Lecture 15: PDE-constrained optimization AME60714: Advanced Numerical Methods

Matthew J. Zahr Aerospace and Mechanical Engineering University of Notre Dame

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements

Goal: Find the solution of the unsteady PDE-constrained optimization problem

$$\begin{split} \underset{\boldsymbol{U}, \ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \ \text{ in } \ \boldsymbol{v}(\boldsymbol{\mu}, t) \end{split}$$

PDE solution design/control parameters

constraints

$$\begin{split} & \boldsymbol{\mu} \\ & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} j(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt \\ & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} \mathbf{c}(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt \end{split}$$

 $\boldsymbol{U}(\boldsymbol{x},t)$

Optimizer

Primal PDE

Dual PDE

Dual PDE

Dual PDE

• Continuous PDE-constrained optimization problem

$$\begin{split} \underset{\boldsymbol{U}, \ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \ \text{ in } \ \boldsymbol{v}(\boldsymbol{\mu}, t) \end{split}$$

• Fully discrete PDE-constrained optimization problem

$$\begin{array}{l} \underset{u_{0}, \ \dots, \ u_{N_{t}} \in \mathbb{R}^{N_{u}}, \\ k_{1,1}, \ \dots, \ k_{N_{t},s} \in \mathbb{R}^{N_{u}}, \\ \mu \in \mathbb{R}^{n_{\mu}} \end{array} \qquad J(u_{0}, \ \dots, \ u_{N_{t}}, \ k_{1,1}, \ \dots, \ k_{N_{t},s}, \ \mu) \\ \text{subject to} \qquad \mathbf{C}(u_{0}, \ \dots, \ u_{N_{t}}, \ k_{1,1}, \ \dots, \ k_{N_{t},s}, \ \mu) \leq 0 \\ u_{0} - g(\mu) = 0 \\ u_{n} - u_{n-1} - \sum_{i=1}^{s} b_{i} k_{n,i} = 0 \\ \mathbf{M} k_{n,i} - \Delta t_{n} \mathbf{r} (u_{n,i}, \ \mu, \ t_{n,i}) = 0 \end{array}$$

Energy = 1.4459e-01Thrust = -1.1192e-01 $\begin{array}{l} {\rm Energy}=3.1378\text{e-}01\\ {\rm Thrust}=0.0000\text{e+}00 \end{array}$

Energetically optimal flapping vs. required thrust

Energetically optimal flapping vs. required thrust: QoI

The optimal flapping energy (W^*) , frequency (f^*) , maximum heaving amplitude (y^*_{\max}) , and maximum pitching amplitude (θ^*_{\max}) as a function of the thrust constraint \bar{T}_x .

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

True in vivo flow

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

MRI protocol

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

MRI measurements: noisy, space-time averages over voxels

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

MRI measurements: noisy, space-time averages over voxels

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

Improve with CFD:

- Resolution: 3mm, 25-100ms in 10-20 minute scan
- Greater resolution = more noise, longer scan
- Biomarkers (WSS) must be computed from noisy velocity measurements
- Still very far from resolution needed for congenital heart disease

Improve with CFD: BCs? ICs? material properties?

In vivo image reconstruction using all prior knowledge

To <u>break</u> resolution-noise barrier, we incorporate all available information into reconstruction procedure

- geometry of patient-specific flow domain
- conservation of mass, momentum, energy (Navier-Stokes)
- low-resolution in vivo flow measurements (MRI data)

- $\bullet~\underline{\mbox{Phase I}}:$ Collect MRI data to extract flow domain and 4D flow measurements
- <u>Phase II</u>: Image segmentation and mesh generation
- <u>Phase III</u>: Find Navier-Stokes solution that best explains flow data (PDE-constrained optimization to minimize MRI data misfit)

$$\begin{array}{ll} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U}) \\ \text{subject to} & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}, \boldsymbol{\mu}) = 0 \end{array}$$

$oldsymbol{U}$:	PDE solution
μ	:	BCs, IC, material properties
$\mathcal{J}(oldsymbol{U})$:	$\rm CFD/MRI$ misfit function
$oldsymbol{F}(oldsymbol{U}, ablaoldsymbol{U},oldsymbol{\mu})$:	Navier-Stokes flux function

• <u>Phase IV</u>: Visualize solution and compute biomarkers

Phantom validation: laser PIV vs. 4D flow MRI vs. SBI

- Experimental setup: water tank with pulsatile inflow
- Precise laser PIV measurements: "true" flow
- Compare standard 4D flow MRI (high-res) and SBI with laser PIV "truth"
- SBI uses low-resolution MRI data

- Resolution of high-resolution 4D flow MRI: $3 \times 3 \times 3$ mm³, 50ms
- Resolution of low-resolution 4D flow MRI used for SBI: $6 \times 6 \times 6 \text{mm}^3$, 100ms

MRI data

Reconstructed flow

In vivo test of SBI flow reconstruction: Circle of Willis

Patient-specific mesh of brain vessel network (Circle of Willis)

MRI voxel velocity data on 2D spatial slice at time instance

SBI reconstruction

4D flow MRI reconstruction

SBI reconstruction

SBI matches reference velocity measurements better than 4D flow MRI even for *in vivo* application

The reconstructed flow field (---) provides better agreement to accurate velocity measurements (--) on a 2D section than the 4D flow MRI measurements (--)

SBI matches reference velocity measurements better than 4D flow MRI even for *in vivo* application

The reconstructed flow field (---) provides better agreement to accurate velocity measurements (--) on a 2D section than the 4D flow MRI measurements (--)

SBI matches reference velocity measurements better than 4D flow MRI even for *in vivo* application

The reconstructed flow field (---) provides better agreement to accurate velocity measurements (--) on a 2D section than the 4D flow MRI measurements (--)

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis Exising solutions: **limiting**, artificial viscosity

 $\underline{\text{Drawbacks}}$: order reduction, local refinement

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis Exising solutions: **limiting**, artificial viscosity

 $\underline{\text{Drawbacks}}$: order reduction, local refinement

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis <u>Exising solutions</u>: limiting, **artificial viscosity** Drawbacks: order reduction, local refinement

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis <u>Exising solutions</u>: limiting, **artificial viscosity** Drawbacks: order reduction, local refinement

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis <u>Exising solutions</u>: limiting, **artificial viscosity** Drawbacks: order reduction, local refinement

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis Exising solutions: limiting, artificial viscosity

 $\underline{\textsc{Drawbacks}}:$ order reduction, local refinement

<u>Proposed solution</u>: align features of solution basis with features in the solution using optimization formulation and solver

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis <u>Exising solutions</u>: limiting, artificial viscosity

 $\underline{\text{Drawbacks}}$: order reduction, local refinement

<u>Proposed solution</u>: align features of solution basis with features in the solution using optimization formulation and solver

Tracking method for stable, high-order resolution of discontinuities

<u>Goal</u>: Align element faces with (unknown) discontinuities to perfectly capture them and approximate smooth regions to high-order

Non-aligned

Discontinuity-aligned

Tracking method for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture them and approximate smooth regions to high-order

Discontinuity-aligned

Ingredients

- Discontinuous Galerkin discretization: inter-element jumps, high-order
- Discontinuity-aligned mesh is the solution of an optimization problem constrained by the discrete PDE \implies implicit shock tracking
- Full space solver that converges the solution and mesh simultaneously to ensure solution of PDE never required on non-aligned mesh

Convergence of DG discretization with implicit shock tracking for the modified inviscid Burgers' equation for polynomial orders p = 1 (•), p = 2 (•), p = 3 (•), p = 4 (•), p = 5 (*), p = 6 (8). The slopes of the best-fit lines to the data points in the asymptotic regime are: $\angle -1.95$ (----), $\angle -3.13$ (----), $\angle -3.85$ (-----), $\angle -4.36$ (----), $\angle -8.67$ (----).

Why high-order tracking: Benefits more dramatic than low-order

Key observation: Accuracy improvement of tracking approach relative to (specialized) adaptive mesh refinement is more exaggerated for high-order approximations: $\mathcal{O}(10^1)$ for p = 1 and $\mathcal{O}(10^6)$ for p = 3.

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D supersonic flow with <u>48 elements</u>; the error in the stagnation enthalpy is $\mathcal{O}(10^{-4})$ for p = 2 (1152 DoF).

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D supersonic flow with <u>48 elements</u>; the error in the stagnation enthalpy is $\mathcal{O}(10^{-4})$ for p = 2 (1152 DoF).

Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking

Aims to overcome the difficulty of explicitly meshing the unknown shock surface

p=0 space for solution, q=2 space for mesh $L_1 \mbox{ error } = 1.15 \times 10^{-3}$

p = 0 space for solution, q = 3 space for mesh

p = 0 space for solution, q = 1 space for mesh L^2 stagnation enthalpy error: 7.94×10^{-10}

