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A high-order accurate adjoint-based optimization framework is presented for unsteady
multiphysics problems. The fully discrete adjoint solver relies on the high-order, linearly stable,
partitioned solver introduced in [1], where different subsystems are modeled and discretized
separately. The coupled system of semi-discretized ordinary differential equations is taken
as a monolithic system and partitioned using an implicit-explicit Runge-Kutta (IMEX-RK)
discretization [2]. Quantities of interest (QoI) that take the form of space-time integrals are
discretized in a solver-consistent manner. The corresponding adjoint equations are derived to
compute exact gradients of QoI, which can be solved in a partitionedmanner, i.e. subsystem-by-
subsystem and substage-by-substage, thanks to the partitioned primal solver. These quantities
of interest and their gradients are then used in the context of gradient-based PDE-constrained
optimization. The present optimization framework is applied to two fluid-structure interaction
problems: 1D piston problem with a three-field formulation and a 2D energy harvesting
problem with a two-field formulation.

I. Introduction
Optimization problems involving multiphysics systems commonly arise in engineering practice, particularly in the

context of design or control of physics-based systems. These problems lead to PDE-constrained optimizations. In the
literature, a majority of research in PDE-constrained optimization has been focused on a single physical system or steady
PDEs, which is sufficient for a large class of problems of interest. However, there is a large class of problems where
such analysis is insufficient, such as problems that involves the interactions of multiple physical systems or physical
phenomena, which are generally inherently dynamic. Typical examples include flapping flight for Micro-Aerial Vehicles
(MAVs) designs [3, 4], optimal combustion control system to maintain stable combustion with low exhaust emissions
[5, 6], microscale swimmer designs for drug delivery [7], and wind turbine performance optimization [8, 9] to extract
maximum energy. Design and control of these types of systems are challenging considering the coupling effects of
multiple physics and the high computational cost due to their unsteady nature. Innovative multiphysics solvers and
state-of-art optimization tools are needed to solve such problems.

We first review the high-order, linearly stable, implicit-explicit Runge-Kutta (IMEX-RK) [2] based partitioned
solvers for multiphysics problems proposed in [1]. In this framework, a generic multiphysics problem is modeled as a
system of n systems of partial differential equations where the ith subsystem is coupled to the other subsystems through
a coupling term that can depend on the state of all the other subsystems. This coupled system of partial differential
equations reduces to a coupled system of ordinary differential equations via the method of lines where an appropriate
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spatial discretization is applied to each subsystem. The coupled system of ordinary differential equations is taken as a
monolithic system and discretized using an IMEX-RK discretization with a specific implicit-explicit decomposition
that introduces the concept of a predictor for the coupling term. Four coupling predictors are proposed that enable
the monolithic system to be solved in a partitioned manner, i.e., subsystem-by-subsystem, and preserve the IMEX-RK
structure and therefore the design order of accuracy of the monolithic scheme. The four partitioned solvers that result
from these predictors are high-order accurate, allow for maximum re-use of existing single-physics software, and two of
the four solvers allow the subsystems to be solved in parallel at a given stage and time step. In [1], we also analyze the
stability of a coupled, linear model problem and show that one of the partitioned solvers achieves unconditional linear
stability, while the others are unconditionally stable only for certain values of the coupling strength.

Next, we derive the corresponding fully discrete sensitivity and adjoint equations for general optimization problems.
Here, we mainly focus on one of the aforementioned partitioned solvers, the weakly coupled Gauss-Seidel predictor based
partitioned solver, which has demonstrated its high-order accuracy, numerical stability and software maintainability in
many engineering problems. Quantities of interest or objective functions, e.g. energy consumption or the quantities
of combustion emission, that take the form of space-time integrals that are discretized in a solver-consistent manner.
This ensures the discretization order of quantities of interest exactly matches the PDE temporal discretization. The
aforementioned multiphysics partitioned solver becomes the PDE-constraint of the optimization problem. To compute
exact gradients of quantities of interest, we need to solve the multiphysics problem, and then either compute the
sensitivity of the state variables through forward time-marching or evaluate the adjoint variables through backward
time-marching. We can leverage the high-order linear stability property of the partitioned solver, which takes large time
steps and therefore reduces the number of time steps and accelerates the time-marching procedure. The optimization
solver IPOPT [10] is used to solve the optimization problem based on a nonlinearly constrained interior point method.

The remainder of this paper is organized as follows. In Section II, the governing equations of the multiphysics
system, the integral form quantities of interest and their semi-discretizations are introduced. The high-order temporal
discretization, based on IMEX-RK schemes, is described in Section III, which leads to a partitioned multiphysics solver.
Following this in Section IV, the corresponding fully discrete sensitivity equations and adjoint equations are derived,
which deliver the exact gradient of the QoIs. Section V demonstrates the approach as applied to two optimization
problems: a 1D oscillating piston problem and a 2D airfoil energy harvesting problem. Finally, conclusions are offered
in Section VI.

II. Governing multiphysics equations and semi-discretization
Consider a general formulation of a mathematical model describing the behavior of multiple interacting physical

phenomena described by the following coupled system of partial differential equations

∂tui = Li (ui, ci, x, µ, t), x ∈ Ωi (ci, µ, t), t ∈ (0, T ) (1)

for i = 1, . . . , m, where m represents the number of physical systems, and boundary conditions are excluded for brevity.
The ith physical system is modeled as a partial differential equation characterized by the generalized differential operator
Li that defines a conservation law or other type of balance law, the state variable ui that is the solution of the ith physical
system on the space-time domain Ωi × (0, T ), and a coupling term ci that, in general, couples the ith system to the other
m − 1 systems. In the general case, the differential operator Li , domain Ωi , and boundary conditions depend on the
coupling term. The coupling term contains quantities usually considered data required to define the ith PDE, such as
boundary conditions or material properties. In a single-physics setting, these quantities would be prescribed, but in the
multiphysics setting they are determined from the state vectors of all m systems, i.e.,

ci = ci (u1, . . . , um, x, µ, t). (2)

The definition of the coupling term is problem-dependent and special structure in the coupling term can be exploited to
create a better partitioned solver. While the form of (1) is specific to first-order temporal systems, it includes equations
with higher-order temporal derivatives, assuming they have been re-cast in the first-order form. The spatial domains Ωi

for the individual systems may or may not be overlapping and in many cases are the same, i.e., Ωi = Ω for i = 1, . . . , m.
Any of the operators, solution variables, and even the deformed computational domain might depend on the parameter
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vector µ. The quantities of interest are assumed to be of the integral form,

J (u1, . . . , um, x, µ, T ) =
∫ T

0
j (u1(τ), . . . , um(τ), µ, τ)dτ. (3)

We introduce the semi-discrete form of the coupled partial differential equations in (1) that arises from applying an
appropriate spatial discretization to the ith PDE system individually, which takes the form

M i u̇i = r i (ui, ci, µ, t), t ∈ (0, T ) (4)

where ui (t) is the semi-discrete state vector corresponding to the spatial discretization of ui (x, t), r i is the spatial
discretization of the differential operator Li and called the velocity of the ODE system in the remainder of the document,
and ci is the semi-discrete coupling term corresponding to the spatial discretization of ci (u1, . . . , um, x, t). In general,
the coupling term depends on the semi-discrete state vector of all m systems

ci = ci (u1, . . . , um, µ, t). (5)

For convenience, we re-write the system of ordinary differential equations in (4)-(5) as

Mu̇ = r (u, c(u, µ, t), µ, t), t ∈ (0, T ), (6)

where the combined mass matrix is a block diagonal matrix consisting of the single-physics mass matrices

M =



M1

. . .

Mm



and the combined state vector, coupling term, and nonlinear residual are vectors consisting of the corresponding
single-physics term, concatenated across all m systems

u =



u1

...

um



c(u, t) =



c1(u1, . . . , um, µ, t)
...

cm(u1, . . . , um, µ, t)



r (u, c, t) =



r1(u1, c1, µ, t)
...

rm(um, cm, µ, t)



.

The total derivative, or Jacobian, of the semi-discrete velocity Du r is expanded as

Du r =
∂r

∂u
+
∂r

∂c

∂c

∂u
, (7)

where the individual terms take the form

∂r

∂u
=



∂r1

∂u1
. . .

∂rm

∂um



∂r

∂c
=



∂r1

∂c1
. . .

∂rm

∂cm



∂c

∂u
=



∂c1

∂u1 · · ·
∂c1

∂um

...
. . .

...
∂cm

∂u1 · · ·
∂cm

∂um



, (8)

and the dependencies have been dropped for brevity. The first term in the Jacobian, Eq. (7), is block diagonal and
accounts for the direct contribution of a state to its own system while the second term accounts for the coupling between
systems.
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III. A high-order partitioned solver for multiphysics problems
In this section, high-order partitioned time-integration schemes for multiphysics systems are introduced. In a

partitioned sense, individual off-the-shelf single-physics solvers are combined to solve the multiphysics problem, rather
than considering the monolithic multiphysics system. However, they tend to be limited to low-order accuracy and have
stringent stability requirements. Our partitioned time-integration scheme mitigates most of these issues by combining
high-order implicit-explicit Runge-Kutta (IMEX) schemes for the monolithic multiphysics system with a judicious
implicit-explicit decomposition that diagonally couples the individual systems via a novel predictor for the coupling
terms.

A. Background: implicit-explicit Runge-Kutta schemes
Implicit-explicit Runge-Kutta schemes, first proposed in [2, 11], define a family of high-order discretizations for

nonlinear differential equations whose velocity term can be decomposed into a sum of a non-stiff f and stiff g velocity

Mu̇ = f (u, t) + g(u, t). (9)

The non-stiff f velocity is integrated with an s-stage explicit Runge-Kutta scheme and the stiff term g is integrated
with an s-stage diagonally implicit Runge-Kutta scheme. IMEX Runge-Kutta schemes are compactly represented by
a double tableau in the usual Butcher notation (Table 1), where Â, b̂, ĉ defines the Butcher tableau for the explicit
Runge-Kutta scheme used for f and A, b, c defines the diagonally implicit Runge-Kutta scheme used for g. In this
work, we mainly consider IMEX-RK schemes proposed in [12], in which the implicit Runge-Kutta part of these IMEX
schemes are L-stable, stiffly-accurate, and have an explicit first stage (a11 = 0).

Explicit Runge-Kutta coefficients

0
ĉ2 â21

ĉ3 â31 â32
...

...
. . .

ĉs âs1 as2 · · · âss−1

b̂1 b̂2 · · · b̂s−1 b̂s

Implicit Runge-Kutta coefficients

c1

c2 a21 a22

c3 a31 a32 a33
...

...
. . .

cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs
Table 1 Butcher Tableaux for an s-stage implicit-explicit Runge-Kutta scheme.

Consider a discretization of the time domain [0, T] into Nt segments with endpoints {t0, . . . , tNt }, with the nth
segment having length ∆tn = tn − tn−1 for n = 1, . . . , Nt . Also, let un denote the approximation of the solution of
the differential equation in (9) at timestep n, i.e., un ≈ u(tn). Then, given the explicit ( Â, b̂, ĉ) and implicit (A, b, c)
Butcher tableaux, the s-stage IMEX Runge-Kutta scheme that advances u

n−1 to un is given by

un = un−1 +

s∑
p=1

b̂p k̂n,p +
s∑

p=1
bpkn,p, (10a)

Mkn, j = ∆tng(un, j, tn−1 + cj∆tn), (10b)

Mk̂n, j = ∆tn f (un, j, tn−1 + ĉj∆tn), (10c)

un, j = un−1 +

j−1∑
p=1

â jp k̂n,p +

j∑
p=1

a jpkn,p, (10d)

where k̂n,p and kn,p are the pth explicit and implicit velocity stage, respectively, corresponding to timestep n and un,p

is the approximation to un at stage p of timestep n. For each stage j, the nonlinear system of equations in (10b) must be
solved to compute the implicit stage kn, j . Next, the explicit stage can be computed directly from (10c) since the stage
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approximation un, j does not depend on the explicit stage k̂n, j . Finally, given the previous timestep and all implicit and
explicit stages, the solution at time n is determined from (10a).

B. A partitioned implicit-explicit Runge-Kutta scheme for multiphysics systems
The proposed high-order partitioned scheme for integration of generic time-dependent multiphysics problems

of the form (4)-(5) is built on an IMEX Runge-Kutta discretization of the monolithic system. A special choice of
implicit-explicit decomposition, along with the introduction of predictors for the coupling term, creates a diagonal
or triangular dependency between the systems and allows the monolithic discretization to be solved in a partitioned
manner. The proposed decomposition handles a majority of the relevant physics implicitly to leverage the enhanced
stability properties of such schemes, while only the correction to the coupling predictor is handled explicitly.

1. Implicit-explicit decomposition and monolithic IMEX Runge-Kutta discretization
To begin our construction, recall the semi-discrete form of the multiphysics system (6) and consider the splitting of

the velocity term r (u, c(u, t), t) as

r (u, c(u, µ, t), µ, t) = f (u, c̃, µ, t) + g(u, c̃, µ, t) (11)

where c̃ is an approximation, or predictor, of the coupling term c(u, t) and the terms that will be handled explicitly f
and implicitly g in the IMEX discretization are defined as

f (u, c̃, µ, t) = r (u, c(u, µ, t), µ, t) − r (u, c̃, µ, t) (12a)
g(u, c̃, µ, t) = r (u, c̃, µ, t), (12b)

where the dependence on the predictor is explicitly included. In general, the predictor depends on the instantaneous
state vector u(t) and data ū, likely from the history of the state vector {u(τ) | τ < t}

c̃ = c̃(u, ū, µ, t). (13)

With this decomposition of the velocity of the semi-discrete multiphysics system in (12), the IMEX Runge-Kutta
scheme in (10) applied to the monolithic multiphysics system (6) becomes

un = un−1 +

s∑
p=1

b̂p k̂n,p +
s∑

p=1
bpkn,p, (14a)

Mkn, j = ∆tng(un, j, c̃(un, j, un−1, µ, tn, j ), µ, tn, j ), (14b)

Mk̂n, j = ∆tn f (un, j, c̃(un, j, un−1, µ, tn, j ), µ, tn, j ), (14c)

un, j = un−1 +

j−1∑
p=1

â jp k̂n,p +

j∑
p=1

a jpkn,p, (14d)

where the data used in the coupling predictor is taken from the previous timestep. This is the general form of the fully
discrete, monolithic multiphysics system where the coupling predictor is unspecified. In the general setting where
each coupling predictor depends on the state of all systems, the Jacobian of the coupling predictor is block dense with
potentially sparse blocks

∂ c̃

∂u
=



∂ c̃1

∂u1 · · ·
∂ c̃1

∂um

...
. . .

...
∂ c̃m

∂u1 · · ·
∂ c̃m

∂um



.

This implies the Jacobian of the implicit velocity

Dug =
∂r

∂u
+
∂r

∂ c̃

∂ c̃

∂u

5



is also block dense, which highlights the fact that there is coupling across all systems and a monolithic solver is required
for the implicit step.

2. Weakly coupled Gauss-Seidel predictor
The Gauss-Seidel-type (triangular) predictors for the multiphysics system assume the individual systems are ordered

in a physically relevant manner. The preferred ordering is problem-dependent. The weakly coupled Gauss-Seidel-type
predictor for the ith system is defined as

c̃i (u, ū, µ, t) = c(u1, . . . , ui−1, ūi, . . . , ūm, µ, t) (15)

for i = 1, . . . , m. At the fully discrete level, this predictor takes the form

c̃i (un, j, un−1, µ, t) = c(u1
n, j, . . . , u

i−1
n, j , u

i
n−1, . . . , u

m
n−1, µ, t). (16)

In the context of the IMEX-RK discretization in (14a-14d), the ith predictor lags the state of systems i, . . . , m to
the previous timestep in the evaluation of the coupling term throughout all stages of the timestep. The IMEX-RK
discretization of the multiphysics system in (14a-14d) with this form of the predictor leads to Algorithm 1. In this case,

Algorithm 1 Implicit-Explicit Runge-Kutta partitioned multiphysics scheme: weak Gauss-Seidel predictor
1: for stages j = 1, . . . , s do
2: for physical systems i = 1, . . . , m do

3: Define stage solution according to (14a): ui
n, j = ui

n−1 +

j−1∑
p=1

â jp k̂
i
n,p +

j∑
p=1

a jpk
i
n,p

4: Implicit solve (14b) for k in, j : M
ik in, j = ∆tngi (ui

n, j, c
i (u1

n, j, . . . , u
i−1
n, j , u

i
n−1, . . . , u

m
n−1, µ, tn, j ), µ, tn, j )

5: Explicit solve (14c) for k̂ in, j : M
i k̂ in, j = ∆tn f i (un, j, c

i (u1
n, j, . . . , u

i−1
n, j , u

i
n−1, . . . , u

m
n−1, µ, tn, j ), µ, tn, j )

6: end for
7: end for

8: Set un = un−1 +

s∑
p=1

b̂p k̂n,p +
s∑

p=1
bpkn,p

the Jacobian of the coupling predictor is block strictly lower triangular

∂ c̃

∂u
=



0
∂c2

∂u1 0
...

. . .
. . .

∂cm

∂u1 · · ·
∂cm

∂um−1 0



,

which implies the Jacobian of the monolithic implicit system is block lower triangular

Du j gi =




∂r i

∂ui
i = j

∂r i

∂ci
∂ci

∂u j
i > j

0 i < j .

(17)

This block lower triangular nature of the monolithic implicit system implies that the individual systems can be solved
sequentially beginning with system 1 and yields a partitioned scheme.

The implicit Jacobian of the monolithic implicit system of the weak Gauss-Seidel predictor (17) involves the entire
lower triangular portion of the coupling predictor; however, it is not required for the implementation. From inspection
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of Eq. (14c), the implicit phase at stage j for the ith physical system requires the solution of a nonlinear system of
equations in the variable ui

n, j , with u1
n, j, . . . , u

i−1
n, j available from the implicit solve corresponding to previous physical

systems at the current stage. Therefore, only the diagonal terms
Dgi

Dui
=
∂r i

∂ui
of the monolithic implicit Jacobian are

required, which shows that the Jacobians of the coupling terms are not required for the weak Gauss-Seidel predictor. This
predictor is guaranteed to preserve the design order of the IMEX-RK discretization and possesses stability properties in
practice [1].

IV. Fully discrete sensitivity and adjoint method
In this section, we derive the expression for the total derivative of the quantity of interest J in Eq. (3) with respect

to the parameters µ, which is the essence in gradient-based optimization. Since the evaluation of gradients is often the
most costly step in the PDE-constraint optimization cycle, using efficient methods that accurately calculate the gradients
are extremely important. There are generally two approaches to provide such information: the direct sensitivity approach
and the adjoint approach [13]. When the number of parameters is smaller than the number of quantities of interest, the
adjoint approach is much cheaper.

A. Solver-consistent discretization of quantities of interest
To maintain high-order accuracy for the optimization, discretization of the quantity of interest Eq. (3) will be done

in a solver-consistent manner [14], i.e. the spatial and temporal discretization used for the governing equation will also
be used for the quantities of interest. The integral form Eq. (3) can be rewritten as

∂J

∂t
= j (u(t), µ, t). (18)

Augmenting the semi-discrete governing equations Eq. (6)(11) with this ODE Eq. (18) yields the system of ODEs



M

I





u̇

J̇


=



f (u, c̃, µ, t)
0


+



g(u, c̃, µ, t)
j (u, µ, t)


. (19)

Applying the implicit-explicit temporal discretization introduced in Section III yields the fully discrete governing
equations and corresponding solver-consistent discretization of the quantity of interest Eq. (18)

J 0 = 0,

J n = J n−1 + ∆tn
s∑

p=1
bp j (un,p, µ, tn−1 + cp∆tn).

Finally, the objective functional in Eq. (3) is evaluated at time t = T to yield the solver-consistent approximation

J (u1,1, . . . , un,p, µ) = J Nt =

Nt∑
n=1
∆tn

s∑
p=1

bp j (un,p, µ, tn−1 + cp∆tn). (20)

B. Direct sensitivity method
Differentiation of the discretized weakly coupled Gauss-Seidel predictor based partitioned scheme expressions in

Alg. 1 with respect to µ gives rise to the fully discrete sensitivity equations. For the jth stage of the nth timestep, the
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sensitivity equations of the ithe subsystem write

∂ui
n, j

∂µ
=
∂ui

n−1
∂µ

+

j−1∑
p=1

â jp

∂ k̂ in,p

∂µ
+

j∑
p=1

a jp

∂k in,p

∂µ
, (21a)

M i
∂k in, j

∂µ
= ∆tn *

,

∂gin, j

∂µ
+
∂gin, j

∂ui
n, j

∂ui
n, j

∂µ
+
∂gin, j

∂ c̃in

∂ c̃in, j

∂µ
+
-
, (21b)

M i
∂ k̂ in, j

∂µ
= ∆tn *

,

∂ f in, j

∂µ
+

m∑
k=1

∂ f in, j

∂uk
n, j

∂uk
n, j

∂µ
+
∂ f in, j

∂ c̃in

∂ c̃in, j

∂µ
+
-
, (21c)

∂un

∂µ
=
∂u

n−1
∂µ

+

s∑
p=1

b̂p

∂ k̂n,p

∂µ
+

s∑
p=1

bp

∂kn,p

∂µ
, (21d)

here the c̃in, j is the weakly coupled Gaussian Seidel predictor in Eq. (16), and its derivative with respect to µ is

∂ c̃in, j

∂µ
=
∂cin, j

∂µ
+

i−1∑
p=1

∂cin, j

∂u
p
n, j

∂u
p
n, j

∂µ
+

m∑
p=i

∂cin, j

∂u
p
n−1

∂u
p
n−1
∂µ

. (22)

By solving the sensitivities of the stage variables ∂un,p

∂µ from Eq. (21a)-Eq. (21d), the derivative of the quantity of
interest, Eq. (20), of the multiphysics problem Eq. (1) is written as

dJ
dµ
=

Nt∑
n=1
∆tn

s∑
p=1

b̂p

∂ j (un,p, tn−1 + cp∆tn)

∂un,p

∂un,p

∂µ
. (23)

Thanks to the partitioned nature of the multiphysics solver, the sensitivities of the stage variables ∂un,p

∂µ can be solved
substep-by-substep and subsystem-by-subsystem, the detailed algorithm is presented in Algorithm 2.

Algorithm 2 Direct sensitivity approach
1: for stages j = 1, . . . , s do
2: Read stage solution ui

n−1, k̂
i
n,p , k in,p for i = 1, . . . , m from disk.

3: for physical systems i = 1, . . . , m do
4: Construct

∂c̃ in, j
∂µ based on (23)

5: Implicit solve Eq. (21b) for
∂k i

n, j

∂µ :

6: *
,
M i − a j j

∂gin, j

∂ui
n, j

+
-

∂k in, j

∂µ
= ∆tn

*.
,

∂gin, j

∂µ
+
∂gin, j

∂ui
n, j

*.
,

∂ui
n−1
∂µ

+

j−1∑
p=1

â jp

∂ k̂ in,p

∂µ
+

j−1∑
p=1

a jp

∂k in,p

∂µ
+/
-
+
∂gin, j

∂ c̃in

∂ c̃in, j

∂µ
+/
-

7: Construct
∂ui

n, j

∂µ based on (21a)
8: end for
9: for physical systems i = 1, . . . , m do

10: Explicit solve Eq. (21c) for k̂ in, j :
∂ui

n, j

∂µ
=
∂ui

n−1
∂µ

+

j−1∑
p=1

â jp

∂ k̂ in,p

∂µ
+

j∑
p=1

a jp

∂k in,p

∂µ

11: end for
12: end for
13: Construct ∂un

∂µ based on Eq. (21d)
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C. Adjoint method
The adjoint method provides an efficient alternative to the direct sensitivity method for evaluating the total derivative

of the quantity of interest, especially when the number of parameters is large. Before proceeding to the derivation of the
adjoint equations, the following definitions are introduced for the fully discrete Implicit-Explicit Runge-Kutta stage
equations and state updates (See Alg. 1)

r̃ i0(u0, µ) = ui
0 − ūi (µ),

qin, j (u
i
n, j, u

i
n−1, k̂

i
n,1, . . . , k̂

i
n, j−1, k

i
n,1, . . . , k

i
n, j ) = ui

n, j − ui
n−1 −

j−1∑
p=1

â jp k̂
i
n,p −

j∑
p=1

a jpk
i
n,p,

Ri
n, j (u

i
n, j, k

i
n, j, µ, c̃

i
n, j ) = Mk in, j − ∆tng(ui

n, j, c̃
i
n, j, µ),

R̂i
n, j (u

i
n, j, k̂

i
n, j, µ, c̃

i
n, j ) = Mk̂ in, j − ∆tn f (un, j, c̃

i
n, j, µ),

r̃ in(ui
n, u

i
n−1, k

i
n,1, . . . , k

i
n,s, k̂

i
n,1, . . . , k̂

i
n,s) = ui

n − ui
n−1 −

s∑
j=1

bj k
i
n, j −

s∑
j=1

b̂j k̂
i
n, j,

pin, j (u
1
n, j, . . . , u

i−1
n, j , u

i
n−1, . . . , u

m
n−1, c̃

i
n, j, µ) = c̃in, j − ci (u1

n, j, . . . , u
i−1
n, j , u

i
n−1, . . . , u

m
n−1, tn, j, µ),

(24)

for n = 1, . . . , Nt , i = 1, . . . , m and j = 1, . . . , s. Here ūi (µ) is the initial condition, and in this work we use a
steady-state solution to start the unsteady simulation.

Since the solution of the fully discretized PDE satisfies the above equations, the QoI can be re-written as

J = J −
Nt∑
n=0

m∑
i=1

λi
n r̃

i
n −

Nt∑
n=1

s∑
j=1

m∑
i=1

κin, jR
i
n, j −

Nt∑
n=1

s∑
j=1

m∑
i=1

κ̂in, j R̂
i
n, j −

Nt∑
n=1

s∑
j=1

m∑
i=1

τin, j q
i
n, j −

Nt∑
n=1

s∑
j=1

m∑
i=1

σi
n, j p

i
n, j

where λi
n, κin, j , κ̂

i
n, j , τ

i
n, j , and σi

n, j are test variables (also known as adjoint state variables or Lagrange multipliers) that
respectively enforce the state ODE system, coupling predictor, and initial conditions in Eq. (24). Total differentiation of
the modified QoI (or Lagrangian) leads to

dJ
dµ
=
∂J
∂µ
+

m∑
i=1

λi
0
∂ ūi

∂µ
−

Nt∑
n=1

m∑
i=1

s∑
j=1

κin, j
∂Ri

n, j

∂µ
−

Nt∑
n=1

m∑
i=1

s∑
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Nt∑
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i=1
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∂R̂i
n, j

∂ c̃in, j
− σi

n, j

∂ pin, j

∂ c̃in, j



∂ c̃in, j

∂µ
,

(25)
here, we re-arrange these terms, such that the state variable sensitivities are isolated. The adjoint state variables λi

n, κin, j ,
κ̂in, j , τ

i
n, j , and σi

n, j , which have remained arbitrary to this point, are chosen such that the bracketed terms in Eq. (25)
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vanish. The adjoint equations are

λi
Nt
= 0, (26a)

λi
n−1 = λi

n +

s∑
j=1

τin, j +
s∑
j=1

i∑
p=1

∂c
p
n, j

∂ui
n−1

T

σp
n, j, (26b)

M iTκin, j = bjλ
i
n +

s∑
p=j

apjτ
i
n,p, (26c)

M iT κ̂in, j = b̂jλ
i
n +

s∑
p=j+1

âpjτ
i
n,p, (26d)

τin, j =
∂J
∂ui

n, j

+ ∆tn
∂gin, j

∂ui
n, j

T

κin, j + ∆tn
m∑
k=1

∂ f kn, j

∂ui
n, j

T

κ̂kn, j +
m∑

p=i+1

∂c
p
n, j

∂ui
n, j

T

σp
n, j, (26e)

σi
n, j = ∆tn

∂gin, j

∂ c̃in, j

T

κin, j + ∆tn
∂ f in, j

∂ c̃in, j

T

κ̂in, j, (26f)

for n = 1, . . . , Nt , i = 1, . . . , m and j = 1, . . . , s. These are the fully discrete adjoint equations corresponding to
the multiphysics problem in Eq. (1), discrete quantity of interest J , and parameter µ. Solving the adjoint variables
reversely from Eq. (26a)-Eq. (26a), the expression for the gradient in Eq. (25) reduces to

dJ
dµ
=
∂J
∂µ
+

m∑
i=1

λi
0
∂ ūi

∂µ
+

Nt∑
n=1

m∑
i=1

s∑
j=1
∆tn

∂gin, j

∂µ

T

κin, j +
Nt∑
n=1

m∑
i=1

s∑
j=1
∆tn

∂ f in, j

∂µ

T

κ̂in, j +
Nt∑
n=1

m∑
i=1

s∑
j=1

∂cin, j

∂µ

T

σi
n, j

Due to the partitioned nature of the multiphysics solver, the adjoint variables can be solved substep-by-substep and
subsystem-by-subsystem, the detailed algorithm is presented in Algorithm 3.

Algorithm 3 Adjoint approach
1: for stages j = s, . . . , 1 do
2: Read stage solution ui

n−1, k̂
i
n,p , k in,p for i = 1, . . . , m from disk.

3: for physical systems i = m, . . . , 1 do

4: Explicit solve Eq. (26d) for κ̂in, j : M
iT κ̂in, j = b̂jλ

i
n +

s∑
p=j+1

âpjτ
i
n,p

5: end for
6: for physical systems i = m, . . . , 1 do

7: Set τ̃in, j =
∂J
∂ui

n, j

+ ∆tn
m∑
k=1

∂ f kn, j

∂ui
n, j

T

κ̂kn, j +
m∑

p=i+1

∂c
p
n, j

∂ui
n, j

T

σp
n, j

8: Implicit solve Eq. (26c) for κin, j :
*.
,
M iT − ∆tn

∂gin, j

∂ui
n, j

T

+/
-
κin, j = bjλ

i
n +

s∑
p=j+1

apjτ
i
n,p + a j j τ̃

i
n, j

9: Construct τin, j and σi
n, j based on (26e) and (26f)

10: end for
11: end for
12: Construct λi

n−1 based on (26b)
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Fig. 1 Mapping between reference and physical domains.

V. Applications
In this section, we demonstrate the proposed high-order optimization procedure on two multiphysics problems: a

1D fluid-structure-mesh three-field coupling piston problem and a 2D fluid-structure two-field coupling foil energy
harvesting problem.

A. Governing equations and semi-discretization

1. Compressible fluid flow
The governing equations for compressible fluid flow, defined on a deformable fluid domain Ω(µ, t), can be written

as a viscous conservation law
∂U
∂t
+ ∇ · F inv (U) + ∇ · F vis (U,∇U) = 0 in Ω(µ, t), (27)

where U is the conservative state variable vector and the physical flux consists of an inviscid part F inv (U) and a
viscous part F vis (U, ∇U). The conservation law in (27) is transformed to a fixed reference domain Ω0 by defining
a time-dependent diffeomorphism G between the reference domain and the physical domain; see Figure 1. At each
time t, a point X in the reference domain Ω0 is mapped to x(X, µ, t) = G(X, µ, t) in the physical domain Ω(µ, t). The
deformation gradient G, velocity vG , and Jacobian g of the mapping are defined as

G = ∇XG , vG =
∂G

∂t
, g = det G. (28)

Following the procedure in [14, 15], the governing equation (27) can be written in the reference domain as

∂UX

∂t
+ ∇X · F

inv
X (UX ) + ∇X · F vis

X (UX,∇XUX ) = 0 in Ω0, (29)

where ∇X defines the spatial derivative with respect to the reference domain, conserved quantities and its derivatives in
the reference domain are written as

UX = gU , ∇XUX = g∇UX · G + g−1UX
∂g

∂X
. (30)

The inviscid and viscous fluxes are transformed to the reference domain as

F inv
X (UX ) = gF inv (g−1UX )G−T −UX ⊗ G−1vG,

F vis
X (UX ) = gF vis

(
g−1UX, g

−1
[
∇XUX − g

−1UX
∂g

∂X

]
G−1

)
G−T .

(31)

The governing equations in (29) reduce to the following system of ODEs after an appropriate spatial discretization,
such as a discontinuous Galerkin or finite volume method, is applied

M f u̇ f = r f (u f , c f , µ, t), (32)

11



where M f is the fixed mass matrix, u f is the semi-discrete fluid state vector, i.e., the discretization of UX on Ω0,
r f (u f , c f , µ, t) is the spatial discretization of the transformed inviscid and viscous fluxes on Ω0, and c f is the coupling
term that might contain information about the domain mapping G(X, µ, t). In particular, the coupling term contains
the position and velocities of the nodal coordinates of the computational mesh. The domain mapping is defined using an
element-wise nodal (Lagrangian) polynomial basis on the mesh with coefficients from the nodal positions and velocities.

2. Simple structure model
In general, the governing equations for the structure will be given by a system of partial differential equation such as

the continuum equations in total Lagrangian form with an arbitrary constitutive law. However, in this work, we only
consider simple structures like mass-spring-damper systems that can directly be written as a second-order system of
ODEs

msüs + csu̇s + ksus = fext (t), (33)

where ms is the mass of the (rigid) object, cs is the damper resistance constant, ks is the spring stiffness, and fext (t) is a
time-dependent external load, which will be given by integrating the pointwise force the fluid exerts on the object.

The equations in (33) are re-written in a first-order form, to conform to the notation in this document, as

Ms u̇s = r s (us, cs, µ, t). (34)

In the case of the simple structure in (33), the mass matrix, state vector, residual, and coupling term are

Ms =



ms

1


, us =



u̇s
us


, cs = fext, r s (us, cs) =



fext − csu̇s − ksus
us


. (35)

3. Deformation of the fluid domain
The mesh deformation is generally described by a pseudo-structure driven solely by Dirichlet boundary conditions

provided by the displacement of the structure at the fluid-structure interface [16, 17] or a parametrized mapping such
as radial basis functions [18–20] or blending maps [15]. Due to different treatments of the mesh deformation, the
fluid-structure interaction problem can be formulated as three-field coupling or two-filed coupling problems.

For the first treatment, the governing equations are given by the continuum mechanics equations in total Lagrangian
form with an arbitrary constitutive law

∂ p̄
∂t
− ∇ · P(G) = 0 in Ω0

x = xb on ∂ΩD
0

ẋ = ẋb on ∂ΩD
0 ,

(36)

where p̄(X, t) = ρm ẋ is the linear momentum, ρm is the density, and P is the first Piola-Kirchhoff stress of the
pseudo-structure. The deformation gradient G is the mapping that defines the deformation of the reference fluid domain
Ω0 to physical fluid domain Ω(t). The position and velocity of the fluid domain are prescribed along ∂ΩD

0 , the union of
the fluid-structure interface and the fluid domain boundary. The governing equations in (36) reduce to the following
system of ODEs after an appropriate spatial discretization, such as the finite element method, is applied and recast in
first-order form

Mx u̇x = r x (ux, cx, µ, t) (37)

where Mx is the fixed mass matrix, ux (t) is the semi-discrete state vector consisting of the displacements and velocities
of the mesh nodes, r x (ux, cx, µ, t) is the spatial discretization of the continuum equations and boundary conditions on
the reference domain Ω0, and cx is the coupling term that contains information about the motion of the fluid structure
interface. This model of the mesh motion leads to a three-field FSI formulation when coupled to the fluid and structure
equations.

For the second treatment, the domain mapping x = G(X, t) is given by an analytical function, parametrized
by the deformation and velocity of the fluid-structure interface, that can be analytically differentiated to obtain the
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Fig. 2 One-dimensional piston system

deformation gradient G(X, t) and velocity vG (X, t). Since the fluid mesh motion is no longer included in the system of
time-dependent partial differential equations, this leads to a two-field FSI formulation in terms of the fluid and structure
states only.

4. Two-field and three-field fluid-structure coupling
In the three-field fluid-structure interaction setting

Ms u̇s = r s (us, cs, µ, t), Mx u̇x = r x (ux, cx, µ, t), M f u̇ f = r f (u f , c f , µ, t) (38)

introduced in [16], the coupling terms have the following dependencies

cs = cs (us, ux, u f , µ, t), cx = cx (us, µ, t), c f = c f (us, ux, µ, t). (39)

From Eq. (35), the structure coupling term is the external force applied to the structure that comes from integrating the
fluid stresses over the fluid-structure interface. The mesh coupling term is the position and velocity of the fluid-structure
interface and therefore depends solely on the state of the structure. From Eq. (29)-(30), the fluid coupling term is the
position and velocity of the entire fluid mesh and therefore depends on the state of the structure and the mesh.

In the two-field FSI setting

Ms u̇s = r s (us, cs, µ, t), M f u̇ f = r f (u f , c f , µ, t) (40)

the mesh motion is given by an analytical function and the coupling terms have the following dependencies

cs = cs (us, u f , µ, t), c f = c f (us, µ, t). (41)

In this case, the structure coupling term is determined from the fluid and structure state since the external force depends
on the traction integrated over the fluid-structure interface. The fluid coupling term, i.e., the position and velocity of the
fluid mesh, is determined from the structure state. Finally, the ordering of the subsystems implied in (38) and (40) is
used throughout the remainder of this section, which plays an important role when defining the Gauss-Seidel predictors.

B. 1D fluid-structure-mesh three-field coupling piston problem
This proposed optimization procedure is first verified by the canonical FSI model problem: a one-dimensional

piston problem (Figure 3). The inviscid fluid is governed by the one-dimensional Euler equations defined on
x ∈ Ω(t) = [0, 1.0 − us], where us is the displacement of the piston. The fluid flow is the adiabatic gas with constant
γ = 1.4. The fluid is initially at rest u = 0 with a density ρ = 1.0 and pressure p = 0.4. After transformation to the
reference domain Ω0 = [0, 1] following the procedure in Section V.A.1, the equations are semi-discretized by a standard
first-order finite volume method using Roe’s flux [21] with 100 elements.

The deformation of the fluid mesh is handled by considering the fluid domain to be a pseudo-structure governed
by the continuum equations in Eq. (36), restricted to the one-dimensional case with a linear constitutive law and
infinitesimal strains assumed

ρmüx = Em
∂2ux

∂X2 − cmu̇x, (42)

where ux (X, t) is the mesh displacement vector defined over the reference domain X ∈ Ω0 and the density, Young’s
modulus, and damping coefficient are ρm = 1.0, Em = 1.0, cm = 0.0, respectively. The governing equation for the mesh
deformation is discretized in space using the finite difference method.
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Finally, the structure is modeled by a linear mass-spring system as Eq. (33) with piston mass ms = 1.0, spring
stiffness µk = 1.0, and no damper cs = 0. The piston is initially displaced a distance of us = 0.0. Once the piston is
released, it immediately begins to recede due to the combination of the spring being perturbed from its equilibrium
configuration and the flow pressure, which causes a C0 rarefaction wave near the interface.

The objective function to minimize is set to be the integral of square of the piston displacement till T = 1.0

J =

∫ T

0
u2
sdt . (43)

The only parameter is the stiffness of the piston µk , for verification purpose, an additional constraint 0 ≤ µk ≤ 10 is
imposed. We should expect that when the stiffness reaches its maximum, the objective function reaches its minimum.

Table 2 shows the objective function and its derivative evaluated in three different ways, using central finite
differences with ε = 10−6, the direct sensitivity method, and the adjoint method. The results of the direct sensitivity
method and the adjoint method are within 10−6 of the finite difference results, which verifies the correctness of our
current implementation. Moreover, the accuracy of the finite difference method is limited by the “step-size dilemma,”
therefore the adjoint method and the direct sensitivity method are likely producing more accurate derivatives.

Scheme J FD Direct Adjoint
IMEX1 5.24027644581e-03 - 6.40416043546e-04 - 6.40416045418e-04 -6.40416045418e-04
IMEX2 5.01357571586e-03 - 5.75379291520e-04 -5.75379340362e-04 -5.75379340362e-04
IMEX3 5.01291619482e-03 -5.75053709945e-04 -5.75053861151e-04 -5.75053861151e-04
IMEX4 5.01291415604e-03 -5.75054676186e-04 -5.75054797593e-04 -5.75054797593e-04

Table 2 1D piston problem: the objective function value and its gradients.

The convergence of the quantities of interest is reported in Figure 3-left, the corresponding convergence of the
parameter is reported in Figure 3-right. All IMEX schemes use step size ∆t = 0.01 and lead to convergence in 8
optimization steps. The parameter µk converges to its upper bound as expected.

C. 2D fluid-structure two-field coupling foil energy harvesting process
In this section, the high-order, partitioned solver with the optimization framework introduced in this document

is applied to find the maximum energy harvesting through flow-induced oscillations of a NACA 0012 foil of length
l = 1. The two-dimensional energy-harvesting model problem [22] is represented by using a two-field FSI formulation.
Consider the mass-damper system in Figure 4, the airfoil is suspended in an isentropic, viscous flow where the rotational
motion is a prescribed periodic motion and the vertical displacement us is determined by balancing the forces exerted
on the airfoil by the fluid and the damper (see Eq. (33)). The airfoil is initially at θ(0) = 0, it matches a prescribed
motion for half a period, and then follows a periodic motion, as follows,

θ(t) =



µA cos( 2t
T (π + µφ)), t < T

2 .

µA cos(2π f t + µφ), t ≥ T
2 .

(44)

Here the period T = 5 and the frequency is f = 0.2.
The fluid is a perfect gas, with the adiabatic gas constant γ = 1.4, governed by the isentropic Navier-Stokes equations.

The isentropic assumption states the entropy of the system is assumed constant, which is tantamount to the flow being
adiabatic and reversible. For a perfect gas, the entropy is defined as

s = p/ργ . (45)

The transformed conservation law, as described in Section V.A.1, is discretized with a standard high-order discontinuous
Galerkin method using Roe’s flux [21] for the inviscid numerical flux and the Compact DG flux [23] for the viscous
numerical flux. The DG discretization uses a mesh consisting of 3912 cubic simplex elements (p = 3). The second-order
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Fig. 5 Airfoil motion and flow vorticity corresponding to foil-damper system under prescribed rotational
motion θ(t) = µinit

A
cos(2π f t + µinitφ ) with frequency f = 0.2 at various snapshots in time: t = T, 5

4T, 6
4T, 7

4T
(left-to-right, top-to-bottom).

ODE in Eq. (33) is the governing equation for the mass-damper system with mass ms = 1, damping constant cs = 1,
stiffness ks = 0, and external force given from the fluid as described in Section V.A.2. The mesh motion is determined
from the position and velocity of the structure using the blending maps introduced in [15] and identical to that used in
Section 5.1 of [14]. IMEX4 is applied for temporal discretization, which matches the expected spatial order of accuracy
obtained with polynomials of degree 3.

The objective is to maximize the energy extraction J = 1
T

∫ 2T
T

csu̇s2dt by the device for the second period. The
energy injection to maintain the oscillation is defined by Eθ = − 1

T

∫ 2T
T

Mz θ̇dt, where Mz is the moment the fluid
imparts onto the foil and θ̇ is the rotational speed of the foil. We have linear constraints −55◦ ≤ µinit

A
≤ 55◦ for the

amplitude parameter and − π2 < µφ <
π
2 for the phase parameter µφ, and a nonlinear constraint Eθ ≥ −0.15 for the

energy injection Eθ .
The initial motion is defined by µinit

A
= 1◦ and µinitφ = 0. Snapshots of the vorticity field and the motion of the airfoil

are shown in Figure 5, and the corresponding energy extraction is close to 0.
For the optimal oscillatory trajectory, the parameters obtained are µopt

A
= 55◦ and µoptφ = −22.95◦. Snapshots of the

ensued mesh motion are depicted in Figure 6, snapshots of the vorticity field and motion of the airfoil are shown in
Figure 7, and the energy extraction J + Eθ by this motion is almost 0.2.

The convergence of the objective function J and the nonlinear constraint Eθ are reported in Figure 8-left. The
convergence of the parameters µA and µφ are presented in Figure 8-right. Initially, the energy harvester extract almost no
energy from the fluid without energy injection. However, for the optimal oscillatory trajectory θ(t) = µA cos(2π f t+ µφ),
the injected energy for maintaining the oscillation is Eθ = −7.92 × 10−2; The energy extracted by the damper is
J = 2.07 × 10−1. The optimized energy harvester can extract J + Eθ = 1.27 × 10−1 from the fluid flow, which
demonstrate the potential benefits of multiphysics optimization.

VI. Conclusion
We have presented a framework for optimizing unsteady multiphysics systems, based on the high-order, linearly

stable, partitioned solver introduced in [1]. An implicit-explicit Runge-Kutta scheme was used for high-order temporal
integration with the benefit of achieving accuracy beyond second-order and decoupling all subsystems. Therefore,
the corresponding adjoint equations or sensitivity equations can be solved in a partitioned manner, i.e. subsystem-by-
subsystem and substage-by-substage. While we did not quantify the benefits of high-order discretizations for these
optimization problems, it is still likely that high-order spatial and temporal accuracy allow for smaller mesh size and
larger timestep size, which improve the efficiency of function and gradient evaluations in the optimization procedure.
Due to the fully discrete adjoint solver, exact gradients are obtained, and the implementation was verified using finite
differences. A gradient-based optimizer converged quickly to optional solutions for our examples problems. In future
work, the efficiency of the present optimization framework will be studied, and it will be used to better understand the
energy harvesting process with multiple airfoils and for the optimization of 3D fluid-structure systems.
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Fig. 6 Airfoil motion and mesh deformation corresponding to foil-damper system under prescribed ro-
tational motion θ(t) = µ

opt
A

cos(2π f t + µ
opt
φ ) with frequency f = 0.2 at various snapshots in time: t =

T, 9
8T, 10

8 T, 11
8 T, 12

8 T, 13
8 T, 14

8 T, 15
8 T (left-to-right, top-to-bottom).

Fig. 7 Airfoil motion and flow vorticity corresponding to foil-damper system under prescribed rota-
tional motion θ(t) = µ

opt
A

cos(2π f t + µ
opt
φ ) with frequency f = 0.2 at various snapshots in time: t =

T, 9
8T, 10

8 T, 11
8 T, 12

8 T, 13
8 T, 14

8 T, 15
8 T (left-to-right, top-to-bottom).
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Fig. 8 Convergence of the optimizer for the NACA harvesting problem.
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