

method. A simple differentiation calculation reveals

Bψi
Bξj

pξq “

Nel
nd
ÿ

k“1

αik
Bωk
Bξj

pξq,

where the partial derivatives of ωipξq are

Bωi
Bξj
pξq “

$

’

&

’

%

0 if Υji “ 0

Υjiξ
Υji´1
j

d
ź

s“1,s‰j

ξΥsi
s if Υji ‰ 0.

Then, the basis functions evaluated at the points tξ̃iu
m
i“1, take the form

Bψi
Bξj

pξ̃kq “

Nel
nd
ÿ

l“1

αil
Bωl
Bξj
pξ̃kq “

Nel
nd
ÿ

l“1

V̂ ´1
li W̃klj ,

where W̃ijk contains the partial derivatives of the Vandermonde matrix evaluated at tξ̃iu
Nel

nd
i“1 , i.e., Wijk “

Bωj

Bξk
pξ̃iq.

Tasks for Part 1.2
Your task is to write a function that evaluates the basis functions (and their derivatives) of a pth order,
d-dimensional simplex element and test it.

1) First you need to implement a function that evaluates the Vandermonde matrix and its derivative corre-
sponding to the d-dimensional, pth order simplex. Your function should have the following signature:

function [V, dV] = eval vander simp(porder, x)
%VANDER SIMP Compute NDIḾ dimensional Vandermonde matrix of order PORDER
%for a simplex and its derivative (NDIM determined from shape of X). The
%Vandermonde matrix, V, is the NX x M matrix of multinomial terms and its
%derivative, dV, is the NX x M x NDIM matrix of the partial derivatives of
%multinomial terms, where M is the number of multinomial terms required for
%polynomial completeness (all combinations such that the sum of the

Page 4 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

%exponents is ď porder), and X are the evaluation points.
%
%Input arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

% PORDER : Polynomial degree of completeness
%
% X : Array (NDIM, NX) : Points at which to evaluate multinomials in
% definition of Vandermonde matrix
%
%Output arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

% V : Array (NX, M) : Vandermonde matrix
%
% dV : Array (NX, M, NDIM) : Derivative of Vandermonde matrix

2) Next, you will need to implement a function that evaluates the basis functions and their derivatives for
a d-dimensional simplex of order p given the coordinates of the element nodes xk and points at which to
evaluate the basis x (these will eventually be quadrature points). Your function should have the following
signature:

function [Q] = eval interp simp lagrange(xk, x)
%EVAL INTERP SIMP LAGRANGE Evaluate interpolation functions for simplex
%using Lagrange polynomials (number of spatial dimensions and polynomial
%degree of completeness determined from the nodes of the element XK).
%
%Input arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

% XK : Array (NDIM, NV): Nodes of simplex element.
%
% X : Array (NDIM, NX) : Points at which to evaluate interpolation
% function.
%
%Output arguments
%́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

% Q : Array (NV, NDIM+1, NX) : Lagrange interpolation functions (NV) and
% their derivative evaluated at each point in X. Q(i, 1, j) = value of
% ith interpolation function evaluated at X(:, j), i.e., Q(i, 1, j) =
% phi i(X(j)). Q(i, 1+k, j) = kth partial derivative of ith
% interpolation function evaluated at X(:, j), i.e., Q(i, 1+k, j) =
% d(phi i)/d(x k))(X(:, j).

3) Check the correctness of your implementation using known properties of a Lagrangian basis:

• Lagrangian property: ψipξ̂jq “ δij

• Partition of unity: for any ξ P Ω˝

Nel
nd
ÿ

i“1

ψipξq “ 1,

Nel
nd
ÿ

i“1

Bψi
Bξ
pξq “ 0.

4) Also check the derivatives of your basis functions are correct by comparing to a finite difference approxi-
mation

Bψi
Bξj

pξq «
ψipξ ` εejq ´ ψipξ ´ εejq

2ε
,

where ε is a small number (but not too small to avoid significant floating point errors), e.g., 10´6, and
ej P Rd is the jth canonical unit vector.

Part 1.3 (15 points) Next we will use the mapped master element to define basis functions of elements in

the physical domain. Consider an arbitrary d-dimensional simplicial domain, Ωe Ă Rd (physical element),

Page 5 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

and a d-dimensional regular simplex, Ω˝ Ă Rd (reference or parent element) (Figure 2). Define a bijective
mapping between the reference and physical domains as

Ge : Ω˝ Ñ Ωe

ξ ÞÑ x “ Gepξq,

and let G´1
e : Ωe Ñ Ω˝ denote the inverse mapping, i.e. ξ “ G´1

e pxq. In addition, it will prove convenient to
introduce the regular (d´ 1)-dimensional simplex, Γ˝ Ă Rd´1, that will be used as the reference domain for
each face of the reference element, Ω˝. Let

γf : Γ˝ Ñ BΩ˝,f

r ÞÑ ξ “ γf prq.

be the bijection that maps Γ˝ to the fth face of the master element, BΩ˝,f . Finally, for convenience, we
introduce the mapping from the reference domain Γ˝ to the the physical domain

Fef : Γ˝ Ñ Ωe

r ÞÑ x “ Fef prq “ Gepγf prqq.

See Figure 2 for these transformations and their relationships.

r1

Γ˝

γf

Fef ξ1

ξ2

Ω˝Ge

G´1
e

Ωe

x1

x2

Figure 2: Mapping from pd ´ 1q-dimensional reference simplex element (Γ˝) to each face of the reference element
(BΩ˝,f) (ξ “ γf prq), the mapping from the d-dimensional reference simplex element (Ω˝) to the physical element
(Ωe) (x “ Gepξq), and the composition mapping from the pd´ 1q-dimensional reference simplex element (Γ˝) to each
face of the physical element (BΩef) (x “ Fef prq “ Gepγf prqq).

From this construction, we can define volume and boundary integrals over the physical domain in terms
of integrals over the corresponding reference domain using a change of coordinates (volume) and surface
parametrization (boundary). Consider the integrals

Iv “

ż

Ωe

θ dv, Is “

ż

BΩef

ϑ ds,

where θ : Ωe Ñ R and ϑ : BΩef Ñ R. Using the mapping Ge for the volume integral and Fef for the

Page 6 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

boundary integral, they can be transformed to the reference domain Ω˝ and Γ˝, respectively,

Iv “

ż

Ωe

θ dv “

ż

Ω˝

θpGepξqqgepξq dξ

Is “

ż

BΩef

ϑ ds “

ż

Γ˝

ϑpFef prqqσef prq dr,
(4)

where

Gepξq “
BGe
Bξ
pξq, gepξq “ detpGepξqq

Fef prq “
BFef
Br

prq, σef prq “
b

det pFef prqTFef prqq,

where the derivative of Fef can be expanded as

BFef
Br

prq “
BGe
Bξ
pγf prqq

Bγf
Br
prq “ Gepγf prqq

Bγf
Br
prq.

Let tpwi, ξ̃iqu
Nel

qd

i“1 denote a quadrature rule over Ω˝, where N el
qd is the number of quadrature points, twiu

Nel
qd

i“1

are the quadrature weights, and tξ̃iu
Nel

nd
i“1 are the quadrature nodes. Similarly, let tpwfi , r̃iqu

N fc
qd

i“1 denote a

quadrature rule over Γ˝, where N fc
qd is the number of quadrature points, twfi u

N fc
qd

i“1 are the quadrature weights,

and tr̃iu
N fc

qd

i“1 are the quadrature nodes. Then, integrals over the reference domains are approximated as

ż

Ω˝

γpξq dξ «

Nel
qd
ÿ

k“1

wkγpξ̃kq,

ż

Γ˝

λprq dr «

N fc
qd
ÿ

k“1

wfkλpr̃kq.

Therefore the integrals in (4) over the physical domains are approximated as

Iv «

Nel
qd
ÿ

k“1

wkθpGepξ̃kqqgepξ̃kq, Is «

N fc
qd
ÿ

k“1

wfkϑpFef pr̃kqqσef pr̃kq.

Next, we define basis functions over the physical element. Let tψiu
Nel

nd
i“1 define a basis over the d-

dimensional reference element, where ψi : Ω˝ Ñ R and N el
nd is the number of nodes in the element Ω˝.

Furthermore, suppose the basis is Lagrangian with nodes tξ̂iu
Nel

nd
i“1 , i.e., ψipξ̂jq “ δij . With these definitions,

we define the basis functions over Ωe as tφei u
Nel

nd
i“1 where φei : Ωe Ñ R is defined as

φei pxq “ ψipG´1
e pxqq. (5)

From this definition and the integration formulas in (4), any integrals involving the basis φei can be written
solely in terms of the reference domain basis ψipξq because the composition of a mapping and its inverse is
the identity map. This implies that we only need to evaluate the basis functions associated with the reference
domains Ω˝ and Γ˝ at the quadrature nodes associated with those domains. From a simple application of the
chain rule of differentiation (first equality) and the inverse function theorem (second equality), the gradient
of the physical basis over Ωe is

Bφei
Bxj

pxq “
d
ÿ

k“1

Bψi
Bξk

pG´1
e pxqq

BpG´1
e qk

Bxj
pxq “

d
ÿ

k“1

Bψi
Bξk

pG´1
e pxqq

“

G´1
e

‰

kj
(6)

Finally, we define the mappings Ge and Fef using the basis functions associated with Ω˝ and Γ˝

Gepξq “
Nel

nd
ÿ

i“1

x̂eiψipξq, Fef prq “ Gepγf prqq, (7)

Page 7 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

where tx̂ei u
Nel

nd
i“1 are the nodes associated with the element Ωe and γf can be constructed analytically based

on the geometry of the reference elements Γ˝ and Ω˝.

Tasks for Part 1.3
Your task is to write a function that evaluates all relevant transformation quantities. Then you will use this
functionality to approximate moments (integrals) over elements with regular and non-regular shapes.

1) Derive the expression for the quantities Gepξq, Fef prq, for the transformation given in (7). Your answer

should be in terms of the element coordinates tx̂ei u
Nel

nd
i“1 , the basis functions tψiu

Nel
nd

i“1 , and the reference
volume-to-face mapping γf prq.

2) What is the reference volume-to-face mapping γf prq, f “ 1, . . . , 3, for the three faces of the master
triangle?

3) (AME60541) What is the reference volume-to-face mapping γf prq, f “ 1, . . . , 4, for the four faces of the
master tetrahedra?

4) Implement a function that evaluates all relevant transformation quantities. Your function should have
the following signature:

1 function [xq, detG, Gi, xqf, sigf, Gif] = eval transf quant ndim(xe, Qv, Qvf, r2z, f2v)
2 %EVAL TRANSF QUANT DIM Evaluate transformation quantities for a single
3 %element given the nodal coordinates of the element in physical space (XE)
4 %and the basis functions (and their derivatives) of the element.
5 %
6 %Input arguments
7 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

8 % XE, QV, QVF, R2Z, F2V : See notation.m
9 %

10 %Output arguments
11 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

12 % XQ, DETG, GI, XQF, SIGF, GIF : See notation.m

You will test this function below when you use the mapped master element concept to compute the area,
centroid, and surface area of known geometries (simplex and hypercube).

5) Check the quadrature formulas you were provided by computing the following moments of Ω˝ and Γ˝

using quadrature and comparing to known formulas for the area and centroid of simplex and hypercube
domains

V pΩ˝q “

ż

Ω˝

dξ, cpΩ˝q “
1

V pΩ˝q

ż

Ω˝

ξ dξ, V pΓ˝q “

ż

Γ˝

dr, cpΓ˝q “
1

V pΓ˝q

ż

Γ˝

r dr, .

Make sure your quadrature rule has a sufficient number of points to compute the integrals exactly. Only
consider the p “ 1 elements since these quantities do not depend on the degree of completeness of the
element. Consider both simplices and hypercubes elements in spatial dimensions d “ 1, 2 (AME40541)
and d “ 1, 2, 3 (AME60541).

• Use the function create qrule gaussleg.m to create quadrature rules for the master simplex and
hypercube of any dimension d. A quadrature rule is a MATLAB structure qrule that contains

quadrature weights/nodes for Ω˝ (tpwk, ξ̃iqu
Nel

qd

i“1) and Γ˝ (tpwfk , r̃iqu
N fc

qd

i“1).

• Use the function create polysp nodal.m to create a local function space based on nodal simplex
or hypercube elements of a given dimension d and polynomial degree p. A local function space is a

MATLAB structure lfcnsp that contains: the nodal coordinates of Ω˝ (tξ̂iu
Nel

nd
i“1) and Γ˝ (tr̂iu

N fc
nd

i“1),
the face-to-vertex mapping (Π) and unit normals of each face (tNiu

d
i“1), the reference volume-

to-face mapping γf prq, and the the nodal basis functions evaluated at ξ (tψipξqu
Nel

nd
i“1) and γf prq

(tψipγf prqqu
Nel

nd
i“1). Note: for simplex elements (etype='simp'), this relies on the code for Parts

1.1-1.2.

Page 8 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

6) Compute the volume, centroid, and surface area

V pΩeq “

ż

Ωe

dv, cpΩeq “
1

V pΩeq

ż

Ωe

x dv, SpΩeq “

ż

BΩe

ds,

of the curved (quadratic) triangle in Figure 2 with nodes

x̂1 “

„

0
0



, x̂2 “

„

0.5
0.15



, x̂3 “

„

1.0
0.7



, x̂4 “

„

´0.3
0.5



, x̂5 “

„

0.3
0.75



, x̂6 “

„

´0.25
1.2



using the transformation quantities from transf data and the local function space structure lfcnsp.
The moments of this element are V “ 0.7858, C “ p0.1805, 0.4993q, and S “ 4.0158. Repeat for the
quadratic quadrilateral in Homework 4, Problem 3 (nodes can be read directly from the figure). The
moments of this element are V “ 41.33, C “ p4.3161, 4.6935q, and S “ 31.395. This will serve as a test
for the functions you wrote in this section.

Part 1.4 (15 points) In this section, we will use a finite element mesh (Figure 3) to evaluate integrals over

complex domains Ω Ă Rd:
Iv “

ż

Ω

θ dv, Is “

ż

BΩ

ϑ ds. (8)

Figure 3: Mesh of a circle, square with circular hole, and arbitrary polygon using triangular elements.

We will describe our unstructured mesh using the arrays: xcg, e2vcg, and e2bnd, defined as

1 % XCG : 2D array (NDIM, NNODE) : The position of the nodes in the mesh.
2 % The (i, j)́ entry is the position of global node j in the ith dimension.
3 % The global node numbers are defined by the columns of this matrix, e.g.,
4 % the node at xcg(:, j) is the jth node of the mesh.
5 %
6 % E2VCG : 2D array (NNODE PER ELEM, NELEM): The connectivity of the
7 % mesh. The (:, e)́ entries are the global node numbers of the nodes
8 % that comprise element e. The local node numbers of each element are
9 % defined by the columns of this matrix, e.g., e2vcg(i, e) is the

10 % global node number of the ith local node of element e.
11 %
12 % E2BND: 2D array (NFACE PER ELEM, NELEM): The mapping between element
13 % boundaries and global boundaries. The (f, e)́ entry is the global
14 % boundary tag on which the fth face of element e lies. If face f of
15 % element e does not touch the global boundary, e2bnd(f, e) is NaN.

With this concept of a mesh, the integrals in (8) can be re-written as

Iv “
Nel
ÿ

e“1

ż

Ωe

θ dv, Is “
Nel
ÿ

e“1

Nel
fc

ÿ

f“1

ż

BΩefXBΩ

ϑ ds “
Nel
ÿ

e“1

Nel
fc

ÿ

f“1

1tBΩefXBΩ‰Hu

ż

BΩef

ϑ ds,

where Nel is the number of elements in the mesh and 1tBΩefXBΩ‰Hu is the indicator function that takes the
value of 0 if BΩef X BΩ “ H and 1 otherwise. Notice that this will, in general, only be an approximation

Page 9 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

to an integral since the region covered by the union of all finite elements will not exactly overlap with Ω,
except in special cases.

Tasks for Part 1.4
With the transformation function and local function space structure defined in Part 1.3, you can create a
structure array transf data that contains the transformation quantities for every element in a mesh defined
by xcg, e2vcg, e2bnd using the function create transf data ndim provided. This will create all relevant
data for each element of your mesh. Using this structure array, we are interested computing the following
integrals

V pΩq “

ż

Ω

dv, cpΩq “
1

V pΩq

ż

Ω

x dv, SpΩq “

ż

BΩ

ds,

i.e., the volume, centroid, and surface area of Ω.

1) Write a function that computes the volume, centroid, and surface area of a domain described by a mesh.
Your function should have the following signature:

1 function [v, c, sa] = compute domain metrics(transf data, qrule)
2 %COMPUTE DOMAIN METRICS Compute the volume, centroid, and surface
3 %area of a domain (approximated) by the mesh described by TRANSF DATA.
4 %
5 %Input arguments
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

7 % TRANSF DATA, QRULE : See notation.m
8 %
9 %Output arguments

10 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

11 % V : number : Volume of domain
12 %
13 % C : Array (NDIM,) : Centroid of domain
14 %
15 % SA : number : Surface area of domain

2) Consider a domain Ω “ r0, 1sd for d “ 1, 2, 3. Create a mesh of this domain with 2d p “ 1 hypercube
elements using create mesh hcube and create the corresponding transf data structure array. Compute
the volume, centroid, and surface area of Ω by integrating the appropriate quantities over the mesh
and compare to the known volume, centroid, and surface area of a hypercube. Repeat the integral
calculation for both simplex and hypercube elements. This will serve as another test for parts of your
code (quadrature, transformation of integrals). Use visualize fem to plot the mesh (1d, 2d). Use
visualize fem3d to plot in 3d (high-order visualization not supported).

3) Repeat the previous task for the unit hypersphere in d “ 2, 3 dimensions (circle for d “ 2, sphere for
d “ 3). Since this geometry has a curved boundary, you will need to use more elements and the polynomial
degree will have an impact on the accuracy of the integral (provided we use a curved, high-order mesh).
The function create mesh hsphere creates a mesh of curved elements of a given polynomial degree by
mapping a hypercube to a hypersphere. Consider polynomial degrees p “ 1, 2, 3, 4. How many elements
are needed to get a high-quality approximation of the volume and surface area? Make sure you use enough
quadrature nodes so your element integral computations are exact. Repeat the integral calculation for
both simplex and hypercube elements.

4) Compute the volume, centroid, and surface area of the Batman symbol and ND logo (Figure 4). Use a
mesh of p “ 1 simplex elements provided in the mesh/ meshes directory. The function load mesh loads
the appropriate mesh given its filename prefix ('batman0' for the Batman domain, 'nd0' for the Notre
Dame domain), the element type ('simp' for simplex elements and 'hcube' for hypercube elements),
the refinement level (only 0 supported for now), and the polynomial degree. Use visualize fem to plot
the mesh. Plot the centroid of the domain as a sanity check for the centroid computation.

Page 10 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Figure 4: Simplicial mesh (d “ 2) of the batman symbol and Notre Dame logo.

5) (AME60541) Compute the volume, centroid, and surface area of the cow (filename prefix 'cow'), dragon
(filename prefix 'dragon'), and sculpture (filename prefix 'scultp10kv') domains (Figure 5). Use p “ 1
simplex elements and visualize fem to plot the mesh. Plot the centroid of the domain for the sculpture
mesh as a sanity check for the centroid computation.

Figure 5: Simplicial mesh (d “ 3) of a sculpture and dragon.

Part 2: (AME40541: 30 points, AME60541: 50 points) To support our goal in developing a general FEM
code, we will extend the finite element code written in your homework assignment to handle general, second-
order partial differential equations, including those with non-homogeneous natural boundary conditions and
nonlinearities.

Let us consider a general, second-order, static partial differential equation defined on the domain Ω Ă Rd

∇ ¨ F pU ,∇U ; ιq “ SpU ,∇U ; ιq, in Ω, F pU ,∇U ; ιqn “ q̄ on BΩ, (9)

where F pU ,∇U ; ιq P RNcˆd is a nonlinear flux function, SpU ,∇U ; ιq P RNc is a nonlinear source term,
Upxq P RNc is the primary solution variable, ιpxq P Rm are parameters to the flux function and source term,
q̄pxq P RNc is the value of the natural boundary condition, npxq P Rd is the outward unit normal, Nc is the

Page 11 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

number of components in the primary variable U , and x P Ω. Re-writing the PDE and boundary condition
using indicial notation, we have

Fij,j “ Si in Ω, Fijnj “ q̄i on BΩ (10)

for i “ 1, . . . , Nc.
We solely consider a problem with natural boundary conditions to facilitate a convenient and general

implementation. For regions on the boundary where an essential boundary condition is prescribed, the value
of the natural boundary conditions for the corresponding degree of freedom q̄i will be set to zero and static
condensation will be applied. This has the effect of eliminating the boundary term at the corresponding
degree of freedom and results in exactly the same weak formulation as setting the corresponding test function
to zero.

In the code, we will describe a PDE of the form (10) using a MATLAB structure (claw or eqn) with
four fields: nvar (number of PDE variables, Nc), ndim (number of spatial dimension, d), npars (number of
parameters, m), and srcflux (function that returns source term, flux function, and their partial derivatives).
We use function handles, called vol pars fcn and bnd pars fcn, to specify the parameter function νpxq
and natural boundary conditions q̄pxq, respectively, in the code. Finally, we wrap the conservation law,
parameter function, and natural boundary conditions into a MATLAB structure (prob).

We will consider four PDEs in this project: PDE0 from Homework 2, a generic second-order linear PDE,
linear elasticity, and the incompressible Navier-Stokes equation. In the following subsections, we introduce
the four partial differential equations and their flux formulations. We also provide a concrete example of the
data structures used to fully prescribe the PDE and its data.

Part 2.1 PDE0 from Homework 2: (5 points) Recall PDE0 from Homework 2

´
d2u

dx2
´ u` x2 “ 0, 0 ă x ă 1

up0q “ 0,

ˆ

du

dx

˙
ˇ

ˇ

ˇ

ˇ

x“1

“ 1.

We can immediately identify this as a scalar PDE (Nc “ 1) in one spatial dimension (d “ 1). To put this
PDE in flux form (10), we identify

U1 “ u, F11 “ ´
du

dx
, S1 “ u´ x2, q̄1 “ ´1tx“1u. (11)

We take the parameter vector as ιpxq “ x2.
As we will see in Part 4, we will need the partial derivatives of the flux function F and source term S

with respect to the PDE state U and its gradient ∇U . It is easy to see these partial derivatives are

BF11

BU1
“ 0,

BF11

BU1,1
“ ´1,

BS1

BU1
“ 1,

BS1

BU1,1
“ 0. (12)

The parameter vector for PDE0 is ιpxq “ x2 and the boundary condition is q̄pxq “ ´1tx“1u, which we
specify with the following prob structure:

1 prob.eqn = Pde0();
2 prob.vol pars fcn = @(x) xˆ2;
3 prob.bnd pars fcn = @(x, bnd) ´1*(xě1́ 1e´12);

Tasks for Part 2.1
Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see eqn/Pde0.m):

Page 12 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

1 function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval pde0 srcflux(U, Q, pars)
2 %EVAL PDE0 SRCFLUX Evaluate PDE0 source term, flux function and their
3 %partial derivatives at a point.
4 %
5 %Input arguments
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

7 % U : Array (NVAR, 1) : PDE state vector at a point
8 %
9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point

10 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point
12 %
13 %Output arguments
14 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

15 % S, dSdU, dSdQ, F, dFdU, dFdQ : See notation.m

Use test srcflux findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.2 Second-order, linear PDE: (10 points) A generic second-order linear partial differential equa-
tion takes the form

p´kiju,jq,i “ f in Ω, pkiju,jqni “ q̄ on BΩ, (13)

where Ω Ă Rd and for each x P Rd, the coefficient matrix kpxq P Rdˆd, source term fpxq P R, outward
normal npxq to BΩ, and natural boundary condition q̄pxq P R. This PDE models a number of diffusion-like
processes, most notably heat flow. In Homework 2, you put this into flux form as

U1 “ u, F1j “ ´kjsu,s, S1 “ f, q̄1 “ ´q̄. (14)

Furthermore, for this PDE, we take the parameter vector to be all entries of the coefficient matrix and the
source term

ιpxq “ pk11pxq, k21pxq, . . . , kddpxq, fpxqq. (15)

In the two-dimensional case (d “ 2q, the parameter vector is ιpxq “ pk11pxq, k21pxq, k12pxq, k22pxq, fq
and the boundary condition is q̄pxq “ ´q̄pxq. If we wish to prescribe kpxq “ I2 (constant), fpxq “
sinpx1q cospx2q, and q̄pxq “ x1 on BΩ1 and q̄pxq “ 1 on BΩ2, we specify the following prob structure:

1 prob.eqn = LinearEllipticScalar(2);
2 prob.vol pars fcn = @(x) [1; 0; 0; 1; sin(x(1))*cos(x(2))];
3 prob.bnd pars fcn = @(x, bnd) ´x(1)*(bnd==1) ´ 1*(bnd==2);

Tasks for Part 2.2
Your tasks for this section are to complete the derivation of the flux formulation of the second-order linear
PDE and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see eqn/LinearEllipticScalar.m):

1 function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval linelptc sclr srcflux(U, Q, pars)
2 %EVAL LINELPTC SCLR SRCFLUX Evaluate linear elliptic PDE source term, flux
3 %function and their partial derivatives at a point.
4 %
5 %Input arguments
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

7 % U : Array (NVAR, 1) : PDE state vector at a point
8 %

Page 13 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point
10 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point
12 %
13 %Output arguments
14 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

15 % S, dSdU, dSdQ, F, dFdU, dFdQ : See notation.m

Use test srcflux findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.3 Linear elasticity: (15 points) The linear elasticity equations govern the deformation of a struc-
ture (infinitesimal strains)

´ σij,j “ fi in Ω, σijnj “ t̄i on BΩ, (16)

for i “ 1, . . . , d, where the stress tensor σ P Rdˆd and strain tensor ε P Rdˆd are defined as

σij “ Cijklεkl, εij “
1

2
pui,j ` uj,iq,

and ui P R is the displacement in the ith direction for i “ 1, . . . , d. We will solely consider a homogeneous,
isotropic material with Cijklpxq “ λpxqδijδkl ` µpxqpδikδjl ` δilδjkq, where λpxq and µpxq are the Lamé
parameters. In Homework 2, you put this into flux form as

Ui “ ui, Fij “ ´σij , Si “ fi, q̄i “ ´t̄i. (17)

Furthermore, for this PDE, we take the parameter vector to be the Lamé parameters and source term

ιpxq “ pλpxq, µpxq, f1pxq, . . . , fdpxqq. (18)

In the two-dimensional case (d “ 2q, the parameter vector is ιpxq “ pλpxq, µpxq, f1pxq, f2pxqq and the
boundary condition is q̄pxq “ p´t̄1pxq,´t̄2pxqq. If we wish to prescribe λpxq “ µpxq “ 1tx1ą0,x2ă0u,
fpxq “ p0,´1q, and t̄ “ p0,´1q, we specify the following problem structure:

1 prob.eqn = LinearElasticity(2);
2 prob.vol pars fcn = @(x) [(x(1)>0).*(x(2)<0); (x(1)>0).*(x(2)<0); 0; ´1];
3 prob.bnd pars fcn = @(x, bnd) [0; 1];

Tasks for Part 2.3
Your tasks for this section are to complete the derivation of the flux formulation of the linear elasticity PDEs
and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see eqn/LinearElasticity.m):

1 function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval linelast srcflux(U, Q, pars)
2 %EVAL LINELAST SRCFLUX Evaluate linear elasticity source term, flux
3 %function and their partial derivatives at a point.
4 %
5 %Input arguments
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

7 % U : Array (NVAR, 1) : PDE state vector at a point
8 %
9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point

10 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point

Page 14 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

12 %
13 %Output arguments
14 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

15 % S, dSdU, dSdQ, F, dFdU, dFdQ : See notation.m

Use test srcflux findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 2.4 Incompressible Navier-Stokes: (AME60541) (20 points) The incompressible Navier-Stokes
equations model the flow of a viscous fluid with constant density

´ pρνvi,jqj ` ρvjvi,j ` P,i “ 0, vj,j “ 0, in Ω (19)

for i “ 1, . . . , d with the boundary conditions

pρνvi,j ´ Pδijqnj “ ρt̄i on BΩ, (20)

where vpxq P Rd is the velocity vector, P pxq P R is the pressure, ρpxq P R is the density of the fluid, νpxq P R
is the kinematic viscosity of the fluid, npxq P Rd is the outward normal to BΩ, and t̄pxq P Rd is the traction
boundary condition. In Homework 2, you put this into flux form as

Ui “

#

vi i ă d` 1

P i “ d` 1
, Fij “

#

´ρνvi,j ` Pδij i ă d` 1

0 i “ d` 1
, Si “

#

´ρvjvi,j i ă d` 1

´vs,s i “ d` 1

q̄i “

#

´ρt̄i i ă d` 1

0 i “ d` 1

Furthermore, for this PDE, we take the parameter vector to be the density and viscosity

ιpxq “ pρpxq, νpxqq. (21)

In the two-dimensional case (d “ 2q, the parameter vector is ιpxq “ pρpxq, νpxqq and the boundary
condition is q̄pxq “ p´t̄1pxq,´t̄2pxq, 0q. If we wish to prescribe ρpxq “ 1, νpxq “ 0.1 and t̄ “ p1, 2q, we
specify the following prob structure:

1 prob.eqn = IncompressibleNavierStokes(2);
2 prob.vol pars fcn = @(x) [1; 0.1];
3 prob.bnd pars fcn = @(x, bnd) [´1; ´2; 0];

Tasks for Part 2.4
Your tasks for this section are to complete the derivation of the flux formulation of the incompressible
Navier-Stokes equations and implement the various terms.

1) Derive the partial derivatives of the flux function and source term.

2) Implement the flux function, source term, and their partial derivatives in a function with the following
signature (see eqn/IncompressibleNavierStokes.m).

1 function [S, dSdU, dSdQ, F, dFdU, dFdQ] = eval ins srcflux(U, Q, pars)
2 %EVAL INS SRCFLUX Evaluate incompressible Navieŕ Stokes source term, flux
3 %function and their partial derivatives at a point.
4 %
5 %Input arguments
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

7 % U : Array (NVAR, 1) : PDE state vector at a point

Page 15 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

8 %
9 % Q : Array (NVAR, NDIM) : Gradient of PDE state vector at a point

10 %
11 % PARS : Array (NPARS, 1) : Vector of parameters at a point
12 %
13 %Output arguments
14 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

15 % S, dSdU, dSdQ, F, dFdU, dFdQ : See notation.m

Use test srcflux findiff.m to test your partial derivatives. Be aware that is will only determine if
your partial derivatives are consistent with the flux and source expressions; it will NOT test whether the
flux/source terms themselves are correct.

Part 3: (AME40541: 10 points, AME60541: 25 points) Next we turn to building up a basis for a finite
element using the local function space and transformation from Part 1. Recall that, in addition to the
element geometry, a finite element is defined by the associated function space and degrees of freedom (nodal

values in our case). Let Û e P RNel
dof be the collection of nodal degrees of freedom and define the matrix

of basis functions Ψpξq P RNel
dofˆNc over the reference element Ω˝ that maps the local degrees of freedom

associated with element e to the primary variables evaluated at x “ Gepξq:

Upxq|Ωe
“ ΦepxqT Û e, Uipxq|Ωe

“

Nel
dof
ÿ

j“1

ΦejipxqÛ
e
j . (22)

where the basis functions over the physical domain are

Φepxq :“ ΨpG´1
e pxqq,

BΦe

Bx
pxq “

BΨ

Bξ
pG´1
e pxqq ¨

„

BGe
Bξ
pG´1
e pxqq

´1

. (23)

In the following subsections, we consider two different families of vector-valued finite elements, a standard
element where all solution components are approximated in the same local function space, and a mixed
element where different components are approximated in different function spaces.

Part 3.1 (10 points) First we consider the a standard element where all solution components are approxi-
mated using the same function space, i.e.,

Uipxq|Ωe
“

Nel
nd
ÿ

j“1

φejpxqÛ
e
ij (24)

where tφ1, . . . , φNel
nd
u is a basis of the local function space over Ωe defined in terms of the master element

basis tψ1, . . . , ψNel
nd
u as φei pxq “ ψipG´1

e pxqq and the element degrees of freedom are

Û e “

»

—

—

–

Û e
1
...

Û e
Nel

nd

fi

ffi

ffi

fl

, Û e
i “

»

—

–

Ûe1i
...

ÛeNci

fi

ffi

fl

, (25)

where Ûeji is the degree of freedom at node i corresponding to Ujpxq|Ωe
. From this numbering of the degrees

of freedom, it can be seen the matrix of master basis functions must be

Ψpξq “

»

—

–

ψ1pξqINc

...
ψNel

nd
pξqINc

fi

ffi

fl

(26)

where INc
P RNcˆNc is the identity matrix.

Page 16 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Tasks for Part 3.1
Your task for this part is to implement a function with the following signature that creates the element
basis Ψpξq and its partial derivatives BΨ

Bξ pξq from the scalar local function space basis ψ1pξq, . . . , ψNel
nd
pξq,

evaluated at the appropriate quadrature points:

1 function [Tv, Tvf] = create elem basis(nvar, Qv, Qvf)
2 %CREATE ELEM BASIS Create element basis evaluated at point throughout
3 %volume (TV) and on each face (TVF) from basis of local function space
4 %evaluated at corresponding points (QV, QVF).
5 %
6 % Input arguments
7 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

8 % NVAR, QV, QVF : See notation.m
9 %

10 % Output arguments
11 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

12 % TV, TVF : See notation.m

Part 3.2 (AME60541) (15 points) Next we consider the a mixed element where the solution components
are partitioned into two groups,

Upxq “

„

V pxq
W pxq



, (27)

where V pxq P RM contains the first M components of Upxq and W pxq P RNc´M contains the last Nc ´M
components of Upxq. Each group of variables is approximated using a different function space, i.e.,

Vipxq|Ωe
“

Nel
nd
ÿ

j“1

φejpxqV̂
e
j for i “ 1, . . . ,M, Wipxq|Ωe

“

Ñel
nd
ÿ

j“1

φ̃ejpxqŴ
e
j for i “M ` 1, . . . , Nc (28)

where tφ1, . . . , φNel
nd
u and tφ̃1, . . . , φ̃Ñel

nd
u are bases for the two local function spaces considered. They are

defined in terms of master element bases tψ1, . . . , ψNel
nd
u and tψ̃1, . . . , ψ̃Ñel

nd
u, respectively, as

φei pxq “ ψipG´1
e pxqq for i “ 1, . . . , N el

nd, φ̃ei pxq “ ψ̃ipG´1
e pxqq for i “ 1, . . . , Ñ el

nd. (29)

The element degrees of freedom are defined as

Û e “

„

V̂ e

Ŵ e



, V̂ e “

»

—

—

–

V̂ e
1
...

V̂ e
Nel

nd

fi

ffi

ffi

fl

, V̂ e
i “

»

—

–

V̂ e1i
...

V̂ eMi

fi

ffi

fl

, Ŵ e “

»

—

—

–

Ŵ e
1

...

Ŵ e
Ñel

nd

fi

ffi

ffi

fl

, Ŵ e
i “

»

—

–

Ŵ e
1i
...

Ŵ e
pNc´Mqi

fi

ffi

fl

, (30)

where V̂ eji is the degree of freedom at node i corresponding to Vjpxq|Ωe
and Ŵ e

ji is the degree of freedom at
node i corresponding to Wjpxq|Ωe

. From this arrangement the degrees of freedom, the master basis function
matrix must be

Ψpξq “

»

—

—

—

—

—

—

—

—

—

–

ψ1pξqIM
...

ψNel
nd
pξqIM

ψ̃1pξqINc´M

...

ψ̃Ñel
nd
pξqINc´M

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (31)

Tasks for Part 3.2
Your task for this part is to implement a function with the following signature that creates the element
basis Ψpξq and its partial derivatives BΨ

Bξ pξq from the scalar local function space basis ψ1pξq, . . . , ψNel
nd
pξq

and ψ̃1pξq, . . . , ψ̃Ñel
nd
pξq, evaluated at the appropriate quadrature points:

Page 17 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

1 function [Tv, Tvf] = create elem basis mixed2(nvar1, Qv1, Qvf1, ...
2 nvar2, Qv2, Qvf2)
3 %CREATE ELEM BASIS MIXED2 Create element basis for mixed element (two
4 %different local function spaces) evaluated at point throughout volume (TV)
5 %and on each face (TVF) from basis of local function spaces evaluated at
6 %corresponding points (QV1, QVF1, QV2, QVF2).
7 %
8 % Input arguments
9 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

10 % NVAR1, QV1, QVF1 : NVAR, QV, QVF (see notation.m) for the first local
11 % function space, e.g., velocity in Navieŕ Stokes.
12 %
13 % NVAR2, QV2, QVF2 : NVAR, QV, QVF (see notation.m) for the second local
14 % function space, e.g., pressure in Navieŕ Stokes.
15 %
16 % Output arguments
17 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

18 % TV, TVF : See notation.m

Part 4: (40 points) Now that we have all ingredients in place, we turn to the core of our finite element
code. In Homework 2, we derived the weak formulation for the general PDE in (10) as

ż

Ω

p´wi,jFij ´ wiSiq dv `

ż

BΩ

wiq̄i ds “ 0 (32)

where wpxq P RNc is the vector of test functions for x P Ω, arguments are dropped for brevity, and indicial
notation is used (sum over i, j “ 1, . . . , Nc is implied by repeated index). Breaking the weak form into a
sum of integrals over element domains Ωe, we have

Nel
ÿ

e“1

ż

Ωe

p´wi,jFij ´ wiSiq dv `
Nel
ÿ

e“1

ż

BΩeXBΩ

wiq̄i ds “ 0, (33)

from which we can identify the element contribution to the weak form as

Bepw,Uq “

ż

Ωe

p´wiSi ´ wi,jFijq dv `

ż

BΩeXBΩ

wiq̄i ds.

Transferring the integrals to the corresponding reference domain using the master element transformation
leads to

Bepw,Uq “

ż

Ω˝

ˆ

´wiSi ´
Bwi
Bxj

Fij

˙

ge dV `

Nel
fc

ÿ

f“1

1tBΩefXBΩ‰Hu

ż

Γ˝

wiq̄iσef dS (34)

where arguments are dropped for brevity (all terms are evaluated at Gepξq).
Let tΩeu

Nel
e“1 define a mesh of Ω Ă Rd, i.e., Ω “

ŤNel

e“1 Ωe and Ωe X Ωe1 “ H if e ‰ e1, with Nel elements

and Nnd nodes. Define the global solution vector Û P RNdof as the vector containing all degrees of freedom
(solution variables) associated with a given mesh, where Ndof is the number of degrees of freedom in the

mesh. Similarly, let Û e P RNel
dof contain all local degrees of freedom associated with an element, where N el

dof

is the number of degrees of freedom in each element. The global and local solution vectors are related by
the ldof2gdof matrix as

Ûei “ ÛΞie , where Ξie “ ldof2gdofpi, eq

for i “ 1, . . . , N el
dof, e “ 1, . . . , Nel.

Since the FEM is a Galerkin approximation, the trial and test functions are interpolated using the same
basis functions, i.e.,

Upxq|Ωe
“ ΦepxqT Û e, wpxq|Ωe

“ ΦepxqT ŵe, (35)

where ŵe P RNel
dof is a vector of all degrees of freedom (test variables) associated with element e. The physical

basis is written in terms of the master basis as (23): Φepxq “ ΨpG´1
e pxqq. The specific form of Ψ will depend

on the type of element used, i.e., (26) for a standard element and (31) for a mixed element.

Page 18 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Substitute the expansions in (35) into the element weak form and identify the term multiplying ŵel as

the lth component of the element residual, R̂epÛ eq

R̂el pÛeq “

ż

Ω˝

ˆ

´ΨliSi ´
BΨli

Bxj
Fij

˙

ge dV `

Nel
fc

ÿ

f“1

1tBΩefXBΩ‰Hu

ż

Γ˝

Ψliq̄iσef dS

where
BΨli

Bxj
“
BΨli

Bξs
rG´1

e ssj and summation is implied over repeated indices. Then, the element Jacobian

(derivative of the element residual with respect to Û e), BR̂
e

BÛe
, is

BR̂el
BÛer

pÛ eq “

ż

Ω˝

ˆ

´Ψli

ˆ

BSi
But

Ψrt `
BSi
Bqts

BΨrt

Bxs

˙

´
BΨli

Bxj

ˆ

BFij
But

Ψrt `
BFij
Bqts

BΨrt

Bxs

˙˙

ge dV, (36)

where q “ ∇U , indicial notation is used (sum over repeated indices is implied), and arguments have been
dropped.

Once all element residuals and Jacobians have been computed, they are assembled into a global nonlinear
system

R̂pÛq “ 0

where R̂pÛq is the residual of the nonlinear system that results from assembling the element residuals R̂e

into a global vector. Similarly, the Jacobian of the global nonlinear system BR̂
BÛ
pÛq comes from the assembly

of the element Jacobian matrices BR̂e

BÛe
pÛ eq. The global solution vector is then partitioned into constrained

degrees of freedom Ûc (those with an essential boundary condition) and unconstrained degrees of freedom

Ûu: Û “ pÛT
u , Û

T
c q

T . The global residual and Jacobian are partitioned similarly

R̂pÛq “

„

R̂upÛu; Ûcq

R̂cpÛc; Ûuq



,
BR̂

BÛ
pÛq “

«

BR̂u

BÛu
pÛu; Ûcq

BR̂u

BÛc
pÛu; Ûcq

BR̂c

BÛu
pÛc; Ûuq

BR̂c

BÛc
pÛc; Ûuq

ff

.

The variables Ûc are known since an essential boundary condition is prescribed at these degrees of freedom
so we can disregard the corresponding equations in the residual, reducing the nonlinear system to

R̂upÛu; Ûcq “ 0,

with Jacobian matrix BR̂u

BÛu
pÛu; Ûcq. This system can be solved for the unknown Ûu using, e.g., the Newton-

Raphson method, and the global solution vector re-assembled as Û “ pÛT
u , Û

T
c q

T .
To close this section, we introduce another critical assembled quantity that is useful in integrating quan-

tities over the domain and for unsteady problems: the mass matrix. Suppose we would like to compute the
following integral

I “

ż

Ω

UpxqTUpxq dv, (37)

where Upxq P RNc is the PDE solution in (10). Using the finite element approximation in (22), we have

I “
Nel
ÿ

e“1

ż

Ωe

pÛ eqTΦepxqΦepxqT Û e dv “
Nel
ÿ

e“1

pÛ eqTM eÛ e, (38)

where

M e “

ż

Ωe

ΦepxqΦepxqT dv “

ż

Ωe

ΨpG´1
e pxqqΨpG´1

e pxqqT dv “

ż

Ω˝

ΨpξqΨpξqT gepξq dV

is the element mass matrix. After assembly, this reduces to

I “ ÛTMÛ , (39)

Page 19 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

where Û P RNdof is the global (assembled) solution vector and M P RNdofˆNdof is the assembled mass matrix.

Tasks for Part 4
Your task is to complete the core of your FEM code for general, second-order PDEs in (10) and test it using
PDE0.

1) Implement a function that evaluates the volume contribution of the discrete element residual R̂epÛ eq and

its Jacobian BR̂e

BÛe
pÛ eq given the solution coefficients for a single element Û e and information about the

element (geometry, basis functions, quadrature rule). Your functions should have the following signature:

1 function [Re, dRe] = intg elem claw vol(Ue, transf data, elem, elem data)
2 %INTG ELEM CLAW VOL Integrate element Galerkin form (volume term) to
3 %form the volume contribution to the element residual and Jacobian.
4 %
5 % Input arguments
6 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

7 % UE : Array (NDOF PER ELEM,) : Element solution (primary variables)
8 %
9 % TRANSF DATA, ELEM, ELEM DATA : See notation.m

10 %
11 % Output arguments
12 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

13 % RE : Array (NDOF PER ELEM,) : Element residual (volume contribution)
14 %
15 % DRE : Array (NDOF PER ELEM, NDOF PER ELEM) : Element Jacobian (volume contribution)

2) Implement a function that evaluates the boundary contribution of the discrete element residual R̂epÛ eq

given information about the element (geometry, basis functions, quadrature rule). Your functions should
have the following signature:

1 function [Re] = intg elem claw extface(transf data, elem, elem data)
2 %INTG ELEM CLAW EXTFACE Integrate element Galerkin form (boundary term) to
3 %form the boundary contribution to the element residual and Jacobian.
4 %
5 % Input arguments
6 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

7 % TRANSF DATA, ELEM, ELEM DATA : See notation.m
8 %
9 % Output arguments

10 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

11 % RE : Array (NDOF PER ELEM,) : Element residual (boundary contribution)

3) Implement a function that evaluates the element residual and Jacobian for each element in the domain and
stores them in an unassembled (element-wise) format. Your function should have the following signature:

1 function [Re, dRe] = eval unassembled resjac claw cg(U, transf data, elem, elem data, ...
ldof2gdof)

2 %EVAL UNASSEMBLED RESJAC Evaluate/store element residual vector and
3 %Jacobian matrices for each element.
4 %
5 % Input arguments
6 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

7 % U : Array (NDOF,) : Global (assembled) solution vector
8 %
9 % TRANSF DATA, ELEM, ELEM DATA, LDOF2GDOF : See notation.m

10 %
11 % Output arguments
12 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

13 % RE : Array (NDOF PER ELEM, NELEM): Element residual vector for

Page 20 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

14 % all elements in mesh
15 %
16 % DRE : Array (NDOF PER ELEM, NDOF PER ELEM, NELEM): Element Jacobian
17 % matrix for all elements in mesh

4) Implement a function that evaluates the assembled element residual and Jacobian. Your function should
have the following signature:

1 function [R, dR] = eval assembled resjac claw cg(U, transf data, elem, elem data, ...
2 ldof2gdof, spmat)
3 %EVAL ASSEMBLED RESJAC CLAW CG Evaluate assembled residual vector and
4 %Jacobian matrix
5 %
6 %Input arguments
7 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

8 % U : Array (NDOF,) : Global (assembled) solution vector
9 %

10 % TRANSF DATA, ELEM, ELEM DATA, SPMAT : See notation.m
11 %
12 %Output arguments
13 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

14 % R : Array (NDOF,) : Assembled residual vector PRIOR to static condensation
15 %
16 % dR : Array (NDOF, NDOF) : Assembled Jacobian matrix PRIOR to static condensation

5) Implement a function that evaluates the global (assembled) finite element residual and Jacobian. This
function will depend on the finite element space (femsp) structure; see create femsp cg.m. The femsp

structure is central to your finite element code as it contains all required information (both generic and
equation-specific) to evaluate the element residual and Jacobian; create femsp cg.m is a wrapper for
many of the functions you wrote in previous parts of the project. Your function should have the following
signature:

1 function [Ru, dRu] = create fem resjac(Uu, femsp)
2 %CREATE FEM RESJAC Create the finite element residual and Jacobian,
3 %restricted to the free degrees of freedom. When combined with a nonlinear
4 %solver, this will approximate the solution of a PDE (described in FEMSP).
5 %
6 % Input arguments
7 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

8 % UU : Array (NDOF́ NDBC,) : Global (assembled) solution vector,
9 % restricted to the free degrees of freedom (via static condensation).

10 %
11 % FEMSP : See notation.m
12 %
13 % Output arguments
14 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

15 % RU : Array (NDOF́ NDBC,) : Finite element residual, restricted to free
16 % degrees of freedom
17 %
18 % DRU : Sparse matrix (NDOF́ NDBC, NDOF́ NDBC) : Finite element Jacobian
19 % restricted to free degrees of freedom

This function will be used by solve fem.m that uses the Newton-Raphson method to solve the final finite
element system after static condensation.

6) Test your finite element code with PDE0 and verify optimal convergence rates. That is, for a sequence
of meshes with 2k elements for k “ 1, 2, 3, 4 and polynomial orders p “ 1, . . . , 5, verify that your finite
element solution is approaching the exact solution with the optimal convergence rate Ophp`1q, where h
is the finite element size. This can be done by plotting the finite element error versus the element size on
a log-log plot. Once the mesh is sufficiently fine, this should be a straight line. The slope of this line is
the convergence rate.

Page 21 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

The exact solution of PDE0 is

upxq “
2 cosp1´ xq ´ sinpxq

cosp1q
` x2 ´ 2

and the L2 finite element error is

e “

b

pÛ ´U˚qTMpÛ ´U˚q,

where Û P RNdof is the global (assembled) finite element solution and U˚ P RNdof is the exact solution
interpolated on the finite element mesh. The function solve pde0 is provided for your convenience;
however, it will not run to completion until all the coding tasks in this section are complete.

Part 5: (AME40541: 30 points, AME60541: 40 points) In this part of the project, we will use your finite
element code to solve several second-order linear PDEs, e.g., heat flow, over various domains.

Tasks for Part 5
Your tasks for this section are to solve second-order linear PDEs over a disk (and verify convergence rates),
the Batman domain, the ND domain, and a cube (AME60541).

1) Consider the Poisson equation on the unit disk

´∆u “ 1 in Ω, u “ 0 on BΩ, (40)

where Ω Ă R2 is the unit disk. The exact solution is

upx, yq “
1´ x2 ´ y2

4
.

Starter code is provided in solve linelptc sclr disk0.m.

• Use your FEM code to solve the above Poisson problem. Plot the solution upxq over the domain
Ω and along any line that passes through the center of the disk. Use a mesh consisting of 20 ˆ 20
hypercube elements of order p “ 2.

• Complete a convergence study for both simplex and hypercube meshes for polynomial orders p “
1, 2, 3. Be sure to plot the element size h versus the error in your finite element solution. Assume
the elements are uniformly sized, i.e., h “

a

V pΩq{Nel. Discuss similarities and differences between
the convergence rates and absolute error for a given element size between the simplex and hypercube
meshes.

2) Use your FEM code to solve a second-order linear PDE (13) on the Batman domain (Figure 6) with
boundary conditions: natural boundary condition with q̄pxq “ 10 sinpx1q on BΩ1 Y BΩ2 and an essential
boundary condition u “ 0 on BΩ3. Take the coefficient matrix to be k11 “ 1, k22 “ 10, and k12 “ k21 “ 0.
In the notation of (13), this corresponds to

kpxq “

„

1 0
0 10



, fpxq “ 0, q̄pxq “

#

10 sinpx1q x P BΩ1 Y BΩ2

0 otherwise,
(41)

and upxq “ 0 for x P BΩ3. Use the p “ 2 simplicial mesh provided (msh = load mesh('batman0', ...

'simp', 0, 2)). Plot the solution over the entire domain Ω and along the line Γ (Figure 6). Starter
code is provided in solve linelptc sclr batman0.m.

Page 22 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

0.3 0.4 0.5 0.6 0.7

´0.2

´0.3

Ω

BΩ1 BΩ2

Γ

0 0.33 0.73 1

´1

´0.64

´0.25

0

Ω

BΩ1

BΩ2

Γ1

Γ2

Γ3

Γ4

Figure 6: Domain (Ω), boundaries (BΩi), and lines along which to evaluate quantities (Γi) for Batman symbol
and Notre Dame logo. For each domain, the first two boundaries are shown above and the third boundary is
BΩ3 “ BΩzpBΩ1 Y BΩ2q.

3) Use your FEM code to solve the Poisson equation (13) on the ND logo domain (Figure 6) with boundary
conditions: prescribed solution u “ 0 on BΩ1, prescribed solution u “ 10 on BΩ2, and homogeneous
natural boundary conditions q̄ “ 0 on BΩ3. Take the coefficient matrix to be kpxq “ I2 (2 ˆ 2 identity
matrix). In the notation of (13), this corresponds to

kpxq “

„

1 0
0 1



, fpxq “ 0, q̄pxq “ 0, Upxq “

#

0 x P BΩ1

10 x P BΩ2.
(42)

Use the p “ 2 simplicial mesh provided (msh = load mesh('nd0', 'simp', 0, 2)). Plot the solution
over the entire domain Ω and along the lines Γ1, Γ2, Γ3, Γ4 (Figure 6). Starter code is provided in
solve linelptc sclr nd0.m.

4) (AME60541) Use your FEM code to solve the second-order linear PDE in (13) defined over the unit cube
(Ω “ r0, 1s3) with coefficient matrix

kpxq “

»

–

10 0 0
0 1 0
0 0 100

fi

fl

and boundary conditions

q̄pxq “

#

´x1 ´ x2 ´ x3 x P BΩ1 Y BΩ2 Y BΩ4 Y BΩ5

0 otherwise,
upxq “

#

0 x P BΩ3

sinp2πx1q cosp2πx2q x P BΩ6

.

Boundaries BΩ1 and BΩ4 are defined as the boundaries with unit normals e1, ´e1, respectively. Bound-
aries BΩ2 and BΩ5 are defined as the e2, ´e2, respectively. Boundaries BΩ3 and BΩ6 are defined as
the e3, ´e3, respectively. Plot the solution over the surface over the domain BΩ and along the plane
Γ “ tpx, y, zq | 0 ď x ď 1, 0 ď y ď 1, z “ 0.5u.

Page 23 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

Figure 7: Solution of Poisson equation on Batman and ND logo domains.

Part 6: (AME40541: 20 points, AME60541: 40 points) In this part of the project, we will use our finite
element code to solve several linear elasticity, e.g., structural deformation, problems over various domains.

Tasks for Part 6
Your tasks for this section are to solve the linear elasticity equations for a multi-material beam and hollow
cylinder (AME60541).

1) Consider a multimaterial beam (Figure 8) with boundary conditions: clamped on BΩ1 (u1 “ u2 “ 0),
no traction on BΩ2 Y BΩ4 (t̄1 “ t̄2 “ 0), and a distributed force in the ´y direction of 0.1 on BΩ3

(t̄1 “ 0, t̄2 “ ´0.1). Take the Lamé parameters for material 1 to be λ1pxq “ 365, µ1pxq “ 188 and those
for material 2 to be λ1pxq “ 36.5, µ1pxq “ 18.8.

• Solve for the deformation of the beam using your FEM code. Starter code is provided in solve ...

linelast beam0.m.

• Evaluate the displacements u1, u2 along the line Γ shown in Figure 8 and plot the magnitude of the
displacement on the deformed geometry.

0 5 10

0

0.5

1

ΩBΩ1

BΩ2

BΩ3

BΩ4

Γ

Figure 8: Multimaterial beam (Ω), boundaries (BΩi), and line along which to evaluate quantities (Γ).

2) (AME60541) Consider a hollow cylinder (Figure 9) with boundary conditions: clamped on BΩ2 (u1 “

u2 “ u3 “ 0), no traction on BΩ3 (t̄1 “ t̄2 “ t̄3 “ 0), a distributed force in the ´z direction of 0.25 on
BΩ4 (t̄1 “ t̄2 “ 0, t̄3 “ ´0.25), and a pressure load of 1 on BΩ1 (t̄ “ ´n, where n is the outward unit
normal). Take the Lamé parameters to be λpxq “ 0.73, µpxq “ 0.376.

• Solve for the deformation of the hollow cylinder using your FEM code. Use p “ 2 hypercube
elements. Make sure your mesh is fine enough that your solution is converged.

• Plot the magnitude of the displacement on the surface of the deformed cylinder.

• Plot the displacements u1, u2, u3 along the line Γ shown in Figure 9.

Page 24 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

´2 ´1 0 1 1.5 2

´2

´1

0

1

2

Γ

Ω

BΩ1 BΩ3

x1

x
2

´2 0 1.5

0

5

10

Γ

BΩ2

BΩ4

x1

x
3

Figure 9: Hollow cylinder domain (Ω), boundaries (BΩi), and line along which to evaluate quantities (Γ); x1 ´ x2
view (left) and x1 ´ x3 view (right). The boundaries BΩ1, BΩ3 are the inner, outer cylindrical surfaces, respectively.
The boundaries BΩ2, BΩ4 are the bottom, top “caps” of the cylinder, respectively.

Figure 10: Solution of linear elasticity equations of multimaterial beam and hollow cylinder.

Part 7: (AME60541) (40 points) In this part of the project, we will use our finite element code to solve sev-
eral incompressible Navier-Stokes equations, e.g., viscous fluid flow, through various domains. An important
non-dimensional quantity in the study of fluid flow is the Reynolds number

Re “
UL

ν
, (43)

where U is the velocity of the fluid with respect to an object, L is the characteristic linear dimension, and
ν is the kinematic viscosity of the fluid. The Reynolds number is the ratio of inertial-to-viscous forces and
is used to predict flow patterns in different fluid flow situations.

Page 25 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

0 0.5 1

0

0.5

1

ξ1

ξ 2

0 0.5 1

0

0.5

1

ξ1

ξ 2

0 0.5 1

0

0.5

1

ξ1

ξ 2

Figure 11: Mixed (velocity-pressure) triangular finite element in reference domain (ξ1-ξ2 space): P2-P1 (quadratic
approximation of velocity, linear approximation of pressure) (left), P3-P2 (cubic approximation of velocity, quadratic
approximation of pressure) (center), P4-P3 (quartic approximation of velocity, cubic approximation of pressure)
(right). The faces are numbered as: face 1 (), face 2 (), and face 3 (). There is a velocity degree of
freedom ve

i (i “ 1, . . . , Nel
nd) at each () and a pressure degree of freedom P e

i (i “ 1, . . . , Ñel
nd) at each (). For both

sets of nodes, the numbering is inherited from the standard numbering in Figure 1.

For stability reasons, we need to consider a mixed element approximation of the solution vector Upxq “
pv1pxq, . . . , vdpxq, P q

T . In particular, we will use an element of order p to approximate the velocity (vpxq)
and an element of order p´1 to approximate the pressure field (P pxq) (Figure 11). In the notation of Part 3,
this mean we take M “ d and Nc “ d`1. This mixed element representation of the solution implies that we
must have two meshes, one for the velocity degrees of freedom and one for the pressure degrees of freedom.
The elements of both meshes will exactly align, but the nodal positions will not.

Tasks for Part 7
Your tasks for this section are to solve the lid-driven cavity problem and flow through the ND logo.

1) Use your code to solve the lid-driven cavity problem. The lid-driven cavity is defined on a square domain
(Figure 12) with boundary conditions: stationary, no-slip walls (v1 “ v2 “ 0) on BΩ1 Y BΩ2 Y BΩ3 and a
moving, no-slip wall (v1 “ 1, v2 “ 0) on BΩ4. Since the pressure is only determined up to a constant, we
need to prescribe it at one point on the boundary, e.g., take P “ 0 at the point (x1 “ 0, x2 “ 0). Take
the characteristic length scale to be L “ 1 (length/height of domain), the characteristic velocity to be
the velocity of the moving wall U “ 1, and the density to be ρpxq “ 1.

• Solve for the flow velocity and pressure at Re “ 100. Starter code is provided in solve ins ldc0.m.

• Plot the velocities v1, v2 along the line Γ shown in Figure 12 and the magnitude of the velocity
throughout the domain.

• Solve for flow velocity and pressure at Re “ 2000 using your code. To solve for this Reynolds
number you will need to use continuation, i.e., use the solution corresponding to a Reynolds number
of Rek as the initial guess for the Newton solver for Reynolds number Rek`1, where k “ 0, 1, . . . ,
Rek ă Rek`1, and Re0 is sufficiently small that the solution can be found easily from a zero initial
guess (Re0 “ 100 is usually sufficient).

– Plot the velocity magnitude throughout the domain and superimpose a quiver plot that shows
the direction of the flow.

– Plot both components of the velocity along the the line Γ defined in Figure 12.

2) Use your code to solve for flow through the ND logo (Figure 6) with boundary conditions: vertical
inflow on BΩ1 (v1 “ 0, v2 “ 1q, traction-free outflow on BΩ2 (t̄1 “ t̄2 “ 0), and a no slip wall on BΩ3

(v1 “ v2 “ 0). Since the pressure is only determined up to a constant, we need to prescribe it at one
point on the boundary (you choose which point). Take the characteristic length scale to be L “ 1, the
characteristic velocity to be the inlet speed U “ 1, and the density to be ρpxq “ 1. Starter code provided
in solve ins nd0.

Page 26 of 27

University of Notre Dame
Dept Aerospace & Mechanical Engrng M. J. Zahr

0 1

0

0.75

1

Ω

BΩ1

BΩ2

BΩ3

BΩ4

Γ

Figure 12: Lid-driven cavity domain (Ω), boundaries (BΩi), and line along which to evaluate quantities (Γ).

• Solve for the flow velocity and pressure at Re “ 1300; you will need to use continuation to solve for
this Reynolds number. Use P2-P1 elements, i.e., triangular elements with quadratic (p “ 2) basis
functions for the velocity field and linear (p “ 1) basis functions for the pressure field.

• Plot the velocity magnitude throughout the domain and superimpose a quiver plot that shows the
direction of the flow.

• Plot both components of the velocity along the four lines Γ1, Γ2, Γ3, Γ4 defined in Figure 6.

Figure 13: Solution of the incompressible Naiver-Stokes equations: lid-driven cavity flow (Re “ 2000) and flow
through ND logo (Re “ 1300).

Page 27 of 27

	1
	1.1
	1.2
	1.3
	1.4

	2
	2.1
	2.2
	2.3
	2.4

	3
	3.1
	3.2

	4
	5
	6
	7

