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This work introduces a fully discrete, high-order numerical framework for solving PDE-
constrained optimization problems using gradient-based methods in the case where one or
more of the optimization parameters affects the time domain; a canonical example being
optimization of the frequency of a flapping wing. In a fully discrete setting, this effective
parametrization of the time domain leads to a parametrization of the time discretization,
e.g., to maintain a fixed number of timesteps per period, the timestep size is parameter-
dependent. Gradients of quantities of interest in this work are computed using the adjoint
method, which must take into account the parametric dependence of the time discretiza-
tion. As this work considers energetically optimal flight, a globally high-order discretization
of conservation laws on deforming domains is employed: an Arbitrary Lagrangian-Eulerian
formulation maps the conservation law to a fixed reference domain and a high-order dis-
continuous Galerkin method and diagonally implicit Runge-Kutta method are used for
the spatial and temporal discretizations. This framework is applied to study energetically
optimal flapping subject to a minimum required thrust, including frequency and pitch-
ing/heaving trajectories as optimization parameters. This marks a distinct departure from
other adjoint-based approaches to optimal flapping that fix the frequency.

I. Introduction

Flapping flight has been a subject of intense interest and research over the past several decades due to its
relevance in designing Micro Aerial Vehicles (MAVs) – unmanned aerial vehicles measuring no more than 15
cm in any dimension, envisioned in a number of civilian and military applications, including surveillance and
reconnaissance [1,2] – and in the understanding of biological systems. The basic goal of any system, whether
biological or manmade, that relies on flapping propulsion is to adjust the kinematics of the flapping wing, and
possibly its shape, to minimize the energy required to complete a given mission, i.e., satisfy lift and thrust
constraints. The problem of determining the flapping kinematics that leads to an energetically optimal
motion, while satisfying various mission constraints, leads to a nonlinearly constrained PDE-constrained
optimization problem.

It is well-documented [3, 4] that the Strouhal number is an important factor in efficiently generating
thrust and should therefore be included in the parametrization of the flapping motion when considering
energetically optimal flapping flight. Most work on this subject [5–9] only optimizes for the trajectory
of the heaving and pitching motion body at a fixed frequency, which implies the Strouhal number is only
parametrized through the parametrization of the amplitude of the heaving motion. This approach potentially
excludes more efficient flapping motions that could be obtained by flapping faster or slower and may generate

∗Graduate Student, Department of Mechanical Engineering, University of California, Berkeley, Berkeley CA 94720-3840.
E-mail: jingtian@berkeley.edu.
†Postdoctoral Fellow, Department of Mathematics, Lawrence Berkeley National Laboratory, University of California, Berke-

ley, Berkeley, CA 94720. E-mail: mjzahr@lbl.gov.
‡Associate Professor, Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840. E-mail:

persson@berkeley.edu.

1 of 17



infeasible optimization problems if there are severe physical or mechanical limitations on the amplitude of
pitching or heaving.

Therefore, the goal of this work is to develop a high-fidelity numerical framework for solving PDE-
constrained optimization problems that include parameters that influence the time domain, such as flapping
frequency, using gradient-based optimization methods. To ensure the gradients of the optimization func-
tionals are discretely consistent [9–11] and a large number of parameters can be handled efficiently, a fully
discrete adjoint method is introduced for the gradient computations. A fundamental issue that arises when
incorporating any parameter that directly influences the time domain itself in a discrete setting is the time
discretization becomes parameter-dependent. For example, if the timestep size and number of timesteps
are fixed and the flapping frequency changes, a non-integral number of periods would be considered. This
will lead to a completely irrelevant problem if less than a single period is considered or require special care
when computing time-averaged quantities of interest. Another issue with this approach of fixing the size
and number of timesteps is there will be fewer timesteps per period as frequency increases, causing the
accuracy of the numerical method to degrade. The approach taken here is to fix the number of timesteps per
period, causing the size of each timestep to become parameter-dependent, which ensures sufficient accuracy
in the time discretization across any range of frequencies. This work describes a primal solver and the cor-
responding adjoint method for computing gradients of quantities of interest that takes this dependency into
account. Other work that has considered optimization with frequency parameters in the context of optimal
flapping flight are found in [12, 13]; however they did not parametrize the time discretization by e.g., fixing
the number of timesteps per period.

Following the authors previous work [9, 14], the compressible Navier-Stokes equations will be recast on
a fixed reference domain using an Arbitrary Lagrangian Eulerian formulation and discretized using a high-
order discontinuous Galerkin method. The temporal discretization employs a high-order diagonally implicit
Runge-Kutta scheme. The quantities of interest—space-time integrals that depend on the flow solution—that
comprise the optimization objective and constraints are discretized using the same high-order spatial (DG)
and temporal (RK) schemes used for the conservation law. This ensures the discretization is globally high-
order. The fully discrete adjoint equations derived from this discretization preserve the diagonally implicit
nature of the temporal integrator and are therefore amenable to an efficient implementation. This primal and
adjoint CFD framework is used to determine the energetically optimal flapping motion of a two-dimensional
airfoil in compressible, viscous flow, subject to mission requirements, i.e., constraint on the time-averaged
thrust produced by the flapping motion. In this setup, the flapping frequency as well as the trajectory of the
pitching and heaving motions are included as parameters. The energetically optimal flapping motions are
studied as a function of the required thrust and it is shown that the optimal flapping energy varies linearly
with the required thrust while the optimal frequency and pitch/heave amplitudes exhibit nonlinear trends.

The remainder of this document is organized as follows. Section II introduces the governing conservation
law considered in this work, the isentropic Navier-Stokes equations, and an Arbitrary Lagrangian-Eulerian
method that transforms it from a deforming, parametrized domain to a fixed one. Section III introduces
the high-order discretization of the conservation law and its quantities of interest, with special attention
paid to the parametrization of the time discretization that results from, e.g., parametrizing frequency in a
fully discrete setting with a fixed number of timesteps per period. Section III.D introduces the fully discrete
adjoint equations and corresponding adjoint method for computing gradients of quantities of interest that
take into account the parametrization of the time discretization. Finally, Section IV applies this high-order
simulation and optimization framework to study energetically optimal flapping motions as a function of the
minimum required thrust and Section V offers conclusions.

II. Governing equations

This section is devoted to the treatment of conservation laws on a parametrized, deforming domain using
an Arbitrary Lagrangian-Eulerian (ALE) formulation. Given that this work is concerned with energetically
optimal flapping flight, the compressible Navier-Stokes equations are taken as the governing equations.
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II.A. Compressible Navier-Stokes equations

The compressible Navier-Stokes equations are written as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1)

∂

∂t
(ρui) +

∂

∂xi
(ρuiuj + p) = +

∂τij
∂xj

for i = 1, 2, 3, (2)

∂

∂t
(ρE) +

∂

∂xi
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (3)

where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (4)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant.
For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (5)

where γ is the adiabatic gas constant. In this work, the entropy is assumed constant, that is to say the flow
is adiabatic and reversible. This makes the energy equation redundant and effectively reduces the square
system of PDEs of size nsd+2 to one of size nsd+1, where nsd is the number of spatial dimensions. It can be
shown, under suitable assumptions, that the solution of the isentropic approximation of the Navier-Stokes
equations converges to the solution of the incompressible Navier-Stokes equations as the Mach number goes
to 0 [15–17].

II.B. Arbitrary Lagrangian-Eulerian formulation of conservation laws

Consider a general system of conservation laws defined on a parametrized, deforming domain, v(µ, t),

∂U

∂t
+∇ · F (U , ∇U) = 0 in v(µ, t) (6)

where the physical flux is decomposed into an inviscid and a viscous part F (U , ∇U) = F inv(U) +
F vis(U , ∇U), U(x,µ, t) is the solution of the system of conservation laws, t ∈ (0, T ) represents time,
and µ ∈ RNµ is a vector of parameters. This work will focus on the case where the domain is parametrized
by µ.

The conservation law on the physical, deforming domain v(µ, t) ⊂ Rnsd is transformed into one on a
fixed reference domain V ⊂ Rnsd through the introduction of a time-dependent diffeomorphism between
the physical and reference domains: x(X,µ, t) = G(X,µ, t). In this setting, nsd is the number of spatial
dimensions, X ∈ V is a point in the reference domain and x(X,µ, t) ∈ v(µ, t) is the corresponding point in
the physical domain at time t and parameter configuration µ. The transformed system of conservation laws
takes the form

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0 (7)

where ∇X denotes spatial derivatives with respect to the reference variables, X. The transformed state
vector, UX , and its corresponding spatial gradient with respect to the reference configuration take the form

UX = gU , ∇XUX = g−1UX
∂g

∂X
+ g∇U ·G, (8)

where G = ∇XG, g = det(G), vG =
∂x

∂t
=
∂G
∂t

. The transformed fluxes are

FX(UX ,∇XUX) = F invX (UX) + F visX (UX ,∇XUX),

F invX (UX) = gF inv(g−1UX)G−T −UX ⊗G−1vG,

F visX (UX ,∇XUX) = gF vis
(
g−1UX , g

−1

[
∇XUX − g−1UX

∂g

∂X

]
G−1

)
G−T .

(9)
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Figure 1: Time-dependent mapping between reference and physical domains.

For details regarding the derivation of the transformed equations, the reader is referred to [18].
When integrated using inexact numerical schemes, this ALE formulation does not satisfy the Geometric

Conservation Law (GCL) [18,19]. This is overcome by introduction of an auxiliary variable ḡ, defined as the
solution of

∂ḡ

∂t
−∇X ·

(
gG−1vG

)
= 0. (10)

The auxiliary variable, ḡ is used to modify the transformed conservation law according to

∂UX̄
∂t

∣∣∣∣
X

+∇X · FX̄(UX̄ , ∇XUX̄) = 0 (11)

where the GCL-transformed state variables are

UX̄ = ḡU , ∇XUX̄ = ḡ−1UX̄
∂ḡ

∂X
+ ḡ∇U ·G (12)

and the corresponding fluxes

FX̄(UX̄ ,∇XUX̄) = F invX̄ (UX̄) + F visX̄ (UX̄ ,∇XUX̄),

F invX̄ (UX̄) = gF inv(ḡ−1UX̄)G−T −UX̄ ⊗G−1vG,

F visX̄ (UX̄ ,∇XUX̄) = gF vis
(
ḡ−1UX̄ , ḡ

−1

[
∇XUX̄ − ḡ−1UX̄

∂ḡ

∂X

]
G−1

)
G−T .

(13)

It was shown in [18] that the transformed equations (11) satisfy the GCL.

III. Numerical discretization and the fully discrete adjoint equations

This section details the high-order numerical discretization used for the ALE formulation of the conser-
vation law in (11). Particular attention is given to the case where the time discretization is parametrized as
this is a consequence of parametrizing frequency (or period) with a fixed number of timesteps per period.
The adjoint equations and corresponding adjoint method for computing gradients of quantities of interest
from this type of discretization will be introduced. The section will conclude with important implementation
details as the adjoint method corresponding to these parametrized time discretizations requires some atypical
terms from the spatial discretization, namely the velocity of the spatial residual and quantity of interest.

III.A. Spatial discretization: discontinuous Galerkin method

Following the work in [20], the second-order system of partial differential equations in (11) is converted to
first-order form

∂ḡ

∂t

∣∣∣∣
X

+∇X ·
(
gG−1vG

)
= 0

∂UX̄
∂t

∣∣∣∣
X

+∇X · FX̄(UX̄ , QX̄) = 0

QX̄ −∇XUX̄ = 0,

(14)
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where QX̄ is introduced as an auxiliary variable to represent the spatial gradient of the UX̄ . Equation (14)
is discretized using a standard nodal discontinuous Galerkin finite element method [21], which, after local
elimination of the auxiliary variables QX̄ , leads to the following system of ODEs

M
∂u

∂t
= r(u, µ, t), (15)

where M is the block-diagonal, symmetric, fixed mass matrix (state- and parameter-independent), u is

the vectorization of
[
UT
X̄

ḡ
]T

at all nodes in the mesh, and r is the nonlinear function defining the DG

discretization of the inviscid and viscous fluxes. See [9] for an efficient treatment of ḡ that does not lead to
an enlarged system of ODEs.

III.B. Temporal discretization: diagonally implicit Runge-Kutta

The system of ODEs in (15) are discretized in time using Diagonally Implicit Runge-Kutta (DIRK) schemes.
These schemes are capable of achieving high-order accuracy with the desired stability properties, with-
out requiring the solution of an enlarged system of equations. The temporal domain, [0, Np T ] is deter-
mined by the number of periods Np and the period T , and discretized into NpNt segments with endpoints
{t0, t1, . . . , tNpNt

}, with the nth segment having length ∆tn = tn − tn−1 for n = 1, . . . , NpNt. Thus for
each period, a fixed number of time steps Nt are used, which implies ∆tn depends on the parameter, i.e.,
∆tn = ∆tn(µ). DIRK schemes are defined by a lower triangular Butcher tableau (Table 1) and take the
following form when applied to (15)

u0 = ū(µ)

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tn(µ)r(un,i, µ, tn,i(µ)),

(16)

for n = 1, . . . , NpNt and i = 1, . . . , s, where s is the number of stages in the DIRK scheme. Additionally, in
(16), pstguni is used to denote the approximation of un at the ith stage of time step n

un,i = un,i(un−1, kn,1, . . . , kn,s) = un−1 +

i∑
j=1

aijkn,j (17)

and tn,i(µ) = tn−1(µ) + ci∆tn(µ) denotes the corresponding time of the stage. From (16), a complete time
step requires the solution of a sequence of s nonlinear systems of equation of size Nu.

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

Table 1: Butcher Tableau for s-stage diagonally implicit Runge-Kutta scheme

III.C. Solver-consistent discretization of quantities of interest

Quantities of interest that take the form of space-time integrals of nonlinear functions that depend on the
solution of the conservation law are discretized in a solver-consistent manner [9], i.e., using the same spatial
and temporal discretization used for the conservation law. This ensures the truncation error of the quantities
of interest exactly match that of the governing equations.

Consider a quantity of interest of the form

F(U , µ, t) =

∫ t

0

∫
Γ

w(x, τ)f(U , µ, τ) dS dτ. (18)

5 of 17



In general, F corresponds to either the objective or a constraint function of the optimization problem of

interest. Define fh as the approximation of

∫
Γ

w(x, t)f(U , µ, t) dS using the DG shape functions from the

spatial discretization of the governing equations. The solver-consistent spatial discretization of (18) becomes

Fh(u, µ, t) =

∫ t

0

fh(u, µ, τ) dτ, (19)

which ensures the spatial integration error in the quantity of interest exactly matches that of the governing
equations. Solver-consistent temporal discretization requires the semi-discrete functional in (19) be converted
to an ODE, which is accomplished via differentiation of (19) with respect to t

Ḟh(u, µ, t) = fh(u, µ, t). (20)

Augmenting the semi-discrete governing equations with this ODE (20) yields the system of ODEs[
M 0

0 1

][
u̇

Ḟh

]
=

[
r(u, µ, t)

fh(u, µ, t)

]
. (21)

Application of the DIRK temporal discretization introduced in Section III.B yields the fully discrete governing
equations and corresponding solver-consistent discretization of the quantity of interest (18)

un = un−1 +
s∑
i=1

bikn,i

Fhn = Fhn−1 + ∆tn(µ)

s∑
i=1

bif
h(un,i, µ, tn,i(µ))

Mkn,i = ∆tn(µ)r(un,i, µ, tn,i(µ)),

(22)

for n = 1, . . . , NpNt, i = 1, . . . , s, and un,i is defined in (17). The output functionals considered in this
paper are time-averaged quantities, which can be achieved by either integrating the quantity of interest
over the entire time domain and scaling by the appropriate factor (NpT (µ)) or choosing the weighting
function such that the quantity of interest is only integrated over a single period and normalize by T (µ).
The latter approach is taken in this work as there are non-physical transients associated with initializing
unsteady flow simulations that would pollute the approximation of the quantity of interest; see [22] for an
effective way to completely eliminate nonlinear transients associated with periodic motions. Either of these
approaches fits into this framework and the fully discrete quantity of interest corresponds to FhNpNt

to yield

the solver-consistent approximation of F(u, µ, T )

F (u0, . . . , uNpNt
, k1,1, . . . , kNpNt,s, µ) = FhNpNt

=

NpNt∑
n=1

∆tn(µ)

s∑
i=1

bif
h(un,i, µ, tn,i(µ)). (23)

For brevity, the dependence of tn,i and ∆tn on µ will be dropped in the remainder.

III.D. Fully Discrete, Time-Dependent Adjoint Equations

This section develops the adjoint equations corresponding to the fully discrete system of conservation laws
in (16) and the adjoint method for computing the total derivative of the fully discrete quantity of interest
F in (23) without requiring solution sensitivities, ∂µun and ∂µkn,i. It is emphasized that F represents any
quantity of interest whose gradient is desired, such as the optimization objective function or a constraint. A
distinguishing feature of this work is the fully discrete adjoint method must account for the parametrization
of time, i.e., tn,i(µ) and ∆tn(µ), for the gradient ∇µF to be consistent. The parametrized time discretization
does not modify the adjoint equations themselves, only the formula to reconstruct ∇µF from the adjoint
solutions.

The following definitions are introduced for the Runge-Kutta stage equations and state updates

r̃0(u0, µ) = u0 − ū0(µ) = 0

r̃n(un−1, un, kn,1, . . . , kn,s) = un − un−1 −
s∑
i=1

bikn,i = 0

Rn,i(un−1, kn,1, . . . , kn,i, µ) = Mkn,i −∆tnr(un,i, µ, tn,i) = 0.

(24)
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It was shown in [9] that the adjoint equations corresponding to a primal timestepping scheme with the same
structure as (24) are

∂r̃NpNt

∂uNpNt

T

λNpNt
=

∂F

∂uNpNt

T

∂r̃n
∂un−1

T

λn +
∂r̃n−1

∂un−1

T

λn−1 =
∂F

∂un−1

T

−
s∑
i=1

∂Rn,i

∂un−1

T

κn,i

s∑
j=i

∂Rn,j

∂kn,i

T

κn,j =
∂F

∂kn,i

T

− ∂r̃n
∂kn,i

T

λn

(25)

for n = 1, . . . , NpNt and i = 1, . . . , s, where λn and κn,i are the adjoint state and stage variables, respectively.
Furthermore, it was shown in [9] that the gradient computation reduces to

dF

dµ
=
∂F

∂µ
− λT0

∂r̃n
∂µ
−
NpNt∑
n=1

s∑
p=1

κTn,p
∂Rn,p

∂µ
(26)

which is independent of the state sensitivities. Elimination of the auxiliary terms, r̃n and Rn,i, in equations
(25) through differentiation of their expressions in (24) gives rise to the exact adjoint equations from [9]

λNpNt
=

∂F

∂uNpNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂r

∂u
(un,i, µ, tn,i)

Tκn,i

MTκn,i =
∂F

∂kn,i

T

+ biλn +

s∑
j=i

aji∆tn
∂r

∂u
(un,j , µ, tn,j)

Tκn,j

(27)

for n = 1, . . . , NpNt and i = 1, . . . , s. The expression for ∇µF , independent of state sensitivities, is

dF

dµ
= λT0

∂ū

∂µ
(µ) +

NpNt∑
n=1

∆tn

s∑
i=1

bi

[
∂fh

∂µ
(un,i, µ, tn,i) +

∂fh

∂t
(un,i, µ, tn,i)

∂tn,i
∂µ

(µ)

]

+

NpNt∑
n=1

∆tn

s∑
i=1

κTn,i

[
∂r

∂µ
(un,i, µ, tn,i) +

∂r

∂t
(un,i, µ, tn,i)

∂tn,i
∂µ

(µ)

]

+

NpNt∑
n=1

s∑
i=1

bif
h(un,i, µ, tn,i)

∂∆tn
∂µ

(µ) +

NpNt∑
n=1

s∑
i=1

κTn,ir(un,i, µ, tn,i)
∂∆tn
∂µ

(µ)

(28)

where the following identities were used

∂F

∂µ
=

NpNt∑
n=1

∆tn

s∑
i=1

bi

[
∂fh

∂µ
(un,i, µ, tn,i) +

∂fh

∂t
(un,i, µ, tn,i)

∂tn,i
∂µ

(µ)

]
+

NpNt∑
n=1

s∑
i=1

bif
h(un,i, µ, tn,i)

∂∆tn
∂µ

∂Rn,i

∂µ
=

NpNt∑
n=1

∆tn

s∑
i=1

bi

[
∂r

∂µ
(un,i, µ, tn,i) +

∂r

∂t
(un,i, µ, tn,i)

∂tn,i
∂µ

(µ)

]
+

NpNt∑
n=1

s∑
i=1

bir(un,i, µ, tn,i)
∂∆tn
∂µ

,

(29)
i.e., the partial derivatives with respect to µ must account the the explicit dependence of fh and r on µ as
well as the dependence of the time discretization on µ. The only sensitivity required to compute ∇µF (µ)
is the sensitivity with respect to the initial condition. This term is zero for the application considered in
this work since the initial condition is uniform flow, regardless of µ. For more general initial conditions, the
product λT0 ∂µū can be computed efficiently; see [9] for details.
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III.E. Implementation

Implementation of the fully discrete adjoint method introduced in Section III.D relies on the computation
of the following terms from the spatial discretization

M , r,
∂r

∂t
,
∂r

∂u
,
∂r

∂µ
, fh,

∂fh

∂u
,
∂fh

∂µ
,
∂fh

∂t
, (30)

as well as terms from the time discretization

tn,i,∆tn,
∂tn,i
∂µ

,
∂∆tn
∂µ

. (31)

The mass matrix and derivatives with respect to the state u are standard terms required by an implicit
solver and will not be considered further. From the form of the governing equations in (11), the residual
r and quantity of interest fh solely depend on the state vector, domain position x, and domain velocity ẋ
since the deformation gradient G and its determinant g can be written solely in terms of x; see [23] for a
detailed description. Therefore, the residual and quantity of interest can be written as

r(u, µ, t) = r(u, x(µ, t), ẋ(µ, t))

fh(u, µ, t) = fh(u, x(µ, t), ẋ(µ, t)).

Then the derivatives of r and fh with respect to parameter, µ, and time, t, that are required to construct
∇µF from the adjoint solution are computed as

∂r

∂µ
=
∂r

∂x

∂x

∂µ
+
∂r

∂ẋ

∂ẋ

∂µ

∂fh
∂µ

=
∂fh
∂x

∂x

∂µ
+
∂fh
∂ẋ

∂ẋ

∂µ

∂r

∂t
=
∂r

∂x

∂x

∂t
+
∂r

∂ẋ

∂ẋ

∂t

∂fh
∂t

=
∂fh
∂x

∂x

∂t
+
∂fh
∂ẋ

∂ẋ

∂t

(32)

where the terms
∂r

∂x
,
∂r

∂ẋ
,
∂fh
∂x

,
∂fh
∂ẋ

(33)

are determined from the form of the governing equations and spatial discretization outlined in [9]. The
remaining terms

∂x

∂t
,
∂ẋ

∂t
, (34)

are the velocity and acceleration of the motion of the domain, respectively, and

∂x

∂µ
,
∂ẋ

∂µ
, (35)

are the sensitivities of the domain position and velocity, respectively. These terms can be computed from
the specific form of the domain mapping (Section IV). The parametrization of the temporal discretization
is problem-specific and a detailed description will be deferred to Section IV.

IV. Application to energetically optimal flapping flight

In this section, the high-order numerical discretization of the isentropic, compressible Navier-Stokes equa-
tions and corresponding adjoint method are applied to determine the energetically optimal flapping motion,
with a requirement on the generated thrust, of a 2D NACA0012 airfoil (Figure 2) using gradient-based
optimization. A novel component of this work is the inclusion of the flapping frequency as an optimization
parameter. As discussed in Section III.B, assuming a fixed number of timesteps per period are desired, this
implies the timestep is parameter-dependent ∆tn(µ).
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IV.A. Geometry and kinematics of flapping airfoil

The motion of the airfoil is given as a combination of pitching and heaving, which each take the form of a
single harmonic function parametrized by frequency, amplitude, and phase shift

y(µ, t) = ymax sin(2πft)

θ(µ, t) = θmax sin(2πft+ φ)
(36)

where µ = [f, ymax, θmax, φ]. In this work, the parameters are restricted to the following intervals: f ∈
[0.05, 0.5], ymax ∈ [0, 2], θmax ∈ [0◦, 60◦], φ ∈ [−90◦, 90◦]. From the rigid body motion of the airfoil, the

y(t)

θ(t)

l
l/3

Figure 2: Geometry and kinematics of NACA0012 airfoil used in energetically optimal flapping study

deforming fluid domain is determined analytically by blending the rigid body motion of the entire fluid
domain with the reference mesh [18]. Let X ′ = [X1, X2]T denote the coordinates of the fluid domain after
application of the rigid body motion corresponding to y(µ, t) and θ(µ, t)

X ′1 = X1 cos θ(µ, t) +X2 sin θ(µ, t)

X ′2 = y(µ, t)−X1 sin θ(µ, t) +X2 cos θ(µ, t).
(37)

Then the coordinates of the physical fluid domain, x′, are defined by smoothly blending the domain from
the desired rigid body motion near the airfoil to the reference domain as

x′ = (1− b(X))X ′ + b(X)X (38)

where the blending maps from [9,18] take the form

b(X) =


0 d(X) ≤ r1

1 d(X) ≥ r1 + r2

q
(
d(X)−r2

r1

)
otherwise

(39)

and q(s) = 3s2 − 2s3. In this work, the blending radii are set to r1 = 2.0, r2 = 4.0.
The expression for the deformed domain, x′(X, µ, t), in (38) will have a non-trivial deformation and

velocity at t = 0. This may cause difficulty in initializing the simulation from uniform flow as violent
transients will result that may cause the simulation to crash. For this reason, following the work in [8, 9],
the deformation is smoothly blended to zero at t = 0 using the infinitely differentiable blending

bt(t) = e−(t/Tc)2 . (40)

Temporal blendings have also been used in experimental studies involving flapping wings [24], where a quintic
blending was used. The final form of the deformed domain is

x(X, µ, t) := (1− bt(t))x′(X, µ, t) + bt(t)X (41)

and the domain velocity ẋ(X, µ, t) can be computed analytically. It can easily be verified that this temporal
blending guarantees x(X, µ, 0) = X and ẋ(X, µ, 0) = 0. In this work, Tc = 0.4, which is 10% of the fastest
flapping motion considered in this work and ensures x, ẋ are effectively equal to x′, ẋ′ (within 0.1%) within
1/2 a period. This blending limits the transients that result from initializing the flow with incompatible
boundary conditions at the viscous wall and implies the sensitivity of the initial condition is zero, i.e.,
∂u0

∂µ = 0, since x(X, µ, 0) = X.
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IV.B. Energetically optimal flapping under thrust constraint

In this section, the high-order numerical discretization of the isentropic, compressible Navier-Stokes equations
and corresponding adjoint method are applied to determine the energetically optimal flapping motion of the
geometry introduced in the previous section using gradient-based optimization techniques. For a physically
relevant mission, requirements are placed on the time-averaged thrust leading to an optimization problem
with a single nonlinear constraint. As a result, two adjoint equations must be solved at each optimization
iteration to compute the gradient of the objective function and nonlinear constraint. The reconstruction of
these gradients from the adjoint solution includes the contributions from the parameter-dependent timestep,
detailed in (28).

The DG-ALE scheme introduced in Section II is used for the spatial discretization of the system of
conservation laws with polynomial order p = 3 (971 elements). The Reynolds number of the flow (with
respect to the chord length and freestream velocity) is set to Re = 1000 and the Mach number is set to
M = 0.02, which makes the flow nearly incompressible. The DG-ALE scheme uses the Roe flux [25] for the
inviscid numerical flux and the Compact DG flux [26] for the viscous numerical flux. The diagonally implicit
Runge-Kutta scheme detailed in Section III.B is used for the temporal discretization with Nt = 100 uniform,
three-stage, third-order timesteps used per period; see Table 2 for the Butcher tableau. Since the timesteps

α α
1+α

2
1+α

2 − α α

1 γ ω α

γ ω α

Table 2: Butcher Tableau for 3-stage, 3rd order DIRK scheme [27]

α = 0.435866521508459, γ = − 6α2−16α+1
4 , ω = 6α2−20α+5

4 .

are taken to be uniform within a period, an explicit formula for ∆tn(µ) is obtained as

∆tn(µ) = ∆t(µ) =
T (µ)

Nt
=

1

f(µ)Nt
=

1

µ1Nt
. (42)

From this, the time at the ith DIRK stage, tn,i, is parametrized as

tn,i(µ) = tn−1(µ) + ci∆tn(µ) = (n− 1 + ci)∆t(µ) =
n− 1 + ci
µ1Nt

. (43)

The quantities of interest for the optimization problem are: the total work done by the foil on the fluid
W(U , µ) and the average thrust, Tx(U , µ), generated over one flapping period. These quantities are defined
as

W(U , µ) = − 1

T (µ)

∫ 2T (µ)

T (µ)

∫
Γ

f(U ,µ) · ẋ dS dt

Tx(U , µ) = − 1

T (µ)

∫ 2T (µ)

T (µ)

∫
Γ

f(U ,µ) · e1 dS dt

(44)

where Γ is the surface of the foil, f ∈ R3 is the force imparted by the fluid on the body, ei ∈ R3 is the ith
canonical basis vector, and ẋ is the velocity of each point on Γ. The fully discrete, high-order approximation
of the integrated quantities of interest (DG in space, DIRK in time) will be denoted with the corresponding
Roman symbol, e.g., W (u0, . . . , uNpNt

, k1,1, . . . , kNpNt,s, µ) is the fully discrete approximation ofW(U ,µ)
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and similarly for Tx. With these definitions, the fully discrete optimization problem takes the form

minimize
u0, ...,uNpNt∈R

Nu ,

k1,1, ...,kNpNt,s∈R
Nu ,

µ∈RNµ

W (u0, . . . , uNpNt , k1,1, . . . , kNpNt,s, µ)

subject to Tx(u0, . . . , uNpNt , k1,1, . . . , kNpNt,s, µ) = T̄x

u0 = ū

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tn(µ)r(un,i, µ, tn,i(µ)).

(45)

In this work, the optimization problem in (45) is solved using IPOPT [28].
First, the convergence of the total work and thrust as a function of optimization iteration for a fixed

T̄x = 1.0 is considered (Figure 3). Since the initial guess (f = 0.2, ymax = 0.0, θmax = 0.0, φ = 90◦) is far
from the optimal solution (f = 0.227, ymax = 1.52, θmax = 49.4◦, φ = 85.8◦), several iterations are required
as the optimizer searches for parameters that satisfy the thrust constraint and minimize the energy required
to flap. After 20 iterations the optimizer has found a solution that is feasible and energetically optimal to
a tolerance of 10−4 and only a few additional iterations are required to fine tune the motion such that the
optimality condition is satisfied to 10−8. The remainder of the optimization problems considered in this
document, for various values of T̄x, are initialized from the optimal solution corresponding to T̄x = 1 or the
optimal solution corresponding to another value of T̄x that is available.

0 10 20 30

0

5

10

15

optimization iteration

W

0 10 20 30

0

0.5

1

optimization iteration

T
x

Figure 3: Convergence of required flapping energy and thrust as a function of optimization iteration corre-
sponding to the thrust constraint T̄x = 1. The final values are W ∗ = 2.1961022 and T ∗x = 0.9999999 and the
first-order optimality conditions are satisfied to a tolerance of 10−8. For a convergence tolerance of 10−4,
the optimization iterations could have been terminated after 20 iterations.

In the remainder of this document, we study the behavior of the energetically optimal flapping motions
as a function of the constraint T̄x. The optimal pitching and heaving motions corresponding to various
values of T̄x are provided in Figure 4. Additionally, the energy (W ∗) and parameters (f∗, y∗max, θ∗max,
φ∗) corresponding to the energetically optimal flapping motions corresponding to these values of the thrust
constraint T̄x are provided in Figure 5.

At this point a number of observations can be made regarding these energetically optimal flapping
motions as a function of T̄x. First, the energy required to flap increases linear with T̄x, at least in the regime
considered. The optimal frequency also increases as T̄x increases, but the increase is not linear. For large
values of T̄x the benefit of flapping faster, i.e., increasing frequency, diminishes and larger values of pitch and
heave are preferred. This suggests that increasing flapping frequency is not necessary the most energetically
optimal way to generate additional thrust. The trends for the maximum pitch and heave amplitude are less
clear due to outliers at T̄x = 0.75 and T̄x = 2.5 where y∗max and θ∗max hit their upper bounds. It is likely that
a local minima was obtained and a better starting point would cause these quantities to exhibit smoother
trends. It is interesting to note that despite these outliers in the optimal trajectory, the optimal work (W ∗)
still exhibits a nearly linear behavior as a function of T̄x.

The motion of the airfoil and vorticity of the surrounding flow are shown in Figure 6 (optimal motion
corresponding to T̄x = 0), Figure 7 (optimal motion corresponding to T̄x = 1), and Figure 8 (optimal

11 of 17



0 5 10

−1

0

1
y
(t

)

0 5 10

−20

0

20

θ(
t)

0 1 2 3 4

−2

0

2

t

y
(t

)

0 1 2 3 4

−60

−30

0

30

60

t

θ(
t)

Figure 4: Optimal trajectories of y(t) and θ(t) for various value of the thrust constraint: T̄x = 0.0 ( ),
T̄x = 1.0 ( ), T̄x = 1.5 ( ), T̄x = 2.0 ( ), T̄x = 2.5 ( ).
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Figure 5: The optimal flapping energy (W ∗), frequency (f∗), maximum heaving amplitude (y∗max), maximum
pitching amplitude (θ∗max), and phase between pitching and heaving (φ∗) as a function of the thrust constraint
T̄x.

12 of 17



motion corresponding to T̄x = 2.5). As the desired thrust increases, the amplitude of the pitch and heave
increase significantly and the flapping frequency increases causing vortices to shed when the airfoil attains
its maximum/minimum heaving amplitude. Despite these complex interactions occurring in the flow, the
work required to perform these optimal trajectories increases (roughly) linearly as T̄x increases.

Figure 6: Trajectory of airfoil and flow vorticity at energetically optimal, T̄x = 0.0 flapping motion (see
Figure 4 for flapping trajectory). Snapshots taken at times 6 equally spaced instances throughout the period
(T (µ) = 13.0): t = 0.0, 2.17, 4.34, 6.51, 8.68, 10.9.

V. Conclusion

This work introduces a fully discrete, high-order numerical framework for solving PDE-constrained opti-
mization problems using gradient-based methods in the case where one or more of the optimization parame-
ters affects the time domain. This leads to a fully discrete system whose time discretization is parametrized
in addition to the parameter-dependence of the spatial quantities. The adjoint method corresponding to this
system was introduced and shown that the adjoint equations themselves are identical to the case with a fixed
time discretization, but the formula to reconstruct the gradient of a quantity of interest from the adjoint
solution involves additional terms. These additional terms involve the velocity of the quantity of interest
and spatial residual as well as the sensitivities of the time discretization with respect to the parameters.

The fully discrete primal and adjoint equations were employed to study energetically optimal flapping
subject to a minimum required thrust, where flapping frequency and trajectory were included as optimization
parameters. It was shown that convergence to an energetically optimal motion for a desired thrust of T̄x = 1
was obtained in only 20 optimization iterations. Additionally, a study was performed to gain insight to the
optimal flapping energy, frequency, and trajectory as a function of the desired thrust, T̄x. It was shown
that the optimal flapping energy increases roughly linearly with T̄x while trends in the other quantities are
less clear, possibly due to some outliers at T̄x = 0.75 and T̄x = 2.5 where optimization parameters hit their
bounds and could be the result of sub-optimal local minima. The linear behavior in the optimal flapping
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Figure 7: Trajectory of airfoil and flow vorticity at energetically optimal, T̄x = 1.0 flapping motion (see
Figure 4 for flapping trajectory). Snapshots taken at times 6 equally spaced instances throughout the period
(T (µ) = 4.41): t = 0.0, 0.735, 1.47, 2.21, 2.94, 3.68.
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Figure 8: Trajectory of airfoil and flow vorticity at energetically optimal, T̄x = 2.5 flapping motion (see
Figure 4 for flapping trajectory). Snapshots taken at times 6 equally spaced instances throughout the period
(T (µ) = 3.62): t = 0.0, 0.604, 1.21, 1.81, 2.41, 3.02.
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energy is seen despite these potential outliers.
Future work will focus on applying this method to three-dimensional wing geometries with a richer

parametrization of the flapping trajectory, i.e., periodic splines or multiple harmonic terms instead of a
single harmonic term, as well as shape morphing parameters [9] to gain additional insight into flapping
physics.
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