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The fully discrete adjoint equations and corresponding adjoint method are derived for
unsteady PDE-constrained optimization problems. Specifically, we consider conservation
laws on deforming domains that are temporally discretized by high-order fully implicit
Runge-Kutta (IRK) schemes. Through a change of variables, the linear systems aris-
ing in the primal and dual problem are transformed, leading to computationally cheaper
systems that compare competitively with those derived from diagonally implicit Runge-
Kutta (DIRK) schemes. Quantities of interest that take the form of space-time integrals
are discretized in a solver-consistent manner. Our fully discrete, IRK adjoint method is
used to compute exact gradients of quantities of interest with respect to the optimization
parameters. These quantities of interest and their gradients are used for gradient-based
PDE-constrained optimization. Our implementation of this IRK adjoint method is tested
by computing the energetically optimal trajectory of a 2D airfoil in flow governed by the
compressible Navier-Stokes equations. We also analyze the parallel performance of our
IRK adjoint method and the DIRK adjoint method, showing that our implementation is
computationally comparable.

I. Introduction

Optimization problems constrained by partial differential equations (PDEs) commonly arise in computa-
tional fluid dynamics (CFD), particularly in the context of structural design or control systems. When
the problems have inherently transient dynamics or objective functions that do not reach a steady state,
unsteady analysis is required. In particular, these time-dependent PDE-constrained optimization problems
have the form:
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min
U ,µ

∫ T

0

∫
∂Ω

f0(U ,µ, t) dS dt

s.t.

∫ T

0

∫
∂Ω

f1(U ,µ, t) dS dt ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in Ω(µ, t),

(1)

where the last constraint corresponds to a system of conservation laws in a moving domain Ω(µ, t) with
solution U and optimization parameters µ, and the objective and constraint functions take the form of
space-time integrals of quantities of interest f0 and f1 over the surface of the body ∂Ω. In the context of
CFD, this last equation is typically the Navier-Stokes equations.

If derivatives of these functions are either computationally infeasible or not available, derivative-free methods1

may be used for such design-based optimization problems. While these widely applicable methods handle
non-smooth objectives, they often suffer from slow convergence rates, if they converge at all.2 In this work,
we only consider problems with smooth objectives and constraints, allowing use of gradient-based techniques
that display much higher convergence rates. A practical implementation of gradient-based methods requires
highly accurate computation of quantities of interest (QoI) because these values drive the optimization
trajectory.3

To minimize computational errors, we develop a globally high-order numerical discretization of our conserva-
tion laws. For a given level of accuracy, high-order methods require fewer degrees of freedom.4 Moreover, we
choose to efficiently compute derivatives of optimization functionals with an adjoint method. The principal
advantage of the adjoint approach is that the computational cost is independent of the number of design
variables. Therefore, a sensitivity analysis for hundreds of optimization variables can be performed at a cost
roughly equivalent to solving the governing equations twice.5 While an adjoint method in the context of
PDEs can be derived at the continuous, semi-discrete, or fully discrete level, we choose to consider the fully
discrete adjoint method as it ensures discrete consistency of computed gradients with discretization errors.6

In the context of gradient-based optimization, discrete consistency ensures black-box optimizers maximally
benefit from our high-order methods.2 Otherwise, specialized optimization algorithms must be employed
to handle gradient inexactness.7 A key property of adjoint-consistent discretizations is that they possess
optimal convergence rates in the L2-norm and in QoI.8

Previous work on unsteady adjoints has mostly considered temporal discretization by Backward Differen-
tiation Formulas.5,9 However, apart from requiring special techniques for initialization, these schemes are
limited to second-order accuracy if A-stability is required.10 Previous work by Zahr et al.3 derived a fully
discrete adjoint method using the diagonally implicit Runge-Kutta (DIRK) schemes common in many en-
gineering applications. There exist high-order, A-stable (and even L-stable) DIRK schemes; however, these
methods have a low stage order, often resulting in order reduction when applied to stiff problems.11 Indeed,
in Section IV.D, we find stability issues with a fifth-order DIRK scheme. Therefore, we turn to fully implicit
Runge-Kutta (IRK) schemes, which can be high order, L-stable, and have high stage order. Because each
time step requires solving a large, coupled system of equations, these IRK schemes have often been viewed
as computationally prohibitive.12 But recent work by Pazner and Persson13 showed that a large class of
IRK schemes can be transformed into a computationally cheaper system of equations. This new formulation
of the Radau IIA IRK schemes compares favorably with equal order DIRKs in terms of accuracy, GMRES
iterations, and compute time.

In this work, we derive a fully discrete adjoint method corresponding to this new formulation of IRK schemes.
High-order discretization of integrated QoI will be done in a solver-consistent manner in Section II. That is,
spatial integrals will be evaluated by integrating the Galerkin shape functions used for the spatial discretiza-
tion, and temporal integrals will be evaluated via the transformed Radau IIA IRK scheme for the temporal
discretization. This ensures the discretization order of QoI exactly matches the PDE discretization. Then
the fully discrete adjoint method will be derived in Section III. Finally, we will present results analyzing the
accuracy, convergence rate, and scalability of our implementation of this IRK adjoint method in Section IV.
Our method will be applied to the CFD problem of determining the energetically optimal trajectory of a
2D airfoil immersed in viscous flow, showing that it is competitive with the DIRK adjoint method from
Ref. 3.
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II. Governing Equations and Discretization

Consider a general system of conservation laws, defined on a parameterized, deforming domain, Ω(µ, t),
written at the continuous level as

∂U

∂t
+∇ ·F(U ,∇U) = 0, (2)

where the physical flux is decomposed into an inviscid and a viscous part F(U ,∇U) = F i(U)+Fv(U ,∇U),
U(x,µ, t) is the solution of the system of conservation laws, t ∈ [0, T ] represents time, and µ ∈ RNµ is a
vector of parameters. Let Nsd be the number of spatial dimensions and Nc be the number of components of
the vector of state variables.

The conservation law on a deforming domain is transformed into a conservation law on a fixed reference
domain through the introduction of a time-dependent mapping between the physical and reference domains,
resulting in an Arbitrary Lagrangian-Eulerian (ALE) description of the governing equations. For an in-depth
derivation of the ALE formulation that satisfies the Geometric Conservation Law (GCL), we refer to Refs. 14
or 3. The result is a system of PDEs: a mapped conservation law and a GCL augmentation both of the form
seen in (2).

A. Spatial Discretization

These PDEs are discretized using a method of lines approach. Namely, we spatially discretize (2) by the
compact discontinuous Galerkin (DG) method,15 a sparser variation of the local DG method.16 After spatial
discretization, we have the following system of ordinary differential equations (ODE):

M
∂u

∂t
= f(u,µ, t), (3)

where u(µ, t) ∈ RNu is our semi-discrete approximation to U , and Nu is the number of degrees of freedom
from our spatial discretization. A convenient property of this DG-ALE scheme is that all computations are
performed on the reference domain, which is independent of time and parameter. Therefore, the mass matrix
of the ODEs in (3) is time-, solution-, and parameter-independent.

∂M
∂t

=
∂M
∂u

=
∂M
∂µ

= 0

In subsequent sections of this article, we will assume that the mass matrix satisfies this property, significantly
simplifying Jacobian calculations.

Equation 3 is the system of ODEs from which we will derive our adjoint method. So while this section
introduces a DG-ALE spatial discretization to arrive at this system of ODEs, we may instead arrive at this
system from a different spatial discretization. A high-order spatial discretization merely provides a stable
framework within which we can now focus on high-order temporal discretization so as to yield a globally
high-order numerical method.

B. Temporal Discretization

Continuing the method of lines approach, the time interval [0, T ] is discretized into a sequence of Nt+1 time

values
{
t(n)
}Nt
n=0

, with the nth time step ∆t(n) := t(n+1) − t(n). A general s-stage Runge-Kutta method will

advance the solution from a known u(n) ≈ u(t(n)) to u(n+1) ≈ u(t(n+1)) with the update:

Mk(n)
i = f

u(n) + ∆t(n)
s∑
j=1

aijk
(n)
j ,µ, t(n) + ∆t(n)ci

 i = 1, . . . , s

u(n+1) = u(n) + ∆t(n)
s∑
i=1

bik
(n)
i .

(4)

3 of 16

American Institute of Aeronautics and Astronautics



The coefficients aij , bj , and ci concisely express any Runge-Kutta scheme; therefore we compare the IRK
schemes of interest using the Butcher tableau in Table 1b with the DIRK schemes in Table 1a. The IRK
schemes that we will explore further enjoy high accuracy and favorable stability properties, but have a dense

Butcher matrix A. Thus, computing the stages k
(n)
i requires the solution of one large nonlinear system of

equations of size s×Nu.

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

(a) s-stage DIRK schemes

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

(b) s-stage IRK schemes

Table 1: Butcher tableaux for Runge-Kutta schemes

The Radau IIA IRK schemes are L-stable with order 2s − 1 and are fully constructed in Ref. 17. This
article will exclusively consider Radau IIA IRK schemes because they possess two properties the following
derivations require: A is invertible, and bTA−1 = es = (0, . . . , 0, 1). The Butcher tableaux for these schemes
are given in Appendix A.

The nonlinear system (4) that arises from these schemes is solved by Newton’s method, an iterative process
that requires the solution of a linear system of equations at every step. These large, sparse, linear systems
are typically solved by an iterative solver such as GMRES, which approximates the exact solve by a sequence
of O(s2) matrix-vector multiplications.

Pazner and Persson13 showed that the cost of this matrix-vector multiplication could be reduced to O(s)

by simply deriving Newton’s method for the Runge-Kutta stage updates w
(n)
i rather than the stages k

(n)
i

themselves. We define

w
(n)
i =

s∑
j=1

aijk
(n)
j

as the ith stage update. Moreover, we stack all the updates into a single vector W (n), all the stages into a
single vector K(n), s copies of the known solution u(n) into a single vector U (n), and the right hand side
function f applied component-wise to each of the s inputs into the vector F . Then we can rewrite (4)
as

(Is ⊗M)K(n) = F
(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)
(5)

utilizing Kronecker product notation. In the case that the Butcher matrix A is invertible (such as for all
Radau IIA schemes), this is equivalent to(

A−1 ⊗M
)
W (n) = F

(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)
(6)

utilizing the Kronecker relation(
A−1 ⊗M

)
W (n) =

(
A−1 ⊗M

)
(A⊗ In)K(n) = (Is ⊗M)K(n).

Moreover, the new solution u(n+1) is updated as

u(n+1) = u(n) + ∆t(n)
(
bTA−1 ⊗ In

)
W (n) = u(n) + ∆t(n)w(n)

s (7)

because, in the case of Radau IIA schemes, bTA−1 = es. Using Newton’s method on this transformed
system of equations (6) requires repeatedly solving the linear system:A−1 ⊗M−∆t(n)


J1 0 . . . 0

0 J2 . . . 0
...

...
. . .

...

0 0 . . . Js


∆W (n) = R̃(n). (8)
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The residual vectors r
(n)
i = f −Mk(n)

i are stacked into a single vector R̃(n), and Ji is the Jacobian matrix of
f for the ith input vector. This resulting matrix is an s×s block matrix such that computing a matrix-vector
product only requires s matrix-vector multiplications with the mass matrix and s matrix-vector multiplica-
tions with a Jacobian matrix. Therefore the sparse matrix-vector products scale as O(s), a fundamental
improvement over the untransformed matrix which scales as O(s2). Moreover, memory usage is optimal, at
only s times that of a DIRK scheme.

C. Solver-Consistent Quantities of Interest

Given our high-order numerical method for solving the PDE (2), we now return to the CFD optimization
problem. In particular, we must determine how to compute the QoI—space-time integrals over the surface of
the body ∂Ω—in a solver-consistent manner. Discretization of QoI will introduce an additional discretization
error, separate from that in the approximation of u. To ensure neither discretization error dominates, thereby
lowering the global order of the scheme, it is necessary to equate the discretization orders of these QoI and
the PDE solution itself.

These time-dependent QoI take the form:

F (U ,µ, t) :=

∫ t

0

∫
∂Ω

f(U ,µ, τ) dS dτ, (9)

where F can correspond to either the constraints or objective function for our optimization problem (1).
Define fh as the approximation of

∫
∂Ω
f(U ,µ, t) dS using the DG shape functions from the spatial discretiza-

tion of the governing equations. Alternative spatial discretizations of these governing equations will yield
different solver-consistent approximations to this integral. Therefore, our solver-consistent approximation to
(9) becomes

Fh(u,µ, t) =

∫ t

0

fh(u,µ, τ) dτ,

or, equivalently
Ḟh(u,µ, t) = fh(u,µ, t). (10)

The QoI semi-discrete formulation (10) can be combined with the semi-discrete governing equations (3) to
yield the augmented system: [

M 0

0 1

][
u̇

Ḟh

]
=

[
r

fh

]
. (11)

Temporally integrating this system with the Radau IIA schemes derived in Section II.B yields the fully
discrete equations:

u(n+1) = u(n) + ∆t(n)w(n)
s

F
(n+1)
h = F

(n)
h + ∆t(n)

s∑
i=1

bifh

(
u(n) + ∆t(n)w

(n)
i ,µ, t(n) + ∆t(n)ci

)
(
A−1 ⊗M

)
W (n) = F

(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)
.

(12)

In (12), n = 0, . . . , Nt−1, and we have reused the vector-stacking notation from Section II.B to define W (n),
F , and U (n). After solving these equations, we can compute the solver-consistent QoI by evaluating the
functional F at the final time t = T as

F (U ,µ, T ) ≈ F (Nt)
h = Fh

(
u(0), . . . ,u(Nt),W (0), . . . ,W (Nt−1),µ

)
. (13)
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III. Fully Discrete, Time-Dependent Adjoint Equations

Now we turn to the derivation of the adjoint method for this solver-consistent QoI, F , from (13). Specifically,
we need to compute its total derivative,

dF

dµ
=
∂F

∂µ
+

Nt∑
n=0

∂F

∂u(n)

∂u(n)

∂µ
+

Nt−1∑
n=0

s∑
i=1

∂F

∂w
(n)
i

∂w
(n)
i

∂µ
, (14)

in a way that does not depend on the sensitivities of the state variables
∂u(n)

∂µ
,
∂w

(n)
i

∂µ
, because these sensi-

tivities are intractable to compute when Nµ is large. Once we provide a computationally feasible expression
for this derivative, we can utilize any desired gradient-based, black-box optimization solver to optimize our
CFD problem. We will discuss this further in Section III.B.

A. Derivation

We derive an alternative expression for the total derivative (14) by introducing the adjoint equations for a
functional F and its corresponding dual variables. The adjoint equation will allow a reconstruction of the
total derivative of F independent of these state sensitivities.

First, we define the residuals to (12). That is, for n = 0, . . . , Nt − 1,

0 = r(0) := u(0) − u0(µ)

0 = r(n+1) := u(n+1) − u(n) −∆t(n)w(n)
s

0 = R(n) :=
(
A−1 ⊗M

)
W (n) − F

(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)
.

(15)

Now we can differentiate each of these equations with respect to the parameters µ to get the fully discrete
sensitivity equations:

0 =
∂r(0)

∂µ
+
∂r(0)

∂u(0)

∂u(0)

∂µ

0 =
∂r(n+1)

∂µ
+
∂r(n+1)

∂u(n+1)

∂u(n+1)

∂µ
+
∂r(n+1)

∂u(n)

∂u(n)

∂µ
+
∂r(n+1)

∂w
(n)
s

∂w
(n)
s

∂µ

0 =
∂R(n)

∂µ
+
∂R(n)

∂u(n)

∂u(n)

∂µ
+

s∑
j=1

∂R(n)

∂w
(n)
j

∂w
(n)
j

∂µ
.

(16)

We introduce the dual variables λ(0),λ(n),ω
(n)
i ∈ RNu . As in Section II.B, we stack all s ω

(n)
i for a

given time step into a single vector Ω(n) ∈ RsNu . For any value of these dual variables, multiplying the
sensitivity equations by these duals will still yield the 0 vector. Therefore, we can subtract all the sensitivity
equations (16), multiplied by our dual variables, from (14) to yield:

dF

dµ
=
∂F

∂µ
+

Nt∑
n=0

∂F

∂u(n)

∂u(n)

∂µ
+

Nt−1∑
n=0

s∑
i=1

∂F

∂w
(n)
i

∂w
(n)
i

∂µ
− λ(0)T

(
∂r(0)

∂µ
+
∂r(0)

∂u(0)

∂u(0)

∂µ

)

−
Nt−1∑
n=0

λ(n+1)T

(
∂r(n+1)

∂µ
+
∂r(n+1)

∂u(n+1)

∂u(n+1)

∂µ
+
∂r(n+1)

∂u(n)

∂u(n)

∂µ
+
∂r(n+1)

∂w
(n)
s

∂w
(n)
s

∂µ

)

−
Nt−1∑
n=0

Ω(n)T

∂R(n)

∂µ
+
∂R(n)

∂u(n)

∂u(n)

∂µ
+

s∑
j=1

∂R(n)

∂w
(n)
j

∂w
(n)
j

∂µ

 .

(17)
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Now, rearranging the terms to isolate the state sensitivities, we have:

dF

dµ
=
∂F

∂µ
−

Nt∑
n=0

λ(n)T ∂r
(n)

∂µ
−
Nt−1∑
n=0

Ω(n)T ∂R
(n)

∂µ
+

(
∂F

∂u(Nt)
− λ(Nt)

T ∂r(Nt)

∂u(Nt)

)
∂u(Nt)

∂µ

+

Nt−1∑
n=0

(
∂F

∂u(n)
− λ(n+1)T ∂r

(n+1)

∂u(n)
− λ(n)T ∂r

(n)

∂u(n)
−Ω(n)T ∂R

(n)

∂u(n)

)
∂u(n)

∂µ

+

Nt−1∑
n=0

(
∂F

∂w
(n)
s

− λ(n+1)T ∂r
(n+1)

∂w
(n)
s

−Ω(n)T ∂R
(n)

∂w
(n)
s

)
∂w

(n)
s

∂µ

+

Nt−1∑
n=0

s−1∑
i=1

(
∂F

∂w
(n)
i

−Ω(n)T ∂R
(n)

∂w
(n)
i

)
∂w

(n)
i

∂µ
.

(18)

Equation 18 holds true for all dual variables. Thus, to simplify our computation of the total derivative, we
only consider dual variables such that the terms in parentheses are identically zero. This yields the system
of equations:

(
∂r(Nt)

∂u(Nt)

)T
λ(Nt) =

(
∂F

∂u(Nt)

)T
(
∂r(n)

∂u(n)

)T
λ(n) =

(
∂F

∂u(n)

)T
−

(
∂r(n+1)

∂u(n)

)T
λ(n+1) −

(
∂R(n)

∂u(n)

)T
Ω(n)

(
∂R(n)

∂W (n)

)T
Ω(n) =

(
∂F

∂W (n)

)T
− es ⊗

(
∂r(n+1)

∂w
(n)
s

)T
λ(n+1).

(19)

Analytically evaluating the sensitivities of our residuals from their definitions in (15), we rewrite (19) as

λ(Nt) =

(
∂F

∂u(Nt)

)T

λ(n) = λ(n+1) +

(
∂F

∂u(n)

)T
+
∂F

∂u

(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)T
Ω(n)

A−1 ⊗M−∆t(n)


J1 0 . . . 0

0 J2 . . . 0
...

...
. . .

...

0 0 . . . Js



T

Ω(n) =

(
∂F

∂W (n)

)T
+


0

0
...

∆t(n)λ(n+1)

 .
(20)

Equation 20 is the fully discrete adjoint equation, a dual system of equations to our primal problem (12).
Note that solving this system for λ(n) and Ω(n) is computationally similar to solving the primal problem for
u(n) and W (n). This is because computing either the Runge-Kutta stage updates or the dual variables at
each time step requires solving a sNu×sNu system of equations (which due to its convenient block structure
can be performed as a sequence of O (s) matrix-vector multiplications) before updating the solution to the
next time step. However, while the discrete primal problem is nonlinear, the discrete adjoint problem is
linear and therefore only requires a single solution of a linear system. Lastly, we note that while the discrete
primal problem steps forwards in time from n = 0 to n = Nt, the dual problem steps backwards in time
from n = Nt to n = 0 with a well-defined “initial condition” at n = Nt.

After solving this dual problem for our variables λ(n),Ω(n), we return to (18) and simplify the expression
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for the total derivative:

dF

dµ
=
∂F

∂µ
−

Nt∑
n=0

λ(n)T ∂r
(n)

∂µ
−
Nt−1∑
n=0

Ω(n)T ∂R
(n)

∂µ

=
∂F

∂µ
+ λ(0)T ∂u0

∂µ
+

Nt−1∑
n=0

Ω(n)T ∂F

∂µ

(
U (n) + ∆t(n)W (n),µ, t(n) + ∆t(n)c

)
.

(21)

Of critical importance, we note that (21) does not depend on state sensitivities, save for
∂u0

∂µ
. This one term

does not destroy the efficiency of our adjoint method for two reasons: (1) only matrix-vector products with
this term are required, and (2) the initial condition is either known analytically or is the solution of some
nonlinear system of equations. Zahr and Persson3 showed that at worst case this matrix-vector product can
be computed at the cost of one linear solve of size Nu ×Nu and one inner product of size O(Nµ).

B. Fully Discrete Framework

With the ability to evaluate a QoI using (12) and compute its derivative using (21), we now return to
our CFD optimization problem (1). Using any gradient-based optimization solver, such as a quasi-Newton
method,18 we can iteratively improve an approximation to the local minimum of this problem until we are
within a desired tolerance. But why use a fully discrete framework over the more traditional, continuous
adjoint method?

Firstly, the fully discrete framework ensures that the QoI evaluation and derivative computations are solver-
consistent. This property is important because practical convergence rates, and even many theoretical
convergence bounds, depend on consistent gradients of optimization functionals.

Secondly, when Runge-Kutta schemes are used for the temporal discretization, the fully discrete framework
avoids any complications with asymmetrical stage nodes. For a general Runge-Kutta scheme, the stage
nodes c are not symmetric about 1/2. During a primal solve, the solution u is computed at each time step
and at t(n) + ∆t(n)ci for i = 1, . . . , s. But using the same Runge-Kutta scheme during the backward solve
of the semi-discrete or continuous adjoint equations, the solution λ is computed at each time step and at
t(n+1) −∆t(n)ci for i = 1, . . . , s. In general, this is a different set of times, so the primal solutions must be
interpolated to these new stage nodes. Beyond complicating any implementations, this degrades accuracy
at the intermediate stages. One major benefit of the IRK schemes we are using in this work is their high
stage order. So using a semi-discrete or continuous adjoint method with IRK schemes would be knowingly
decreasing accuracy at the exact place where the accuracy of these IRK schemes is most coveted. Happily,
this issue does not arise in the fully discrete setting as only terms computed during the primal solve appear
in the adjoint equations, by construction.

Lastly, the fully discrete adjoint equation applied to these IRK schemes yields a convenient linear system
of equations. Compare the matrix in (20) with that in (8). Because their structure and sparsity pattern
are identical, we can reuse solvers and preconditioners developed for the primal equations when solving the
adjoint equations. We confirm that their effectiveness transfers to the adjoint equations in Section IV.D.
There is no guarantee that such a convenient property arises when discretizing the semi-discrete or continuous
adjoint method.

IV. Numerical Results

A. Energetically Optimal Trajectory of 2D Airfoil in Compressible, Viscous Flow

In this section, we apply the high-order, PDE-constrained optimization framework developed in this article to
find the energetically optimal trajectory of an airfoil immersed in an isentropic, viscous flow. The governing
equations are the 2D compressible, isentropic Navier-Stokes equations:

8 of 16

American Institute of Aeronautics and Astronautics



∂ρ

∂t
+∇ · (ρu) = 0

∂ (ρu)

∂t
+∇ ·

(
ρu⊗ uT + pINsd − τ

)
= 0

∂ (ρE)

∂t
+∇ · ((ρE + p)u+ q − τu) = 0.

(22)

where ρ is the fluid density, u is the fluid velocity, E is the total energy, p is the pressure, and INsd is the
Nsd ×Nsd identity tensor. The viscous stress tensor τ and heat flux q are given by

τ := µ

(
∇u+ (∇u)

T −
2

3
(∇ · u) INsd

)
, q := −

µ

Pr
∇

(
E +

p

ρ
−

1

2
‖u‖22

)
,

where µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number, which we assume to be constant.

For an ideal gas, the pressure satisfies p = (γ−1)ρ
(
E − 1

2 ‖u‖
2
2

)
, where γ = 1.4 is the adiabatic gas constant.

Furthermore, the entropy of the system is assumed constant, so the flow is adiabatic and reversible. Thus,
for a perfect gas, the entropy is defined as s = p/ργ . Favorably, this equation allows us to relate pressure and
density, thereby making the energy equation in (22) redundant. This reduces the number of components of
the PDE from Nsd + 2 to Nsd + 1, where we recall that Nsd = 2 is the number of spatial dimensions.

Figure 1: Airfoil specifications

The goal of this optimization problem is to find a trajectory for the airfoil that minimizes energy, subject to
a specified thrust constraint. The airfoil is immersed in a flow with Reynolds number 1000 and Mach number
0.1. These parameters were chosen to balance approximate incompressibility and well-conditioned equations.
Ω is taken to be a circular domain with radius 100 centered at (0, 0). The airfoil’s leading edge is located at
the origin. The 2D NACA0012 airfoil, as in Figure 1, has chord length l = 1, zero-thickness trailing edge,
and a kinematic motion parameterized with a single Fourier mode. Mathematically, we write:

x(µ, t) = Ax sin (ωxt+ φx) + cx

y(µ, t) = Ay sin (ωyt+ φy) + cy

θ(µ, t) = Aθ sin (ωθt+ φθ) + cθ.

(23)

For a trajectory to be valid, we must satisfy the thrust constraint,

T (U ,µ) :=

∫ T

0

∫
∂Ω

f(U ,µ, t) · e1 dS dt ≥ T0. (24)

Note that ∂Ω refers to the surface of the airfoil, f(U ,u, t) is the instantaneous force that the fluid exerts on
the airfoil, T = 5 is the dimensionless period of the flow, and T0 = 0.7 is the minimum allowed thrust over
a period. The total work done on the airfoil by the fluid, W , can be computed as

W (U ,µ) :=

∫ T

0

∫
∂Ω

f(U ,µ, t) · ẋ dS dt, (25)
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where ẋ is the velocity of a point on the surface of the airfoil. Therefore, the formal optimization problem
we wish to solve is

min
U ,µ

W (U ,µ)

s.t. T (U ,µ) ≥ T0

∂U

∂t
+∇ · F (U ,∇U) = 0 in Ω(µ, t).

(26)

B. Adjoint Gradient Verification

Before considering this optimization problem, we first verify the accuracy of the proposed adjoint method
against a more traditional finite difference approach. The finite difference approximation to the gradient
requires solving the fully discrete equations (12) at perturbations to a reference parameter configuration.
We consider the reference parameters µ:

cx = 0 cy = 0 cθ = 0

Ax = −5/4 Ay = 3/2 Aθ = π/8

ωx = 2π/5 ωy = 2π/5 ωθ = π/2

φx = 0 φy = 0 φθ = 0

Figure 2 shows the relative error between the gradients computed by our adjoint method and the second-order
finite difference approximation across a sweep of finite difference step sizes using IEEE 754 double-precision
floating-point numbers. A relative error of 3.4× 10−10 is observed for a step size of 5.0× 10−6. The slope of
the last eight data points is exactly 2.0, showing the convergence rate of the finite difference approximation
to the adjoint-based gradient. As expected, after the step size becomes too small, the error increases with
decreasing step size because of the trade-off between finite difference accuracy and roundoff error.

10−9 10−7 10−5 10−3 10−1
10−10

10−8

10−6

10−4

10−2

step size

∥ ∥ ∥ ∥ ∥d
F d
µ
−

∆
F

∆
µ

∥ ∥ ∥ ∥ ∥/∥ ∥ ∥ ∥ ∥∆
F

∆
µ

∥ ∥ ∥ ∥ ∥

Figure 2: Verification of the adjoint-based gradient with second-order centered finite difference approxima-
tion. The adjoint gradient matches the finite difference approximation to about 10 digits of accuracy in
double precision before roundoff errors degrade the accuracy.

C. Optimal Trajectory

With the adjoint gradient verified, we now return to the optimization problem (26). For this and all further
results, we discretize the domain around the airfoil with a mesh containing 971 triangles that is refined
around the airfoil, in particular at the leading and trailing edges. We apply our DG-ALE formulation with
polynomial order p = 3 to get a system of ODEs with 38,840 degrees of freedom. All of our IRK schemes use
∆t(n) = 5× 10−2, a reasonably large value that exceeds the CFL condition of most explicit time integrators.
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We use a limited memory quasi-Newton method to solve sequential quadratic programming approximations
to our nonlinear optimization problem, implemented in the SNOPT software package.19

Figure 3 shows the initial guess for the optimization problem, a purely vertical oscillation, and the achieved
optimal trajectory using the Radau23 adjoint method. The initial guess does not satisfy the thrust constraint
with W = 1.8; however, the optimal trajectory generates the required thrust with W = 9.8× 10−2. Indeed,
at the optimal solution, the total work required to perform this periodic flapping motion is more than an
order of magnitude smaller than at the initial guess.
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1
·10−2

t

x
(t

)

0 1 2 3 4 5
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1

t

y
(t

)

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

θ(
t)

Initial
Optimal

Figure 3: Initial guess and energetically optimal x(t), y(t), and θ(t) trajectories over one period T = 5

Figures 4 and 5 show vorticity snapshots created by the initial guess and energetically optimal trajectories
over one period. Snapshots are taken at t1 = 0, t2 = T/4 = 1.25, t3 = T/2 = 2.5, and t4 = 3T/4 = 3.75
of the third oscillation period. Figure 4 shows flow separation off the leading edge and vortex shedding,
implying a large amount of work is required to complete each oscillation. Figure 5 shows that the optimal
trajectory produces less flow separation and reduced amounts of shedding, consequently reducing the total
work required.

Figure 6 contains a convergence study of three time integrators for our numerical optimizer. We consider
the 1-stage, first-order Radau11 scheme (Backward Euler), 2-stage, third-order Radau23 scheme, and the
3-stage, fifth-order Radau35 scheme. The y-axis is relative error in total work |W −W ∗|, where W ∗ is the
final total work computed when the optimizer converges to a solution. Using the Radau11, Radau23, and
Radau35 schemes, the optimizer computes exactly 17, 15, and 14 iterations, respectively. We note that these
iteration counts are approximately the same and quite low, highlighting a benefit of computing high-order
gradients with discrete consistency for our black-box optimizer. While the curves appears to struggle after
reaching 3 digits of accuracy, the overall convergence is still superlinear, with estimated convergence rates
of 1.4, 1.3, and 1.8, respectively.

D. Performance Analysis

In this section, we compare the performance of our IRK adjoint method with the previously derived DIRK
adjoint method from Ref. 3. Specifically, we compare DIRK33, an L-stable, 3-stage, third-order DIRK
scheme,12 to the equal-order Radau23 scheme, and SDIRK55, an L-stable, 5-stage, fifth-order singly DIRK
scheme,20 to the equal-order Radau35 schemea. Appendix A contains the Butcher tableaux for these schemes.

aWe initially tested ESDIRK65,21 a 6-stage, fifth-order DIRK scheme that has an explicit first step. However, we found
stability issues using our large ∆t. ESDIRK65 was only stable after decreasing ∆t by two orders of magnitude.
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Figure 4: Vorticity snapshots of initial trajectory at t = 0, T/4, T/2, and 3T/4

Figure 5: Vorticity snapshots of optimal trajectory at t = 0, T/4, T/2, and 3T/4

The DIRK systems are preconditioned with an ILU(0) factorization, and the IRK systems are preconditioned
with the stage-uncoupled ILU(0) factorization introduced in Ref. 13. These performance tests set the toler-
ance for Newton’s method to 10−8 and the relative, preconditioned tolerance of GMRES to 5× 10−4.

From Figure 6, we know that the number of iterations our optimizer requires to converge is approximately the
same for all IRK schemes. Therefore, we analyze the overall performance of our adjoint method by instead
measuring the performance of one optimization iteration. From Section II.B and Section III.A, we know
that the cost of these methods is dominated by the matrix-vector multiplications. Therefore, we compute
the number of Nu × Nu matrix-vector products across all time steps of one representative optimization
iteration—Nt forward time steps of the primal problem and Nt backward time steps of the dual problem.
We refer to this quantity as the number of equivalent multiplications and use it as a machine- and optimizer-
independent measure of performance. For DIRK schemes, the equivalent multiplications per time step is
equal to the number of GMRES iterations per time step. For IRK schemes, each multiplication by the large
block matrix from (8) essentially consists of s matrix-vector products of size Nu × Nu. So the equivalent
multiplications per time step is equal to s times the number of GMRES iterations per time step.

Figure 7 plots the equivalent multiplications for our Runge-Kutta schemes against the number of distributed-
memory compute processes. First, we notice that the higher order schemes cost more than the lower order
schemes, but scale at the same rate. Therefore, if temporal accuracy is important, these high-order schemes
should out-perform the low-order schemes, no matter the computing scale at which the problem is run.

Furthermore, we can make direct comparisons between the performance of DIRK and IRK adjoint methods.
The Radau23 scheme outperforms DIRK33 by roughly 10%, and the improvement slightly increases as
the number of processes increases. Likewise, the SDIRK55 scheme outperforms Radau35 by roughly 15%,
although the improvement decreases as the number of processes increases. Figure 7 also confirms that the
preconditioner initially derived for the forward, linear system (8) also works well for the linear adjoint system
(20).

By construction, the ILU(0) preconditioners we use are local operators with no inter-process communication;
all inter-element contributions that require communication between processes are ignored. So the precon-
ditioners should perform worse as the domain is partitioned among more processes. Indeed, as the number
of partitions approaches the number of mesh elements, the preconditioner reduces to a block Jacobi precon-
ditioner.22 As expected, Figure 7 shows that the equivalent multiplications increases for all schemes as the
number of domain partitions increases.

These considerations apply to both the DIRK and IRK linear systems; however, the stage-uncoupled ILU(0)
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Figure 6: Convergence of computed work for the optimization problem (26) solved with IRK schemes with
temporal order 1, 3, and 5. W ∗ is taken to be the work computed at the final iteration for each of the
schemes. Radau11, Radau23, and Radau35 reach the desired 10−9 tolerance after 15, 14, and 12 iterations,
respectively. To confirm this convergence, the optimizer computes 17, 15, and 14 iterations.
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representative optimization iteration. Radau23 outperforms DIRK33 by roughly 10%. SDIRK55 outperforms
Radau35 by roughly 15%. Each equivalent multiplication is one Nu ×Nu matrix-vector multiplication.
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preconditioner for our IRK schemes can be modified to handle a domain that is decomposed into a factor
of s fewer partitions. Instead of assigning each process to one partition, we can instead assign s processes
to one partition. Each process will then be responsible for one stage of the IRK scheme. With this setup,
the assembly of Jacobian matrices will be local to each set of s processes, and the precomputation and
application of our uncoupled ILU(0) preconditioner will be local to each process. We expect that this stage-
parallel solver should have the benefit of translating the Radau IIA results in Figure 7 to the right roughly
by a factor of s. While we have not implemented this parallel-in-time solver, analyzing its benefits to our
fully discrete IRK adjoint method would be an interesting topic for future research.

V. Conclusions

This article derived the fully discrete adjoint equations to create a globally high-order numerical method
for computing gradients for an optimization problem. Fully implicit Runge-Kutta (IRK) schemes were used
for temporal integration so that our method benefits from high-order stability and high stage order. By
transforming the formulation of these IRK schemes, the linear systems that dominate the cost of our IRK
adjoint method are computationally competitive with those formed from diagonally implicit Runge-Kutta
(DIRK) schemes. We detailed the computation of solver-consistent quantities of interest and their exact
gradients for solving PDE-constrained optimization problems. This fully discrete IRK adjoint method has
the benefit of matching the order of the discretization errors of the optimization inputs and PDE solution. In
contrast to semi-discrete or continuous adjoint methods, this property ensures that we maintain intermediate
stage accuracy—exactly where the high stage order of IRK schemes is most coveted.

In the context of gradient-based optimization, our implementation of the IRK adjoint method was used to
solve an optimization problem constrained by the isentropic, compressible Navier-Stokes equations. This
work verified the accuracy of these gradients, and rapid convergence to the optimal solution was noted for
several IRK schemes. Moreover, we showed that the parallel performance of the IRK adjoint methods was
comparable to the DIRK adjoint methods of the same order. We expect that the development and application
of a stage-parallel solver to our adjoint method will further highlight its computational benefits.

Appendix A Runge-Kutta Butcher Tableaux

1 1

1

Backward Euler
(Radau11) scheme

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

Radau23 scheme

2
5 −

√
6

10
11
45 −

7
√

6
360

37
225 −

169
√

6
1800 − 2

225 +
√

6
75

2
5 +

√
6

10
37
225 −

169
√

6
1800

11
45 −

7
√

6
360 − 2

225 −
√

6
75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

Radau35 scheme

α α 0 0
1+α

2
1−α

2 α 0

1 b1 b2 α

b1 b2 α

DIRK33 scheme

α = 1 +

√
6

2
sin

(
1

3
arctan

(√
2

4

))
−
√

2

2
cos

(
1

3
arctan

(√
2

4

))

b1 = −1

4

(
6α2 − 16α+ 1

)
b2 =

1

4

(
6α2 − 20α+ 5

)
˙
˙
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4024571134387
14474071345096

4024571134387
14474071345096 0 0 0 0

5555633399575
5431021154178

9365021263232
12572342979331

4024571134387
14474071345096 0 0 0

5255299487392
12852514622453

2144716224527
9320917548702

−397905335951
4008788611757

4024571134387
14474071345096 0 0

3
20

−291541413000
6267936762551

226761949132
4473940808273

−1282248297070
9697416712681

4024571134387
14474071345096 0

10449500210709
14474071345096

−2481679516057
4626464057815

−197112422687
6604378783090

3952887910906
9713059315593

4906835613583
8134926921134

4024571134387
14474071345096

−2522702558582
12162329469185

1018267903655
12907234417901

4542392826351
13702606430957

5001116467727
12224457745473

1509636094297
3891594770934

SDIRK55 scheme
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