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PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle
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PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility
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PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements
Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements
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Unsteady PDE-constrained optimization formulation

Goal: Find the solution of the unsteady PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

U(x, t) PDE solution
µ design/control parameters

J (U ,µ) =

∫ Tf

T0

∫
Γ

j(U ,µ, t) dS dt objective function

C(U ,µ) =

∫ Tf

T0

∫
Γ

c(U ,µ, t) dS dt constraints

5 / 32



Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer
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Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

dJ
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High-order discretization of PDE-constrained optimization

• Continuous PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

• Fully discrete PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu ,

µ∈Rnµ

J(u0, . . . , uNt
, k1,1, . . . , kNt,s, µ)

subject to C(u0, . . . , uNt
, k1,1, . . . , kNt,s, µ) ≤ 0

u0 − g(µ) = 0

un − un−1 −
s∑

i=1

bikn,i = 0

Mkn,i −∆tnr (un,i, µ, tn,i) = 0
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Optimal rigid body motion (RBM), time-morph geometry (TMG)

Energy = 9.4096
Thrust = 0.1766

Energy = 4.9476
Thrust = 2.500

Energy = 4.6182
Thrust = 2.500

Initial Guess
Optimal RBM
Tx = 2.5

Optimal RBM/TMG
Tx = 2.5
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Energetically optimal flapping in three dimensions

Energy = 1.4459e-01
Thrust = -1.1192e-01

Energy = 3.1378e-01
Thrust = 0.0000e+00
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Energetically optimal flapping vs. required thrust

Energy = 1.8445
Thrust = 0.06729

Energy = 0.21934
Thrust = 0.0000

Energy = 6.2869
Thrust = 2.5000

Initial Guess
Optimal
Tx = 0

Optimal
Tx = 2.5
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Energetically optimal flapping vs. required thrust: QoI
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The optimal flapping energy (W ∗), frequency (f∗), maximum heaving amplitude (y∗max),
and maximum pitching amplitude (θ∗max) as a function of the thrust constraint T̄x.
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Current MRI 4D flow reconstruction: insufficient for infants

• Resolution: 3mm, 25-100ms in 10-20 minute scan

• Greater resolution = more noise, longer scan

• Biomarkers (WSS) must be computed from noisy velocity measurements

• Still very far from resolution needed for congenital heart disease

True in vivo flow
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BCs? ICs? material properties?
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In vivo image reconstruction using all prior knowledge

To break resolution-noise barrier, we incorporate all available information into
reconstruction procedure

• geometry of patient-specific flow domain

• conservation of mass, momentum, energy (Navier-Stokes)

• low-resolution in vivo flow measurements (MRI data)
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Simulation-based imaging

• Phase I: Collect MRI data to extract flow domain and 4D flow measurements

• Phase II: Image segmentation and mesh generation

• Phase III: Find Navier-Stokes solution that best explains flow data
(PDE-constrained optimization to minimize MRI data misfit)

minimize
U , µ

J (U)

subject to
∂U

∂t
+∇ · F (U ,∇U ,µ) = 0

U : PDE solution
µ : BCs, IC, material properties
J (U) : CFD/MRI misfit function
F (U ,∇U ,µ) : Navier-Stokes flux function

• Phase IV: Visualize solution and compute biomarkers
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Simultation-based imaging workflow
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Phantom validation: laser PIV vs. 4D flow MRI vs. SBI

• Experimental setup: water tank with pulsatile inflow

• Precise laser PIV measurements: “true” flow

• Compare standard 4D flow MRI (high-res) and SBI with laser PIV “truth”

• SBI uses low-resolution MRI data
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SBI captures features that cannot be resolved with 4D flow MRI

• Resolution of high-resolution 4D flow MRI: 3× 3× 3mm3, 50ms

• Resolution of low-resolution 4D flow MRI used for SBI: 6× 6× 6mm3, 100ms
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High-quality reconstruction with experimental data: pulsatile flow

MRI data Reconstructed flow
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In vivo test of SBI flow reconstruction: Circle of Willis

Patient-specific mesh of brain vessel network
(Circle of Willis)

MRI voxel velocity data on
2D spatial slice at time

instance

SBI reconstruction
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Streamlines of flow: MRI 4D flow vs SBI reconstruction

4D flow MRI reconstruction SBI reconstruction
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SBI matches reference velocity measurements better than 4D flow
MRI even for in vivo application
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The reconstructed flow field ( ) provides better agreement to accurate velocity
measurements ( ) on a 2D section than the 4D flow MRI measurements ( )

21 / 32



SBI matches reference velocity measurements better than 4D flow
MRI even for in vivo application

0 0.2 0.4 0.6 0.8
30

40

50

60

time (s)

ve
lo
ci
ty

(c
m
/s
)

The reconstructed flow field ( ) provides better agreement to accurate velocity
measurements ( ) on a 2D section than the 4D flow MRI measurements ( )

21 / 32



SBI matches reference velocity measurements better than 4D flow
MRI even for in vivo application

0 0.2 0.4 0.6 0.8
30

40

50

60

time (s)

ve
lo
ci
ty

(c
m
/s
)

The reconstructed flow field ( ) provides better agreement to accurate velocity
measurements ( ) on a 2D section than the 4D flow MRI measurements ( )

21 / 32



State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver
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State-of-the-art numerical methods for resolving shocks
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Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement
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Tracking method for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture
them and approximate smooth regions to high-order

Non-aligned Discontinuity-aligned

Ingredients

• Discontinuous Galerkin discretization: inter-element jumps, high-order
• Discontinuity-aligned mesh is the solution of an optimization problem

constrained by the discrete PDE =⇒ implicit shock tracking
• Full space solver that converges the solution and mesh simultaneously to

ensure solution of PDE never required on non-aligned mesh
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Why tracking: Recover optimal O(hp+1) convergence rates
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Convergence of DG discretization with implicit shock tracking for the modified inviscid Burgers’
equation for polynomial orders p = 1 ( ), p = 2 ( ), p = 3 ( ), p = 4 ( ), p = 5 ( ), p = 6 ( ). The

slopes of the best-fit lines to the data points in the asymptotic regime are: ∠ − 1.95 ( ),
∠ − 3.13 ( ), ∠ − 3.85 ( ), ∠ − 5.47 ( ), ∠ − 4.36 ( ), ∠ − 8.67 ( ).
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Why high-order tracking: Benefits more dramatic than low-order

discontinuity-tracking p = 1 ( ) p = 2 ( ) p = 3 ( )
adaptive refinement p = 1 ( ) p = 2 ( ) p = 3 ( )
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Key observation: Accuracy improvement of tracking approach relative to
(specialized) adaptive mesh refinement is more exaggerated for high-order
approximations: O(101) for p = 1 and O(106) for p = 3.
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Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to
p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D
supersonic flow with 48 elements; the error in the stagnation enthalpy is O(10−4)

for p = 2 (1152 DoF).
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Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking
Aims to overcome the difficulty of explicitly meshing the unknown shock surface
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Linear advection, trigonometic shock

p = 0 space for solution, q = 2 space for mesh
L1 error = 1.15× 10−3
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Inviscid Burgers’ equation: space-time formulation

p = 0 space for solution, q = 3 space for mesh
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Supersonic flow past wedge (M = 2)

p = 0 space for solution, q = 1 space for mesh
L2 stagnation enthalpy error: 7.94× 10−10
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Supersonic flow past NACA0012 airfoil (M = 1.5)

Initialization p = 1 tracking
eH = 1.30× 10−3

p = 2 tracking
eH = 6.73× 10−5
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Transonic flow past NACA0012 airfoil (M = 0.85)

Initialization p = 1 tracking p = 2 tracking
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Transonic flow past NACA0012 airfoil (M = 0.85)

Initialization p = 1 tracking p = 2 tracking
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