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Assignment

Create the following matrix (1000 rows/columns)

A =



−2 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2


Then, run the following lines of code

>> s = whos('A');
>> s.bytes

How much storage does your matrix need?
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Sparse matrix storage formats

Sparse matrix = matrix with relatively small number of non zero
entries, compared to its size.

Let A ∈ Rm×n be a sparse matrix with nz nonzeros.

Dense storage requires mn entries.
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Sparse matrix storage formats (continued)

Triplet format

Store nonzero values and corresponding row/column
Storage required = 3nz (2nz ints and nz doubles)
Simplest but most inefficient storage format
General in that no assumptions are made about sparsity structure
Used by MATLAB (column-wise)


1 9 0 0 1

8 2 0 0 0

0 0 3 5 0

0 0 0 7 0

0 4 0 0 1


row =

[
1 2 1 2 5 3 3 4 1 5

]
col =

[
1 1 2 2 2 3 4 4 5 5

]
val =

[
1 8 9 2 4 3 5 7 1 1

]
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Other sparse storage formats

Compressed Sparse Row (CSR) format

Store nonzero values, corresponding column, and pointer into value array
corresponding to first nonzero in each row
Storage required = 2nz +m

Compressed Sparse Column (CSC) format

Storage required = 2nz + n

Diagonal Storage format

Useful for banded matrices

Skyline Storage format

Block Compressed Sparse Row (BSR) format
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Break-even point for sparse storage

For A ∈ Rm×n with nz nonzeros, there is a value of nz where sparse vs
dense storage is more efficient.

For the triplet format, the cross-over point is defined by 3nz = mn

Therefore, if nz ≤ mn
3 use sparse storage, otherwise use dense format

Cross-over point depends not only on m,n, nz but also on the data types
of row, col, val

Storage efficiency not only important consideration

Data access for linear algebra applications
Ability to exploit symmetry in storage
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Create Sparse Matrices

Allocate space for m× n sparse matrix with nz nnz

S = spalloc(m,n, nz)

Convert full matrix A to sparse matrix S

S = sparse(A)

Create m× n sparse matrix with spare for nz nonzeros from triplet
(row,col,val)

S = spalloc(row,col,val,m,n, nz)

Create matrix of 1s with sparsity structure defined by sparse matrix S

R = spones(S)

Sparse identity matrix of size m× n
I = speye(m,n)
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Create Sparse Matrices

Create sparse uniformly distributed random matrix
From sparsity structure of sparse matrix S

R = sprand(S)
Matrix of size m× n with approximately mnρ nonzeros and condition
number roughly κ (sum of rank 1 matrices)

R = sprand(m,n, ρ, κ−1)

Create sparse normally distributed random matrix

R = sprandn(S)
R = sprandn(m,n, ρ, κ−1)

Create sparse symmetric uniformly distributed random matrix

R = sprandn(S)
R = sprandn(m,n, ρ, κ−1)

Import from sparse matrix external format

spconvert
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Create Sparse Matrices (continued)

Create sparse matrices from diagonals (spdiags)
Far superior to using diags

More general
Doesn’t require creating unnecessary zeros

Extract nonzero diagonals from matrix

[B,d] = spdiags(A)
Extract diagonals of A specified by d

B = spdiags(A,d)
Replaces the diagonals of A specified by d with the columns of B

A = spdiags(B,d,A)
Create an m× n sparse matrix from the columns of B and place them
along the diagonals specified by d

A = spdiags(B,d,m,n)
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Assignment

Create the following matrix (1000 rows/columns)

A =



−2 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2


using spdiags

Then, run the following lines of code

>> s = whos('A');
>> s.bytes

How much storage does your matrix need?
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Sparse storage information

Let S ∈ Rm×n sparse matrix

Determine if matrix is stored in sparse format

issparse(S)

Number of nonzero matrix elements

nz = nnz(S)

Amount of nonzeros allocated for nonzero matrix elements

nzmax(S)

Extract nonzero matrix elements

If (row, col, val) is sparse triplet of S
val = nonzeros(S)
[row,col,val] = find(S)
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Sparse and dense matrix functions

Let S ∈ Rm×n sparse matrix

Convert sparse matrix to dense
matrix

A = full(S)

Apply function (described by
function handle func) to nonzero
elements of sparse matrix

F = spfun(func, S)
Not necessarily the same as
func(S)

Consider func = @exp

Plot sparsity structure of matrix

spy(S)
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nz = 27538

Figure: spy plot
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Reordering Functions

Command Description

amd Approximate minimum degree permutation

colamd
Column approximate minimum degree

permutation

colperm
Sparse column permutation based on nonzero

count

dmperm Dulmage-Mendelsohn decomposition

randperm Random permutation

symamd
Symmetric approximate minimum degree

permutation

symrcm Sparse reverse Cuthill-McKee ordering
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Sparse Matrix Tips

Don’t change sparsity structure (pre-allocate)

Dynamically grows triplet
Each component of triplet must be stored contiguously

Accessing values (may be) slow in sparse storage as location of
row/columns is not predictable

If S(i,j) requested, must search through row, col to find i, j

Component-wise indexing to assign values is expensive

Requires accessing into an array
If S(i,j) previously zero, then S(i,j)= c changes sparsity structure
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Rank

Rank of a matrix A ∈ Rm×n

Defined as the number of linearly independent columns
rank A ≤ min{m,n}
Full rank =⇒ rank A = min{m,n}
MATLAB: rank

Rank determined using SVD

>> [rank(rand(100,34)), rank(rand(100,1)*rand(1,34))]
ans =

34 1
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Norms

Gives some notion of size/distance

Defined for both vectors and matrices

Common examples for vector, v ∈ Rm

2-norm: ||v||2 =
√

vTv

p-norm: ||v||p = (
∑m
i=1 |vi|p)

1/p

∞-norm: ||v||∞ = max |vi|
MATLAB: norm(X,type)

Common examples for matrices, A ∈ Rm×n

2-norm: ||A||2 = σmax(A)

Frobenius-norm: ||A||F =
√∑m

i=1

∑n
j=1 |Aij |2

MATLAB: norm(X,type)

Result depends on whether X is vector or matrix and on value of type

MATLAB: normest

Estimate matrix 2-norm
For sparse matrices or large, full matrices
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Determined System of Equations

Solve linear system
Ax = b (1)

by factorizing A ∈ Rn×n

For a general matrix, A, (1) is difficult to solve

If A can be decomposed as A = BC then (1) becomes

By = b

Cx = y
(2)

If B and C are such that (2) are easy to solve, then the difficult problem
in (1) has been reduced to two easy problems

Examples of types of matrices that are “easy” to solve with

Diagonal, triangular, orthogonal
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Overdetermined System of Equations

Solve the linear least squares problem

min
1

2
||Ax− b||22. (3)

Define

f(x) =
1

2
||Ax− b||22 =

1

2
xTATAx− bTAx +

1

2
bTb

Optimality condition: ∇f(x) = 0 leads to normal equations

ATAx = ATb (4)

Define pseudo-inverse of matrix A ∈ Rm×n as

A† =
(
ATA

)−1
AT ∈ Rn×m (5)

Then,
x = A†b (6)
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Diagonal Matrices



α1 0 0 · · · 0 0

0 α2 0 · · · 0 0

0 0 α3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · αn−1 0

0 0 0 · · · 0 αn





x1

x2

x3

...

xn−1

xn


=



b1
b2
b3
...

bn−1

bn


xj =

bj
αj
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Triangular Matrices



α1 0 0 · · · 0 0

β1 α2 0 · · · 0 0

× β2 α3 · · · 0 0
...

...
...

. . .
...

...

× × 0 · · · αn−1 0

× × × · · · βn−1 αn





x1

x2

x3

...

xn−1

xn


=



b1
b2
b3
...

bn−1

bn


Solve by forward substitution

x1 = b1
α1

x2 = b2−β1x1

α2

· · ·
For upper triangular matrices, solve by backward substitution
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Additional Matrices

Let A ∈ Rm×n

Symmetric matrix (only for m = n)

A = AT (transpose)

Orthogonal matrix

ATA = In
If m = n: AAT = Im

Symmetric Positive Definite matrix (only for m = n)

xTAx > 0 for all x ∈ Rm
All real, positive eigenvalues

Permutation matrix (only for m = n), P

Permutation of rows or columns of identity matrix by permutation vector
p
For any matrix B, PB = B(p, :) and BP = B(:,p)

CME 292: Advanced MATLAB for SC Lecture 3



Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions

Spectral Decompositions
Iterative Solvers

Background
Types of Matrices
Matrix Decompositions
Backslash

LU Decomposition

Let A ∈ Rm×m be a non-singular matrix.

A = LU (7)

where L ∈ Rm×m lower triangular and U ∈ Rm×m upper triangular.
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LU Decomposition

Let A ∈ Rm×m be a non-singular matrix.

Gaussian elimination transforms a full linear system into upper
triangular one by multiplying (on the left) by a sequence of lower
triangular matrices

Lk · · ·L1︸ ︷︷ ︸
L−1

A = U

After re-arranging, written as

A = LU (8)

where L ∈ Rm×m lower triangular and U ∈ Rm×m upper triangular.
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LU Decomposition - Pivoting

Gaussian elimination is unstable without pivoting

Partial pivoting: PA = LU
Complete pivoting: PAQ = LU

Operation count: 2
3m

3 flops (without pivoting)

Useful in solving determined linear system of equations, Ax = b

Compute LU factorization of A
Solve Ly = b using forward substitution =⇒ y
Solve Ux = y using backward substitution =⇒ x

Theorem

A ∈ Rn×n has an LU factorization if det A(1 : k, 1 : k) 6= 0 for
k ∈ {1, . . . , n− 1}. If the LU factorization exists and A is nonsingular, then
the LU factorization is unique.
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MATLAB LU factorization

LU factorization, partial pivoting applied to L
[L,U] = lu(A)

A =
(
P−1L̃

)
U = LU

U upper tri, L̃ lower tri, P row permutation

Y = lu(A)
If A in sparse format, strict lower triangular of Y contains L and upper
triangular contains U
Permutation information lost

LU factorization, partial pivoting P explicit
[L,U,P] = lu(A)

PA = LU

[L,U,p] = lu(A,'vector')
A(p, :) = LU
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MATLAB LU factorization

LU factorization, complete pivoting P,Q explicit
[L,U,P,Q] = lu(A)

PAQ = LU

[L,U,p,q] = lu(A,'vector')
A(p,q) = LU

Additional lu call syntaxes that give

Control over pivoting thresholds
Scaling options
Calls to UMFPACK vs LAPACK
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In-Class Assignment

Use the starter code (starter code.m) below to:

Compute LU decomposition of using [L,U] = lu(A);

Generate a spy plot of L and U
Are they both triangular?

Compute LU decomposition with partial pivoting

Create spy plot of P*A (or A(p,:)), L, U

Compute LU decomposition with complete pivoting

Create spy plot of P*A*Q (or A(p,q)), L, U

load matrix1.mat
A = sparse(linsys.row,linsys.col,linsys.val);
b = linsys.b;
clear linsys;
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Symmetric, Positive Definite (SPD) Matrix

Let A ∈ Rm×m be a symmetric matrix (A = AT ), then A is called
symmetric, positive definite if

xTAx > 0 ∀ x ∈ Rm.

It is called symmetric, positive semi-definite if xTAx ≥ 0 for all x ∈ Rm.
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Cholesky Factorization

Let A ∈ Rm×m be symmetric positive definite.

Hermitian positive definite matrices can be decomposed into triangular
factors twice as quickly as general matrices

Cholesky Factorization

A variant of Gaussian elimination (LU) that operations on both left and
right of the matrix simultaneously
Exploits and preserves symmetry

The Cholesky factorization can be written as

A = R∗R = LL∗

where R ∈ Rm×m upper tri and L ∈ Rm×m lower tri.

Theorem

Every hermitian positive definite matrix A ∈ Rm×m has a unique Cholesky
factorization. The converse also holds.
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Cholesky Decomposition

Cholesky decomposition algorithm

Symmetric Gaussian elmination

Operation count: 1
3m

3 flops

Storage required ≤ m(m+1)
2

Depends on sparsity

Always stable and pivoting unnecessary

Largest entry in R or L factor occurs on diagonal

Pre-ordering algorithms to reduce the amount of fill-in

In general, factors of a sparse matrix are dense
Pre-ordering attempts to minimize the sparsity structure of the matrix
factors
Columns or rows permutations applied before factorization (in contrast to
pivoting)

Most efficient decomposition for SPD matrices

Partial and modified Cholesky algorithms exist for non-SPD
Usually just apply Cholesky until problem encountered
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Check for symmetric, positive definiteness

For a matrix A, it is not possible to check xTAx for all x. How does one
check for SPD?

Eigenvalue decomposition

Theorem

If A ∈ Rm×m is a symmetric matrix, A is SPD if and only if all its
eigenvalues are positive.

Very expensive/difficult for large matrices

Cholesky factorization

If a Cholesky decomposition can be successfully computed, the matrix is
SPD
Best option
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MATLAB Functions

Cholesky factorization
R = chol(A)

Return error if A not SPD

[R,p] = chol(A)
If A SPD, p = 0
If A not SPD, returns Cholesky factorization of upper p− 1× p− 1 block

[R,p,S]=chol(A)
Same as previous, except AMD preordering applied
Attempt to maximize sparsity in factor

Sparse incomplete Cholesky (ichol, cholinc)

R = cholinc(A,droptol)

Rank 1 update to Cholesky factorization

Given Cholesky factorization, RTR = A
Determine Cholesky factorization of rank 1 update: R̃T R̃ = A + xxT

using R
R1 = cholupdate(R, x)
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In-Class Assignment

Same starter code (starter code.m) from LU assignment to:

Compute Cholesky decomposition using R = chol(A);

Generate a spy plot of A and R
Is R triangular?

Compute Cholesky decomposition after reordering the matrix with
p = amd(A)

Ramd = chol(A(p,p));
Create spy plot of Ramd

Compute incomplete Cholesky decomposition with cholinc or ichol
using drop tolerance of 10−2

Create spy plot of Rinc

How do the sparsity pattern and number of nonzeros compare?
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QR Factorization

Consider the decomposition of A ∈ Rm×n, full rank, as

A =
[
Q Q̃

] [R
0

]
= QR (9)

where Q ∈ Rm×n and
[
Q Q̃

]
∈ Rm×m are orthogonal and R ∈ Rn×n is

upper triangular.

Theorem

Every A ∈ Rm×n (m ≥ n) has a QR factorization. If A is full rank, the
decomposition in unique with diag R > 0.
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Full vs. Reduced QR Factorization

A =
[
Q Q̃

] [R
0

]
= QR

A =



× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


︸ ︷︷ ︸[

Q Q̃
]


× × ×
0 × ×
0 0 ×
0 0 0

0 0 0


︸ ︷︷ ︸R

0


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QR Factorization

Algorithms for computing QR factorization

Gram-Schmidt (numerically unstable)
Modified Gram-Schmidt
Givens rotations
Householder reflections

Operation count: 2mn2 − 2
3n

3 flops

Storage required: mn+ n(n+1)
2

May require pivoting in the rank-deficient case
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Uses of QR Factorization

Let A = QR be the QR factorization of A

Pseudo-inverse

A† =
(
ATA

)−1
AT =

(
RTR

)−1
RTQT = R−1QT

Solution of least squares

x = A†b = R−1QTb
Very popular direct method for linear least squares

Solution of linear system of equations

x = A−1x = R−1QTb
Not best option as Q ∈ Rm×m is dense and R ∈ Rm×m

Extraction of orthogonal basis for column space of A
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MATLAB QR function

Let A ∈ Rm×n, full rank

For general matrix, A (dense or sparse)
Full QR factorization

[Q,R] = qr(A): A = QR
[Q,R,E] = qr(A): AE = QR
Q ∈ Rm×m, R ∈ Rm×n, E ∈ Rn×n permutation matrix

Economy QR factorization

[Q,R]=qr(A,0): A = QR
[Q,R,E] = qr(A,0): A(:,E) = QR
Q ∈ Rm×n, R ∈ Rn×n, E ∈ Rn permutation vector

For A sparse format
Q-less QR factorization

R= qr(A), R = qr(A,0)
Least-Squares

[C,R] = qr(A,B), [C,R,E] = qr(A,B),
[C,R] = qr(A,B,0), [C,R,E] = qr(A,B,0)
min ||Ax− b|| =⇒ x = ER−1C
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Other MATLAB QR algorithms

Let A = QR be the QR factorization of A

QR of A with a column/row removed
[Q1,R1] = qrdelete(Q,R,j)

QR of A with column j removed (without re-computing QR from scratch)

[Q1,R1] = qrdelete(Q,R,j,'row')
QR of A with row j removed (without re-computing QR from scratch)

QR of A with vector x inserted as jth column/row
[Q1,R1] = qrinsert(Q,R,j,x)

QR of A with x inserted in column j (without re-computing QR from
scratch)

[Q1,R1] = qrinsert(Q,R,j,x,'row')
QR of A with x inserted in row j (without re-computing QR from scratch)
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Assignment

Suppose we wish to fit an m degree polynomial, or the form (10) to n data
points, (xi, yi) for i = 1, . . . , n.

amx
m + am−1x

m−1 + · · ·+ a1x+ a0 (10)

One way to approach this is by solving a linear least squares problem of the
form

min ||Va− y|| (11)

where x = [am, am−1, . . . , a0], y = [y1, . . . yn], and V is the Vandermonde
matrix

V =


xm1 xm−1

1 · · · x1 1

xm2 xm−1
2 · · · x2 1

...
. . .

. . .
... 1

xmn xm−1
n · · · xn 1


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Assignment

Given the starter code (qr ex.m) below,

Fit a polynomial of degree 5 to the data in regression data.mat

Plot the data and polynomial

%% QR (regression)
load('regression data.mat'); %Defines x,y
xfine = linspace(min(x),max(x),1000);
order = 5;

VV = vander(x);
V = VV(:,end−order:end);
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De-mystify MATLAB’s mldivide (\)

Diagnostics for square matrices
Check for triangularity (or permuted triangularity)

Check for zeros
Solve with substitution or permuted substitution

If A symmetric with positive diagonals

Attempt Cholesky factorization
If fails, performs symmetric, indefinite factorization

A Hessenberg

Gaussian elimination to reduce to triangular, then solve with substitution

Otherwise, LU factorization with partial pivoting

For rectangular matrices

Overdetermined systems solved with QR factorization
Underdetermined systems, MATLAB returns solution with maximum
number of zeros
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De-mystify MATLAB’s mldivide (\)

Singular (or nearly-singular) square systems

MATLAB issues a warning
For singular systems, least-squares solution may be desired

Make system rectangular: A←
[
A

0

]
and b←

[
b

0

]
From mldivide diagnostics, rectangular system immediately initiates
least-squares solution

Multiple Right-Hand Sides (RHS)

Given matrix A ∈ Rm×n and given k RHS, B ∈ Rn×k
X = A\B
Superior to X(:,j)= A\B(:,j) as matrix only needs to be factorized
once, regardless of k

In summary, use backslash to solve Ax= b with a direct method
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Eigenvalue Decomposition (EVD)

Let A ∈ Rm×m, the Eigenvalue Decomposition (EVD) is

A = XΛX−1 (12)

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal and
the columns of X contain the eigenvectors of A.

Theorem

If A has distinct eigenvalues, the EVD exists.

Theorem

If A is hermitian, eigenvectors can be chosen to be orthogonal.
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Eigenvalue Decomposition (EVD)

Only defined for square matrices
Does not even exist for all square matrices

Defective - EVD does not exist
Diagonalizable - EVD exists

All EVD algorithms must be iterative

Eigenvalue Decomposition algorithm

Reduction to upper Hessenberg form (upper tri + subdiag)
Iterative transform upper Hessenberg to upper triangular

Operation count: O(m3)

Storage required: m(m+ 1)

Uses of EVD

Matrix powers (Ak) and exponential (eA)
Stability/perturbation analysis
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MATLAB EVD algorithms (eig and eigs)

Compute eigenvalue decomposition of AX = XD

Eigenvalues only: d = eig(X)
Eigenvalues and eigenvectors: [X,D] = eig(X)

eig also used to computed generalized EVD: Ax = λBx

E = eig(A,B)
[V,D] = eig(A,B)

Use ARPACK to find largest eigenvalues and corresponding eigenvectors
(eigs)

By default returns 6 largest eigenvalues/eigenvectors
Same calling syntax as eig (or EVD and generalized EVD)
eigs(A,k), eigs(A,B,k) for k largest eigenvalues/eigenvectors
eigs(A,k,sigma), eigs(A,B,k,sigma)

If sigma a number, e-vals closest to sigma
If 'LM' or 'SM', e-vals with largest/smallest e-vals
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Singular Value Decomposition (SVD)

Let A ∈ Rm×n have rank r. The SVD of A is

A =
[
U Ũ

] [Σ 0

0 0

] [
V Ṽ

]∗
= UΣVT (13)

where U ∈ Rm×r and Ũ ∈ Rm×(m−r) orthogonal, Σ ∈ Rr×r diagonal with
real, positive entries, and V ∈ Rn×r and Ṽ ∈ Rn×(n−r) orthogonal.

Theorem

Every matrix A ∈ Rm×n has a singular value decomposition. The singular
values {σj} are uniquely determined, and, if A is square and the σj are
distinct, the left and right singular vectors {uj} and {vj} are uniquely
determined up to complex signs.
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Full vs. Reduced SVD

A =
[
U Ũ

] [Σ 0

0 0

] [
V Ṽ

]∗
= UΣVT

A =



× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


︸ ︷︷ ︸[

U Ũ
]


× 0 0

0 × 0

0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸Σ 0

0 0



 × × ×
× × ×
× × ×


︸ ︷︷ ︸V∗

ṼT


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Singular Value Decomposition (SVD)

SVD algorithm

Bi-diagonalization of A
Iteratively transform bi-diagonal to diagonal

Operation count (depends on outputs desired):

Full SVD: 4m2n+ 8mn2 + 9n3

Reduced SVD: 14mn2 + 8n3

Storage for SVD of A of rank r

Full SVD: m2 + n2 + r
Reduced SVD: (m+ n+ 1)r

Applications

Low-rank approximation (compression)
Pseudo-inverse/Least-squares
Rank determination
Extraction of orthogonal subspace for range and null space
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MATLAB SVD algorithm

Compute SVD of A = UΣV∗ ∈ Rm×n

Singular vales only: s = svd(A)
Full SVD: [U,S,V] = svd(A)
Reduced SVD

[U,S,V] = svd(A,0)
[U,S,V] = svd(A,'econ')
Equivalent for m ≥ n

[U,V,X,C,S] = gsvd(A,B) to compute generalized SVD

A = UCX∗

B = VSX∗

C∗C + S∗S = I

Use ARPACK to find largest singular values and corresponding singular
vectors (svds)

By default returns 6 largest singular values/vectors
Same calling syntax as eig (or EVD and generalized EVD)
svds(A,k) for k largest singular values/vectors
svds(A,k,sigma)

If sigma a number, s-vals closest to sigma

CME 292: Advanced MATLAB for SC Lecture 3



Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions

Spectral Decompositions
Iterative Solvers

Condition Number, κ

The condition number of a matrix, A ∈ Rm×n, is defined as

κ =
σmax

σmin
=

√
λmax

λmin
(14)

where σmin and σmax are the smallest and largest singular vales of A
and λmin and λmax are the smallest and largest eigenvalues of ATA.

κ = 1 for orthogonal matrices

κ =∞ for singular matrices

A matrix is well-conditioned for κ close to 1; ill-conditioned for κ large

cond: returns 2-norm condition number
condest: lower bound for 1-norm condition number
rcond: LAPACK estimate of inverse of 1-norm condition number
(estimate of ||A−1||1)
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Iterative Solvers

Consider the linear system of equations

Ax = b (15)

where A ∈ Rm×m, nonsingular.

Direct solvers

O(m3) operations required
O(m2) storage required (depends on sparsity)
Factorization of sparse matrix not necessarily sparse
Not practical for large-scale matrices
Factorization only needs to be done once, regardless of b

Iterative solvers

Solve linear system of equations iteratively
O(m2) operations required, O(nnz(A)) storage
Do not need entire matrix A, only products Av
Preconditioning usually required to keep iterations low

Intended to modify matrix to improve condition number
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Preconditioning

Suppose L ∈ Rm×m and R ∈ Rm×m are easily invertible.

Preconditioning replaces the original problem (Ax = b) with a different
problems with the same (or similar) solution.

Left preconditioning

Replace system of equations Ax = b with

L−1Ax = L−1b (16)

Right preconditioning

Define y = Rx
AR−1y = b (17)

Left and right preconditioning

Combination of previous preconditioning techniques

L−1AR−1y = L−1b (18)
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Preconditioners

Preconditioner M for A ideally a cheap approximation to A−1, intended to
drive condition number, κ, toward 1

Typical preconditioners include

Jacobi

M = diag A

Incomplete factorizations

LU, Cholesky
Level of fill-in (beyond sparsity structure)

Fill-in 0 =⇒ sparsity structure of incomplete factors same as that A itself
Fill-in > 0 =⇒ incomplete factors more dense that A
Higher level of fill-in =⇒ better preconditioner
No restrictions on fill-in =⇒ exact decomposition =⇒ perfect
preconditioner =⇒ single iteration to solve Ax = b

CME 292: Advanced MATLAB for SC Lecture 3



Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions

Spectral Decompositions
Iterative Solvers

Preconditioners
Solvers

MATLAB preconditioners

Given square matrix A ∈ Rm×m

Jacobi preconditioner

Simple implementation: M = diag(diag(A))
Careful of 0s on the diagonal (M nonsingular)

If Ajj = 0, set Mjj = 1

Sparse storage (use spdiags)
Function handle that returns M−1v given v

Incomplete factorization preconditioners
[L,U] = ilu(A,SETUP), [L,U,P] = ilu(A,SETUP)

SETUP: TYPE, DROPTOL, MILU, UDIAG, THRESH
Most popular and cheapest: no fill-in, ILU(0)
(SETUP.TYPE='nofill')

R = cholinc(X,OPTS)
OPTS: DROPTOL, MICHOL, RDIAG

R = cholinc(X,'0'), [R,p] = cholinc(X,'0')
No fill-in incomplete Cholesky
Two outputs will not raise error for non-SPD matrix
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Common Iterative Solvers

Linear system of equations Ax = b
Symmetric Positive Definite matrix

Conjugate Gradients (CG)

Symmetric matrix

Symmetric LQ Method (SYMMLQ)
Minimum-Residual (MINRES)

General, Unsymmetric matrix

Biconjugate Gradients (BiCG)
Biconjugate Gradients Stabilized (BiCGstab)
Conjugate Gradients Squared (CGS)
Generalized Minimum-Residual (GMRES)

Linear least-squares min ||Ax− b||2
Least-Squares Minimum-Residual (LSMR)
Least-Squares QR (LSQR)
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MATLAB Iterative Solvers

MATLAB’s built-in iterative solvers for Ax = b for A ∈ Rm×m

pcg, bicg, bicgstab, bicgstabl, cgs, minres, gmres, lsqr, qmr,
symmlq, tmqmr

Similar call syntax for each

[x,flag,relres,iter,resvec] = ...

solver(A,b,restart,tol,maxit,M1,M2,x0)
Outputs

x - attempted solution to Ax = b
flag - convergence flag
relres - relative residual ||b−Ax||

||b|| at convergence

iter - number of iterations (inner and outer iterations for certain
algorithms)
resvec - vector of residual norms at each iteration ||b−Ax||, including
preconditioners if used (||M−1 (b−Ax) ||)
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MATLAB Iterative Solvers

Similar call syntax for each

[x,flag,relres,iter,resvec] = ...

solver(A,b,restart,tol,maxit,M1,M2,x0)
Inputs (only A, b required, defaults for others)

A - full or sparse (recommended) square matrix or function handle
returning Av for any v ∈ Rm

b - m vector
restart - restart frequency (GMRES)
tol - relative convergence tolerance
maxit - maximum number of iterations
M1, M2 - full or sparse (recommended) preconditioner matrix or function
handler returning M−1

2 M−1
1 v for any v ∈ Rm (can specify only M1 or not

precondition system by not specifying M1,M2 or setting M1 = [] and
M2=[])
x0 - initial guess at solution to Ax = b
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iterative ex.m
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