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AME60714: Advanced Numerical Methods
Homework 4: Due Wednesday, November 11, 2020

Instructions: Complete three problems of your choice.

Problem 1: (30 points) Consider the parametrized nonlinear system of ODEs (perhaps the result of semi-
discretization of a PDE)

Mq,t ` fpq;µq “ 0, qp0;µq “
˝
q

where M P RNˆN is a fixed mass matrix, qpt;µq P RN is the ODE state, µ P RM is the parameter vector,

fpq;µq is the nonlinear velocity function, and
˝
q is the initial condition. Finally, assume M ! N .

a) Approximate the solution
qpt;µq « qrpt;µq :“ q̄ ` V ypt;µq,

where V P RNˆk is the reduced basis (V TV “ I) and q̄ is an affine offset, ypt;µq P Rk are the reduced
coordinates, and qrpt;µq P RN is the approximation to qpt;µq in the reduced subspace. Based on this
solution approximation, a Galerkin reduced-order model takes the form of a system of k ODEs governing
the reduced coordinates ypt;µq

Mry,t ` hpy;µq “ 0, yp0;µq “
˝
y.

Derive the reduced velocity function hpy;µq, mass matrix Mr, and initial condition
˝
y. Discuss the

advantages of taking q̄ “
˝
q.

b) Suppose we have collected snapshots tqpti,µjqu for i “ 1, . . . , Nt and j “ 1, . . . , Nµ. How can these be
used to construct a basis V via POD? (Hint: your answer should involve q̄)

c) What is the computational complexity of evaluating the nonlinear terms hpy;µq and
Bh

By
py;µq? Assume

fpq;µq and
Bf

Bq
pq;µq are OpNMq complexity (usually the Jacobian is sparse).

d) What is the computational complexity of a single first-order explicit (forward Euler) and implicit (back-
ward Euler) time step for the unreduced and reduced system? How do the complexity of the reduced and
unreduced systems compare for k ! N?

e) Repeat the (a)-(c) for the cases below where the velocity function f has special structure and discuss the
implications.

• Linear in q, nonlinear dependence on µ

fpq;µq “ Apµqq,

where the computational complexity of evaluating Apµq P RNˆN is OpNMq
• Linear in q, affine dependence on µ

fpq;µq “ Apµqq, Apµq “
s
ÿ

i“1

Aigipµq,

where the computational complexity of evaluating gipµq P R is OpMq and s ! N

• Quadratic in q, affine dependence on µ

fipq;µq “
1

2
Hijkqjqk `Aijqj ` bigpµq,

where H P RNˆNˆN , A P RNˆN , b P RN , and the computational complexity of evaluating gpµq P R
is OpMq
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Problem 2: (20 points) Consider the following parametrized nonlinear system of equations (perhaps the
result of discretization of PDE)

rpq;µq “ 0,

where qpµq P RN is the state and µ P RM is a vector of parameters. Assume that the equation rp¨;µq “ 0
has a unique solution for each µ P RM . We will approximate the state as

qpµq « qr :“ V ypµq,

where V P RNˆk is a reduced basis (V TV “ I, k ! N), and we defined the reduced coordinates ypµq as

ypµq “ arg min
w
}rpV w;µq}

2
Θ , (1)

where Θ P RNˆN is a symmetric, positive definite matrix defining the norm, i.e., }x}Θ “
?
xTΘx.

a) Derive the nonlinear system of equations governing the reduced coordinates y by writing the first-order
optimality system of (1).

b) Prove the minimum-residual reduced-order model is exact provided the exact solution lies in the reduced
subspace. That is, suppose qpµq P RanpV q (RanpV q is the span of the columns of V ) and prove that
V ypµq “ qpµq.

Problem 3: (40 points) In this problem, you will apply projection-based model reduction to accelerate
the convection-diffusion problem from Homework 3 (no optimization). The evolution of the concentration
of the contaminant qpx, tq is modeled by the convection-diffusion equation

q,t `∇ ¨ pβqq ´ ν∆q “ 0 in Ωˆ p0, T s,

where Ω “ r´1, 1s ˆ r´1, 1s is the spatial domain, βpxq “ psinpπx1q cospπx2q,´ cospπx1q sinpπx2qq is the
velocity field (Taylor-Green vortex), ν “ 10´3 is the diffusion coefficient, and T “ 4 is the final time. The
boundary (BΩ) is split into Neumann (ΓN ) and Dirichlet (ΓD) (Figure 1): BΩ “ ΓN Y ΓD with boundary
conditions

∇q ¨ n “ 0 on ΓN , q “ 0 on ΓD,

where n : BΩ Ñ R2 is the outward unit normal to BΩ. The initial condition is

qpx, 0q “
˝
qpxq “ 5 exp

ˆ

´
x21 ` x

2
2

0.1

˙

.

Semi-discretization of the above PDE leads to a system of ODEs (setup for you in FEdu; see starter code)

M 9q `Kq “ 0, qp0q “
˝
q, (2)

where M P RNˆN is the mass matrix, K P RNˆN is the discretization of the convection and diffusion terms,

qptq P RN is the state of the discretized PDE, and
˝
q P RN is the discretization of the initial condition

˝
q.

This system of ODEs is called the high-dimensional model (HDM).

a) Use backward Euler to integrate the HDM in time; use Nt “ 400 time steps and ∆t “ 10´2. Save
the solution at each timestep (call these snapshots), compress using POD to form a basis V P RNˆk
(V TV “ I), and plot the decay of the singular values (use semilogy plot) and visualize the first three
POD modes using the provided visualization routines.

b) Approximate the solution qptq « qrptq :“ V yptq, where yptq P Rk are the reduced coordinates. Derive
a system of ODEs that governs the reduced coordinates y using a Galerkin projection and the initial

condition yp0q “
˝
y. Identify all terms that can be precomputed, i.e., computed once-and-for-all before

timestepping initiated. Assuming of these terms are precomputed, what is the complexity of a single
time step of the ROM compared to the HDM. Comment on the expected cost of the ROM relative to the
HDM for k ! N .
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Figure 1: Convection-diffusion configuration

c) Run the ROM simulation for a reduced basis of dimension k P t1, . . . , 10, 15, 20, 25, 30u. For each k, record
the CPU time required to complete the timestepping (not the precomputations) as well as the maximum
error over all time steps

E “ max
nPt1,...,Ntu

}qn ´ V yn} ,

where qn P RN is the HDM solution at timestep n and yn P Rk are the ROM reduced coordinates at
timestep n. Plot the error (E) as a function of the ROM size (k) and the ROM speedup relative to the
HDM (CPU time of HDM divided by the CPU time of the ROM) as a function of the ROM size (k).
Comment on the errors and speedups you observe; keep in mind that N “ 900 (if you did not change the
defaults in the starter code).

d) What is misleading about the results obtained thus far? What happens when you use the same reduced

basis V but change the initial condition
˝
q?

Problem 4: (40 points) Consider the following parametrized steady-state advection-diffusion equation

∇ ¨ pβqq ´ ν∆q “ f in Ω, q “ 0 on BΩ,

where Ω “ tx P R2 | x21 ` x22 ď 2u is the spatial domain, βpµq “ pµ2 cosµ1, µ2 sinµ1q is the constant
(parametrized) velocity field, ν “ 1 is the diffusion coefficient, f “ 10 is the source term, and µ P D :“
r0, πs ˆ r0, 10s are the parameters. Discretization of the above PDE using the finite element method leads
to a (affine) parametrized system of linear equations (setup for you in FEdu; see starter code)

Kpµqq “ f , Kpµq :“K0 ` g1pµqK1 ` g2pµqK2, (3)

where qpµq P RN is the solution of the discretized PDE, K0,K1,K2 P RNˆN are sparse stiffness-like
matrices, f P RN is the discretization of the source term f , g1pµq “ µ2 cosµ1, and g2pµq “ µ2 sinµ1. This
system of equation is the HDM.

a) Suppose you are given a reduced basis V P RNˆk (V TV “ I) and approximate the solution as qpµq «
qrpµq :“ V ypµq, where ypµq P Rk are the reduced coordinates. Derive the Galerkin ROM corresponding
to the HDM. Identify all terms that can be precomputed, i.e., independent of µ. Assuming of these terms
are precomputed, what is the complexity of solving the ROM compared to the HDM. Comment on the
expected cost of the ROM relative to the HDM for k ! N .

b) Define a finite collection of the parameter space Dunif
r Ă D by uniformly sampling D in each dimension

with r samples (|Dr| “ r2). Construct a reduced basis by solving the HDM at each µ P Dunif
r (be sure
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Figure 2: Solution at 3 parameter configurations: µ “ p0, 10q (left), µ “ p0, 0q (center), µ “ pπ{2, 10q (right).

to orthogonalize the snapshots; do not compress them). Solve the corresponding ROM for each point in
Dtest :“ Dunif

10 . For r “ 1, . . . , 6, record the CPU time required to solve all parameters in the test set Dtest

and the maximum error
E “ max

µPDtest

}qpµq ´ V ypµq} .

Plot the error (E) as a function of the ROM size (r2). Comment on the errors and speedups you observe;
keep in mind that N “ 1161 (if you did not change the defaults in the starter code).

c) Repeat (b) with greedy training. Define the collection of candidate points Dcand :“ Dunif
8 and use the

same test set from (b): Dtest. Initialize the training set with µp1q “ p0, 0q. At iteration k of the greedy
algorithm, the kth training parameter will be determined as the parameter in Dcand where the ROM
(build from the reduced basis at iteration k) maximizes the HDM residual

µpkq “ arg max
µPDcand

}KpµqVk´1yk´1pµq ´ f},

where Vk´1 P RNˆpk´1q is the reduced basis at iteration k and yk´1pµq are the corresponding reduced
coordinates. Once the new parameter is selected µpkq, the HDM is sampled qpµpkqq and the basis updated
to Vk. The iteration usually terminates when a maximum number of samples are collected or the HDM
residual at all candidate points is below a given tolerance. For this problem, terminate the greedy method
when r2 samples have been collected. For a given r, once the basis is constructed, solve the corresponding
ROM for each point in Dtest. For r “ 1, . . . , 6, record the CPU time required to solve all parameters in
the test set Dtest and the maximum error (E). Plot the error (E) as a function of the ROM size (r2).
Comment on this sampling strategy relative to the uniform sampling strategy in (c).
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