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AME60714: Advanced Numerical Methods
Homework 2: Due Monday, October 5, 2020

Problem 1: (40 points) Consider a one-dimensional system of nonlinear conservation laws

q,t ` fpqq,x “ 0, qpx, 0q “
˝
qpxq, qpa, tq “ qa, qpb, tq “ qb (1)

for all x P pa, bq and t P p0, T s, where qpx, tq P Rm is the conservative state, fpqq P Rm is the (nonlinear) flux
function, and qa and qb are boundary conditions at x “ a and x “ b, respectively. For periodic boundary
conditions, we define qa “ qpb, tq and qb “ qpa, tq. Implement a first-order finite volume method (uniform
grid) with explicit fourth-order Runge-Kutta (RK4) timestepping to approximate the solution of (1). For
generality and modularity, I suggest implementing two functions: one that advances a general system of
ODEs a single time step using RK4 and one that evaluates the first-order finite volume velocity function;
see signatures below. By passing the numerical flux function as an argument, the code will be sufficiently
general to handle any PDE of the form (1) by simply providing an appropriate numerical flux function.

1 function u np1 = advance ode nonlin rk4(u n, dt, F)
2 %ADVANCE ODE NONLIN RK4 Advance a nonlinear system of ODEs defined by
3 %
4 % \dot{u} + f(u) = 0
5 %
6 % from time n to n+1 (step size = dt) using explicit 4th order Rungé Kutta
7 % (RK4).
8 %
9 %Input arguments

10 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

11 % U N : Array (m,) : Solution vector at step n
12 %
13 % DT : number : Time step
14 %
15 % F : function : Function defining the nonlinear velocity vector of ODE
16 % system (f: Array (m,)). The input to the function is the ODE state
17 % vector u.
18 %
19 %Output arguments
20 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

21 % U NP1 : Array (m,) : Solution vector at step n+1

1 function F = eval vel fvm1(Q, dx, numflux fcn)
2 %EVAL VEL FVM1 Evaluate first́ order finite volume velocity given the finite
3 %volume state (Q), uniform element size (dx), and numerical flux function
4 %(numflux fcn: function of ql and qr)

For each of the following, plot the solution (all components) at the final time t “ T on a sufficiently refined
grid in space and time. Be sure to experiment with the refinement (in space and time) and discuss any
relevant observations you make (particularly regarding stability and accuracy of the method).

a) Solve linear advection with periodic boundary conditions using the exact Riemann solution at x{t “ 0 as
the numerical flux

fpqq “ cq, f‹pql, qrq “

#

qr if c ă 0

ql if c ą 0

(can be simplified using the known value of a). Take c “ 1, b “ ´a “ 1, T “ 2, and the initial condition
˝
qpxq “ e´x2

{0.1. How many elements and timesteps are required to get a reasonable solution? Fix
∆x “ 0.02 and ∆t “ 0.002 and take T “ 2k for k “ 1, 2, 5, 10; what do you notice about the solution as
k increases? Repeat for ∆x “ 0.004.

b) Solve Burgers’ equation (fpqq “ q2{2) with periodic boundary conditions using the Godunov numerical
flux (exact solution of the Riemann problem at x{t “ 0) in (2). Take b “ ´a “ 1, T “ 0.75, and the

initial condition
˝
qpxq “ 0.5´ sinpπxq.
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c) Solve the Riemann problem for the p-system

q “ pv, uq, fpqq “ p´u, ppvqq,

with ppvq “ ´ev and the following initial conditions

˝
qpxq “

#

p1, 3q if x ă 0

p1, 1q if x ą 0,

˝
qpxq “

#

p1, 1.5q if x ă 0

p2, 1q if x ą 0,

˝
qpxq “

#

p2, 1q if x ă 0

p1, 1.5q if x ą 0.

The boundary states qa, qb can be read from the initial condition. Take b “ ´a “ 1 and T “ 0.1. This
corresponds to the same setup from Homework 1, Problem 4d with α “ 1. Use the HLL numerical flux
with wave speed estimates from the Roe averages

s1 “ ´e
v̂{2, s2 “ ev̂{2, v̂pql, qrq “ log

evr ´ evl

vr ´ vl
.

Include the exact solution on all plots submitted (code that solves the Riemann provided in Homework
1); comment on differences observed between this approach (FVM with numerical flux) and the results
obtained from Homework 1, Problem 4d.

As you will be using HLL for the remaining parts of this problem, I suggest writing a function that
computes the HLL numerical flux from wave speed estimates.

1 function fs = eval numflux hll(ql, qr, smin, smax, flux fcn)
2 %EVAL NUMFLUX HLL Evaluate HLL numerical flux from left/right states
3 %(ql, qr), minimum and maximum wave speed estimates (smin, smax), and the
4 %flux function defining the conservation law (flux fcn).

Then you can write a simple wrapper around this function that defines the flux function and wave speed
estimates for the p-system and call eval numflux hll.

1 function fs = eval numflux hll psys(ql, qr)
2 %EVAL NUMFLUX HLL PSYS Evaluate HLL numerical flux for ṕ system from left
3 %and right states (ql, qr).

d) Solve the Riemann problem for the shallow water equations

q “ ph, huq, fpqq “ phu, hu2 ` gh2{2q,

and the following initial condition

˝
qpxq “

#

p1,´0.5q if x ă 0

p1.5, 0.75q if x ą 0.

The boundary states qa, qb can be read from the initial condition. Take g “ 1, b “ ´a “ 1, and T “ 0.1.
Use the HLL numerical flux with wave speed estimates from the Roe averages

s1 “ û´

b

gh̄, s2 “ û`

b

gh̄, h̄pql, qrq “
hl ` hr

2
, ûpql, qrq “

?
hlul `

?
hrur

?
hl `

?
hr

.

e) Solve the Euler equations (ideal gas law)

q “ pρ, ρv, ρEq, fpqq “ pρv, ρv2 ` ppqq, rρE ` ppqqsvq,

where ppqq “ pγ ´ 1qpρE ´ ρv2{2q and the following initial condition

˝
qpxq “ p

˝
ρpxq,

˝
ρpxqv8,

˝
ppxq{pγ ´ 1q `

˝
ρpxqv28{2q,
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where the inflow conditions are ρ8 “ 1, v8 “ 1, M8 “ 0.2, and p8 “ ρ8v
2
8{pγM

2
8q, and the spatial

variation is given by

˝
ρpxq “ ρ8p1` 0.1Γpxqq,

˝
ppxq “ p8p1` 0.1Γpxqq, Γpxq “ e´px´0.3q2{0.052 .

The boundary states qa, qb can be read from the initial condition. Take γ “ 1.4, b “ ´a “ 5, and
T “ 0.025. Use the HLL numerical flux with wave speed estimates from the Roe averages

s1 “ v̂ ´ ĉ, s2 “ v̂ ` ĉ, v̂ “

?
ρlvl `

?
ρrvr

?
ρl `

?
ρr

, Ĥ “

?
ρlHl `

?
ρrHr

?
ρl `

?
ρr

,

where ĉ “

b

pγ ´ 1qpĤ ´ v̂2{2q and Hpqq “ pρE ` ppqqq{ρ.

f) Finally, solve the famous Osher-Shu problem: the Euler equations with the following initial condition

˝
qpxq “

#

pρl, ρlvl, pl{pγ ´ 1q ` ρlv
2
l {2q if x ă ´4

p
˝
ρrpxq,

˝
ρrpxqvr, pr{pγ ´ 1q `

˝
ρrpxqv

2
r{2q if x ą ´4,

where ρl “ 3.857143, vl “ 2.629369, pl “ 10.3333, vr “ 0, pr “ 1, and the density disturbance is

˝
ρrpxq “ 1` sinp5xq{5.

The boundary states qa, qb can be read from the initial condition. Take γ “ 1.4, b “ ´a “ 5, and T “ 1.
Use the HLL numerical flux with wave speed estimates from the Roe averages.

Problem 2: (50 points) Implement a high-order discontinuous Galerkin method (uniform grid) with ex-
plicit fourth-order Runge-Kutta (RK4) timestepping to approximate the solution of (1). For generality and
modularity, I suggest implementing a function that evaluates the DG velocity function (signature below)
and combining with the RK4 function from Problem 1 to advance in time. By passing the physical and
numerical flux functions as arguments, the code will be sufficiently general to handle any PDE of the form
(1) by simply providing an appropriate fluxes.

1 function F = eval vel dg(Q, T, w, Mi, flux fcn, numflux fcn, Qlr)
2 %EVAL VEL DG Evaluate high́ order discontinuous Galerkin velocity given the
3 %DG state (Q), basis functions (T), quadrature weights (w), element mass
4 %matrix inverses (Mi), physical flux function (flux fcn: function of q),
5 %and numerical flux function (numflux fcn: function of ql and qr).

The function setup dg msh disc provided setups up the basis functions, quadrature weights, and mass
matrix inverses.

1 function [xdg, wq, T, Mi] = setup dg msh disc(xlims, nelem, porder, nvar)
2 %SETUP DG MSH DISC Setup DG mesh and discretization
3 %
4 %Input arguments
5 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

6 % XLIMS : Array (2,) : Domain limits
7 %
8 % NELEM : number : Number of elements
9 %

10 % PORDER : number : Polynomial degree
11 %
12 % NVAR : number : Number of variables in conservation law
13 %
14 %Output arguments
15 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

16 % XDG : Array (1, NVPE, NELEM) : Nodal position for each element, i.e.,
17 % XDG(:, :, e) = nodal positions for element e.
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18 %
19 % WQ : Array (NQ,) : Weights for quadrature rule
20 %
21 % T : Array (NDOF PER ELEM, NVAR*(NDIM+1), NQ, NELEM) : Basis function and
22 % their derivative for each element evaluated at each quadrature node,
23 % i.e., T(:, 1:NVAR, j, e) = basis functions at quadrature node j of
24 % element e and T(:, NVAR+1:end, j, e) = derivative of basis function at
25 % quadrature node j of element e
26 %
27 % Mi : Array (NDOF PER ELEM, NDOF PER ELEM, NELEM) : Mass matrix inverse
28 % for each element.

Use you DG code to repeat Problem 1a-1e (skip 1f since it will not work without stabilization of the shock).
For all tests, use 50 elements and consider at least polynomial degrees p “ 1, 2. Comment on the accuracy,
stability, dissipation, and cost of the scheme relative to the FVM from Problem 1. How do these observations
vary with p?

Problem 3: (30 points) For a scalar nonlinear conservation law in one-dimension with convex flux function
fpqq (f2pqq ą 0), prove:

a) the average numerical flux is not an E-flux

f‹avgpql, qrq “
fpqlq ` fpqrq

2

b) the Godunov numerical flux is an E-flux

f‹gdnvpql, qrq “

$

&

%

min
qlďqďqr

fpqq if ql ď qr

max
qrďqďql

fpqq if qr ď ql
(2)

c) the local Lax-Friedrichs (Rusanov) numerical flux is an E-flux

f‹llfpql, qrq “
fpqlq ` fpqrq

2
´
α

2
pqr ´ qlq, α “ maxt|f 1pqlq|, |f

1pqrq|u

(for brevity, assume qr ě ql). Hint: since f is a convex function, f 1pyqpy ´ xq ě fpyq ´ fpxq for any x, y.

Recall that f‹pql, qrq is an E-flux corresponding to flux fpqq if

pfpξq ´ f‹pql, qrqqpqr ´ qlq ě 0,

for all ξ P rmintql, qru,maxtql, qrus.
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