
CME292: Advanced MATLAB for Scientific Computing

Homework #3
OOP, File Management, & System Interaction

Due: Tuesday, April 28, 2015

Instructions
This problem set will be combined with Homework #2. For this combined problem set, 2 out of the 6
problems are required. You are free to choose the problems you complete.

Before completing problem set, please see HomeworkInstructions on Coursework for general homework
instructions, grading policy, and number of required problems per problem set.

Problem 1
In this problem, you are provided the completed polynomial.m class from Lecture 5. A brief outline overview
of the code is shown below. Your task is to create a class piecewise_polynomial.m that will generalize
polynomial.m to piecewise polynomial. A script test_poly.m has been provided to demonstrate use of the
polynomial class.

classdef polynomial
%POLYNOMIAL Class for handling polynomials and operations

properties (GetAccess=public,SetAccess=private)
coeffs=0;
order =0;

end

methods
function self = polynomial(arg1)

function [poly] = uplus(poly1)

function [poly3] = plus(poly1,poly2)

function [poly] = uminus(poly1)

function [poly3] = minus(poly1,poly2)

function [poly] = mtimes(a,b)

function [poly] = mpower(poly1,b)

function [iseq] = eq(poly1,poly2)

function [tf] = iszero(poly)

function [poly1] = integrate(poly,const)

function [poly1] = differentiate(poly)

1

CME292 Homework #3 (OOP, File Management, & System Interaction)

function [y] = evaluate(poly,x)

function ax = plot_it(poly,x,pstr,ax)

function [] = disp(poly)
end

A piecewise polynomial is a sequence of polynomials defined on neighboring intervals. To make this more
precise, consider the domain Ω “ rx1, xN`1s Ă R (subset of the real number line) and define xi P Ω for
i “ 2, . . . , N . Then, Ii “ rxi, xi`1s for i “ 1, . . . , N defines a partition of the domain Ω. In the remainder of
this, the endpoints of these intervals (xi) will be called knots. A piecewise polynomial ppxq over Ω is defined
as

ppxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

p1pxq for x P rx1, x2s

p2pxq for x P rx2, x3s

...
...

pN pxq for x P rxN , xN`1s

(1)

where pipxq is a polynomial. In this problem, your tasks are

(1) Setup the class for piecewise_polynomial.m

• piecewise_polynomial should have three properties

– xi - double array containing knots
– npoly - double scalar containing number of polynomials (= length(xi)-1)
– polys - polynomial array of length npoly

• the constructor of piecewise_polynomial should

– accept zero, one or two argument
– if zero arguments passed, create the empty piecewise polynomial (all properties set to [])
– if one argument passed of type

∗ piecewise_polynomial - copy the properties of the input to the new object
∗ double - assume the argument is xi and set the properties accordingly (polys empty)

– if two arguments passed
∗ assume the first is a double containing the knots xi
∗ assume the second is a polynomial array containing the polynomials of the piecewise

polynomial

(2) Implement the following methods, where ppxq and qpxq are piecewise polynomials

• uplus: ppxq ÞÑ `ppxq

• plus: ppxq, qpxq ÞÑ ppxq ` qpxq

• uminus ppxq ÞÑ ´ppxq

• minus: ppxq, qpxq ÞÑ ppxq ´ qpxq

• mtimes: ppxq, qpxq ÞÑ ppxqqpxq

• mpower: ppxq, c ÞÑ ppxqc

– c is a non-negative integer

• eq: ppxq, qpxq ÞÑ t0, 1u

– return true if p and q are equal for all x P R (coefficients identical)

Problem 1 continued on next page. . . Page 2 of 6

CME292 Homework #3 (OOP, File Management, & System Interaction)

• iszero: ppxq ÞÑ t0, 1u

– return true if ppxq “ 0 (all coefficients are zero)

• integrate: ppxq ÞÑ
ş

ppxqdx

• differentiate: ppxq ÞÑ dp
dx pxq

• evaluate: ppxq,v ÞÑ ppvq

– should accept vector inputs evaluate ppxq at each entry and return the output as a vector

• plot_it

– plot ppxq over some specified

• Hint: You should not have to implement any polynomial routines yourself. Your class should store
an array of polynomial objects which have all polynomial functionality required for this assign-
ment implemented. Use the methods in the polynomial objects to perform polynomial operations.
piecewise_polynomial.m should really just be a wrapper for polynomial.m to implement the
piecewise functionality.

(3) Use piecewise_polynomial.m to create the following piecewise polynomials over the domain Ω “

r´2, 2s. The code for this part of the problem should be in your driver (display output by not including
semicolons ;).

p1pxq “

#

x3 ´ 2x2 for x P r´2,´1s

0 for x P r´1, 1s
p2pxq “

$

’

’

&

’

’

%

0 for x P r´2,´1s

x for x P r´1, 1s

0 for x P r1, 2s

p3pxq “

#

0 for x P r´2, 1s

x2 ´ 3 for x P r1, 2s

(2)

• Compute and plot p4pxq “ p1pxq ` p2pxq ` p3pxq

• Compute and plot p5pxq “ p1pxq ´ p2pxq ´ p3pxq

• Compute and plot p6pxq “ p4pxqp6pxq

• Compute and plot p7pxq “ p2pxq
3

• Compute and plot p8pxq “
ş

p4pxqdx

• Compute and plot p9pxq “ dp8

dx pxq

– Are p4pxq and p9pxq equal?

Problem 2
In this problem, you will gain experience with reading/writing files and making system calls by extending the
class dsg_elem_def seen in lecture. Before defining the tasks for this problem, some background material is
necessary. A design element is one of many concepts from the field of shape parametrization, commonly used
in shape optimization, for using control nodes to deform a surface. Namely, it allows one to parametrize the
shape of a surface as a function of the control nodes. In the remainder, we use the following definitions

• design element nodes - the nodes of the design element that will be used to deform the surface contained
inside the design element (also known as control nodes)

• surface nodes - the nodes comprising the surface (to be deformed using the control nodes)

We will use the SDESIGN software to convert displacement of the control nodes into displacement of the
surface nodes. As the SDESIGN software is not open source, I have compiled SDESIGN on corn and given
you the path to the executable (/srv/zfs01/user_data/mzahr/sdesign.Linux.opt). Therefore, you must use
corn for this assignment. You can call SDESIGN by

Problem 2 continued on next page. . . Page 3 of 6

CME292 Homework #3 (OOP, File Management, & System Interaction)

/srv/zfs01/user_data/mzahr/sdesign.Linux.opt input_file.sdesign

where input_file.sdesign is an SDESIGN input file (notice that this is a system call - therefore to call
SDESIGN from MATLAB, use system). The input file will define the control nodes and link them to the
surface (already done for you), as well as the displacement of each control node. The output of SDESIGN
will be two files: input_file.vmo and input_file.der. The output file input_file.vmo will contain the
x, y, z displacement of each surface node (ignore input_file.der for this problem) - the file will contain
a few header lines, followed by nsurf rows (one for each surface node) of 3 columns each (for the x, y, z
displacements).
In its present form, dsg_elem_def accepts an input file (SDESIGN format [1, 2, 3] - it is not necessary to
understand the SDESIGN format for this problem) that defines a design element and contains the name of
a file defining the points on some surface (in our case, this surface is an airfoil, see Figure 1). dsg_elem_def
plots the nodes of the design element (in red circles) and the surface (thick, blue line) as well as defines
callback routines that allows one to move the design element nodes with the mouse (click on node, drag it to
new location, and release) – try it. You will notice that moving the control nodes does not affect the surface.
For this assignment, your task is to complete dsg_elem_def such that one can use the mouse to move the
design element nodes and cause the surface to deform. All of the method that need to be implemented are
already in dsg_elem_def (but some are empty). As usual, if you do not want to follow the structure of the
starter code provided in dsg_elem_def, feel free to start from scratch.
The dsg_elem_def class has the following methods (some of which you need to complete)

• Hint: Comments are provided throughout starter code (dsg_elem_def.m) – be sure to read them.

• dsg_elem_def – the constructor – accepts a string sdesign_template_in that will contain the file-
name of a SEDESIGN template file (naca0012.sdesign in our case). This is called a template as it
defines only the control node locations and the surface, but there are only placeholders for the control
node displacements (this is necessary as the displacement of the control nodes are not known until
the user starts moving them in the figure). These placeholders are named <S0>, <S1>, <S2> and they
must be replaced by the actual value of the design element node displacements (when they are known).
Specifically, <S0> and <S1> must be replaced by the x, y displacement of the first control node, <S2>
and <S3> must be replaced by the x, y displacement of the second control node, and so on.

• draw_surface – this should set the XData and YData of the surface handle (surfHan) to the appro-
priate values.

• select_node – sets the UserData property of the control node to true. Used to identify which node
is being moved (callback).

– This was completed for you.

• release_button – this is the callback routine to be executed when the mouse button is release. It
currently only moves the control node that is currently selected (by a mouse button down). You need
to extend this method such that it

– writes the control node displacement to the SDESIGN input file (more on this in write_sdesign

below)

– calls SDESIGN with the input file (system call)

– reads the naca0012.vmo (filename stored in displace_fname) that contains the displacement
of the surface nodes (for this problem, we only care about the x, y displacements, i.e. first two
columns)

– draw the new surface location

Problem 2 continued on next page. . . Page 4 of 6

CME292 Homework #3 (OOP, File Management, & System Interaction)

• write_sdesign – needs to write the displacement of the control nodes to the SDESIGN file. The way
that I recommend doing this is by looping through the SEDESIGN template file line-by-line, replacing
the placeholders (<S0>, <S1>, ...) with their appropriate values (if they exist in a given line) – recall
the placeholders should be replaced by the x or y displacement of a control node – and copying the
modified line to the SDESIGN input file (sdesign_iter).

• run_sdesign – make a system call to run SDESIGN (path to SDESIGN stored in sdesign_exec)
with the input file (stored in sdesign_iter)

• get_design_element_nodes – reads the design element nodes from SDESIGN file

– This was completed for you.

• get_surfacenode_file – reads the name of the file containing the surface nodes from the SDESIGN
file

– This was completed for you.

• read_surfacenodes – reads the coordinates of the surface nodes (undeformed)

• read_surfacenode_disp – reads the SDESIGN output file (naca0012.vmo stored in displace_fname)
to extract the displacement of the surface nodes

classdef dsg_elem_def < handle

properties (SetAccess=private,GetAccess=public)
figHan = []; % Figure handle
axHan = []; % Axes handle
ptHan = []; % Node handles
surfHan = []; % Surface handle

sdg_name = []; % Name of SDESIGN file
sdg_nodes = []; % Design element nodes (control nodes)
surf_nodes= []; % Location of surface nodes on airfoil
sdg_nodes_disp=[]; % Displacement of design element nodes

end

properties (Hidden)
sdesign_template = '';
sdesign_exec = '/srv/zfs01/user_data/mzahr/sdesign.Linux.opt';
sdesign_iter = '';
surfnodes_fname = '';
displace_fname = '';

end

methods
function [self] = dsg_elem_def(sdesign_template_in)
function [] = draw_surface(self,x,y)
function [] = select_node(self,hobj,)
function [] = release_button(self,hobj,)
function [] = set_node_position(self,node_num,pos)
function [] = write_sdesign(self)
function [] = run_sdesign(self)

end
methods (Static=true)

function [dsgnodes] = get_design_element_nodes(sdesign_file)
function [surfnodes] = get_surfacenode_file(sdesign_file)
function [nodes] = read_surfacenodes(fname)

Problem 2 continued on next page. . . Page 5 of 6

CME292 Homework #3 (OOP, File Management, & System Interaction)

function [disp] = read_surfacenode_disp(fname)
end

end

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.2

−0.1

0

0.1

0.2

Figure 1: Airfoil surface and deformation control nodes

References
[1] K. Maute and M. Raulli, “Fem—optimization module and sdesign user guides, 0.,” 2006.

[2] K. Maute, M. Nikbay, and C. Farhat, “Sensitivity analysis and design optimization of three-dimensional
nonlinear aeroelastic systems by the adjoint method,” The International Journal for Numerical Methods
in Engineering, vol. 56, pp. 911–933, 2003.

[3] K. Maute, M. Nikbay, and C. Farhat, “Coupled analytical sensitivity analysis and optimization of three-
dimensional nonlinear aeroelastic systems,” AIAA Journal, vol. 39, pp. 2051–2061, 2001.

Page 6 of 6

	Instructions
	Problem 1
	Problem 2

