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A model reduction framework based on the concept of local reduced-order bases is

presented. The offline phase of the method builds the local reduced-order bases using an

unsupervised learning algorithm. In the online phase of the method, the choice of the

local basis is based on the current state of the system. Inexpensive rank-one updates to

the local bases are performed during the online phase for increased accuracy. Applications

to nonlinear CFD simulations show that the method is effective in producing small and

accurate reduced order models.

I. Introduction

Although computational fluid dynamics (CFD) models are typically high-dimensional, the trajectories
of these models are often confined to low-dimensional affine subspaces. For this reason, CFD models are an
ideal candidate for Model Order Reduction (MOR) methods.

In most MOR methods, the dimension of the system is reduced by projecting the equations of the
high-dimensional model (HDM) onto the low-dimensional subspace spanned by its trajectories. Using this
approach, it is possible to greatly reduce the number of degrees of freedom in the model while retaining the
accuracy of the original HDM.1–6

Typically, this low-order projection subspace is represented by a reduced-order basis (ROB), and the state
of the HDM is formed as a linear combination of these basis vectors. The resulting reduced-order model
(ROM) can produce accurate responses within the projection subspace; however, a fundamental trade-off is
that the ROM will never be able to explore portions of the state-space outside this subspace. This means
that the performance of the ROM is ultimately decided by the quality of the ROB.

When a single ROB is used to reduce the dimension of an HDM, it must capture the dynamics of the
HDM along the entire trajectory of interest. This can result in a very large ROB, and thus an inefficient
reduced order model – an issue that is especially troublesome for design applications, where the ROB needs
to capture the dynamics of the HDM at multiple design points.

The MOR method introduced in [7] alleviates this problem through the use of multiple local ROBs. In
this approach, a local ROB is selected at each time step of the ROM simulation based on the current state
of the system. Ideally, each local ROB captures only the local dynamics at a given point of the state-space,
resulting in small and accurate models. Such a concept is particularly well-suited for the proper orthogonal
decomposition (POD) method in which the ROB is built from snapshots of the system taken at various
locations of the state-space.

This local ROB approach takes advantage of the fact that the state-space of a nonlinear dynamical
system can often be partitioned into distinct characteristic regimes. In the context of CFD simulations,
these state-space partitions could distinguish, for example, between solutions that are dominated by laminar
vs. turbulent flow, subsonic vs. supersonic flow, or transient vs. limit-cycle behavior. As the state of the
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system transitions from one regime to another during a ROM simulation, an appropriate local ROB can be
chosen that best captures the physics of the current system, and omits information that is not immediately
relevant.

In this work, the local ROB method originally presented in [7] is extended to a three-dimensional CFD
problem, and the details of constructing accurate local ROBs are discussed at length. To this effect, this paper
is organized as follows: The underlying principles of the local ROB method are presented in Section II, the
details of the offline and online portions of the method are discussed in Sections III and IV, and applications
to two nonlinear CFD systems are presented in Section V.

II. Model Reduction Based on Local Reduced-Order Bases

Consider a set of nonlinear Ordinary Differential Equations (ODEs) arising, for instance, from the dis-
cretization in space of a space-time Partial Differential Equation (PDE):

dw(t)
dt

= f(w(t), t,µ)
w(0) =w0,

(1)

where t ≥ 0 denotes time, w(t) ∈ Rn denotes the fluid state vector of dimension n, µ ∈ Rd denotes a vector of
parameters defining the operating point of the system of interest, and f ∶ Rn ×R×Rd → R

n is the nonlinear
flux function containing the semi-discrete counterparts of the convective and diffusive fluxes.

When Eq. (1) is solved by an implicit time-integrator, the state w(i) at time t(i),0 ≤ i ≤ Nt, can be
computed as the solution to a system of discrete nonlinear equations, which are represented here as a
nonlinear residual

r(i)(w(i),µ) = 0. (2)

When an iterative procedure such as the Newton-Raphson method is used to solve this nonlinear system,
w(i,l) denotes the computed solution at the l-th iteration of the i-th time step, t(i).

The main assumption made in reduced-order modeling is that the state solution w belongs to an affine
subspace of Rn, the dimension k of that subspace being typically orders of magnitude smaller than n. When
a single ROB V ∈ Rn×k is used to reduce the system, this one ROB must capture all of the relevant physics
of the HDM (2). For a complex system this can result in a very large basis, and thus a slow ROM.

As suggested in [7], this shortcoming of global ROBs can be overcome by selecting an appropriate local

ROB at each time step of the ROM simulation. Since each local ROB needs only to capture a subset of the
physics exhibited by the HDM, this allows the use of smaller ROBs for a given accuracy.

At a given time iteration i, it is therefore proposed to search for a solution w(i) under the form

w(i) =w(i−1) +V(w(i−1))∆w
(i)

k(w(i−1))
(3)

whereV(w(i−1)) ∈ Rn×k(w(i−1)) denotes a local ROB that is chosen based on the state w(i−1), and ∆w
(i)

k(w(i−1))

denotes the vector of unknowns that contains the increments of the generalized coordinates in the basis
V(w(i−1)). The notation k(w(i−1)) emphasizes that each local basis may have a different size.

In practice, a set of NV local reduced-order bases is pre-computed and each basis V(w(i−1)) is chosen
within this set. In the remainder of this paper, {Ij}NV

j=1 denotes the set of indices i ∈ {1,⋯,Nt} such that

V(w(i−1)) =Vj and k(w(i−1)) = kj . Using this notation, if i ∈ Ij , Eq. (3) can be rewritten as

w(i) =w(i−1) +Vj∆w
(i)
kj

. (4)

Substituting Eq. (4) into the nonlinear system Eq. (2) results in the following system of n nonlinear

equations in terms of kj variables ∆w
(i)
kj

,

r(i)(w(i−1) +Vj∆w
(i)
kj

,µ) = 0. (5)
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Once an appropriate local ROB has been chosen, the above system of nonlinear equations can be solved
in a least squares sense by considering the following problem,

min
∆w

(i)

kj
∈Rkj

∥r(i)(w(i−1) +Vj∆w
(i)
kj

,µ)∥
2
. (6)

The next two sections of this paper are concerned with the details of solving Eq. (6); Section III discusses
the offline construction of the local ROBs, {Vj}NV

j=1 , and Section IV discusses the online solution to Eq. (6)

using an iterative Gauss-Newton procedure.6, 8

III. Offline Phase: Construction of the Local ROB Database

In practice, the set of reduced bases {Vj}NV

j=1 is built using a POD algorithm based on the method

of snapshots.9 These snapshots {ys}Nsnaps

s=1 are typically based on pre-computed states {ws}Nsnaps

s=1 of the
HDM (2), where Nsnaps ≤Nt.

The proposed method for constructing a database of local ROBs consists of three steps. First, the states

{ws}Nsnaps

s=1 are clustered into NV subsets using an unsupervised learning algorithm, such as the k-means
algorithm. Second, the clusters are made to overlap with one another by sharing a small number of states

between neighboring clusters. Third, the snapshots {ys}Nsnaps

s=1 are formed from the state clusters and the
individual local ROBs are computed. These three steps are detailed below.

A. Clustering of Pre-Computed Solutions

In this work, the k-means algorithm is used to partition the pre-computed states {ws}Nsnaps

s=1 ⊂ {w(i)}Nt

i=0 into
NV clusters.7 This choice of algorithm is shown to work well for the applications in Section V; however, any
other clustering algorithm could be substituted here with only minor changes to the method.

More important than the choice of algorithm is the choice of distance metric used to compare states. The
choice of distance metric is fundamental to the local ROM method, and affects both the offline and online
results. In this work, the distance metric used for both the partitioning of the pre-computed states as well
as the online choice of ROB is chosen as

d (wi,wj) = ∥wi −wj∥
2
. (7)

REMARK: This definition of distance has been shown to work well for a simple one dimensional fluid
problem and a fluid-structure-electric interaction problem;7 however, it may not be the best choice for all
problems. For systems that exhibit strongly periodic behavior, it may be more appropriate to choose a
distance metric that relies on the frequency content of the states, or possibly an output quantity of interest,
such as lift or drag for aeronautical applications.

The process of clustering the pre-computed states is summarized in Algorithm 1. To illustrate the
algorithm, a set of states as well the corresponding clusters and state-space partitioning are depicted in
Fig. 1 (a)-(b).

B. Overlap of Snapshot Clusters

As suggested in [7], cluster overlap can be introduced by adding near-by states to each cluster. This ensures
that there are no “gaps” between clusters, reducing the error when the state trajectory transitions from one
cluster to another. In this paper, a new method is proposed for introducing overlap.

The proposed method is a two-step approach: the connectivity of the clusters is first established, and a
specified number of snapshots are then shared between neighboring clusters. In this section, it is assumed
that the clusters have been generated with a k-means algorithm; substituting a different clustering algorithm
would require slight modifications to the approach presented below.

Here, two clusters are said to be connected if their respective centroids are the two closest to any of

the pre-computed states {ws}Nsnaps

s=1 . With this definition, the cluster connectivity can be established by
iterating through the pre-computed states, identifying the two closest cluster centroids to each, and marking
the corresponding pair of clusters as neighbors. This corresponds to lines 1 to 3 in Algorithm 2, and is
depicted in Fig. 1 (c), where states are colored according to the second nearest cluster center.
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Algorithm 1 Clustering of pre-computed states into NV subsets

Input: Number of desired clusters, NV ≥ 1
Output: State vector clusters {Wj}NV

j=1 ; centroids of state vector clusters {wj}NV

j=1

1: Compute the full-order solutions {w(i)}Nt

i=0.

2: Select Nsnaps ≥ NV snapshots {ws}Nsnaps

s=1 ⊂ {w(i)}Nt

i=0.
3: Store the state vectors in a matrix W = [w1,⋯,wNsnaps].
4: Partition the state vectors into NV clusters {Wj}NV

j=1 based on the chosen distance metric. Then

NV⋃
j=1

Wj = {w1,⋯,wNsnaps} (8)

5: Compute the centroid wj of each cluster {Wj}NV

j=1 .

(a) Precomputed states (b) Clusters before overlap (c) Second closest cluster to each state

(d) Cluster 1 after overlap (e) Cluster 2 after overlap (f) Cluster 3 after overlap

(g) Cluster 4 after overlap (h) Cluster 5 after overlap

Figure 1. Snapshot clustering procedure, NV = 5
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The advantage of this method is that any two clusters with states near their common boundary are likely
to be identified as neighbors. Consequently, if the trajectory of the training simulation crosses a cluster
boundary, it is likely that the two clusters sharing this boundary will be identified as neighbors. In practice,
this method is somewhat conservative; two clusters that are near one another in state space but unrelated
in the training trajectory are not always identified as neighbors. This proves to be a desirable feature when
attempting to reproduce the training trajectory with the ROM, but it may be necessary to share states from
all adjacent clusters for parametric applications.

After the cluster connectivity has been established, the overlap algorithm then iterates through the
clusters and identifies which states should be added from each neighboring cluster. In this work, each cluster
is enlarged by a set percentage (typically r = 10%) by adding an equal number of states from each of its
neighbors. The algorithm shares the states that are nearest to the boundary between the cluster and its
neighbor. This step corresponds to lines 4 to 13 in Algorithm 2 and its result is depicted in Fig. 1 (d)-(h).

Note that the cluster centers are not updated when overlap is introduced. The cluster centers define the
partitioning of the state-space, and the intent of adding overlap is to improve the performance of the local
ROBs near the boundaries of each cluster, not to alter the partitioning of the state-space.

Algorithm 2 Introduce overlap into state clusters

Input: State clusters {Wj}NV

j=1 ; state cluster centroids {wj}NV

j=1 ; threshold r

Output: Overlapping state clusters {Ŵj}NV

j=1

1: for s = 1,⋯,Nsnaps do

2: Identify the two nearest clusters centroids to state ws and mark these clusters as neighbors
3: end for

4: for j = 1,⋯,NV do

5: Let Nsnaps,j denote the number of states in cluster j, and Nneighbors,j the number of its neighboring
clusters

6: Ŵj =Wj

7: Calculate the number Nadd,j of states to add from each neighbor of Wj as Nadd,j = ceil ( Nsnaps,j×r

Nneighbors,j
)

8: for i = 1,⋯,NV do

9: if i is a neighbor to j then
10: Find the Nadd,j states nearest to their common boundary and add these to Ŵj

11: end if

12: end for

13: end for

C. Local ROB Construction

After forming the overlapping state clusters {wj}NV

j=1 , the set of reduced bases {Vj}NV

j=1 is built using a POD

algorithm based on the method of snapshots.9 These snapshots Yj = {ys
j}Nsnaps,j

s=1 are typically formed by

subtracting reference states {wref,j}NV

j=1 from the raw states Ŵj = {ws
j}Nsnaps,j

s=1 . The offline procedure for
constructing a database of local ROBs by POD is summarized in Algorithm 3.

In practice, the choice of the reference states {wref,j}NV

j=1 has an impact on the performance of the resulting
ROBs. In the following discussion, it is argued that a particular choice of reference condition is the most
appropriate for local ROBs.

To gain insight into this matter of snapshot reference conditions for offline ROB construction, consider
the subsequent online ROM simulation using the pre-computed local ROBs. At any time iteration i before
the ROM switches from the first local ROB V1 to the second local ROB V2, w

(i) can be expressed in terms
of the initial solution, w(0), as follows

w(i) =w(0) +V1

i∑
p=1

∆w
(p)
k1

. (10)
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Algorithm 3 Construction of a set of local reduced bases

Input: Number NV ≥ 1 of pre-computed bases, corresponding sets of state clusters {Ŵj}NV

j=1 , reference states

{wref,j}NV

j=1

Output: Local POD bases {Vj}NV

j=1 , corresponding singular values and right vectors {Σj}NV

j=1 and

{Zj}NV

j=1

1: for j = 1,⋯,NV do

2: Subtract the reference state wref,j from the states Ŵj = {ws
j}Nsnaps,j

s=1 to form the snapshots Yj =
{ys

j}Nsnaps,j

s=1 .
3: Store the snapshots Yj in a matrix Yj .
4: Compute a singular value decomposition

Yj =UΣZT . (9)

5: Choose a dimension kj ≤ Nsnaps,j for the j-th reduced basis
6: Truncate the first kj left components to obtain the reduced-order basis Vj = U(∶,1 ∶ kj), singular

values Σj =Σ(1 ∶ kj ,1 ∶ kj), and right singular vectors Zj = Z(∶,1 ∶ kj), such that Yj ≈VjΣjZ
T
j .

7: end for

For the purposes of this discussion, it is helpful to slightly rearrange Eq. (10) as

w(i) −w(0) =V1

i∑
p=1

∆w
(p)
k1

. (11)

Examining Eq. (11), the quantities w(i) −w(0) are constrained to lie in the subspace spanned by V1. It
follows that, for this ROM to be accurate, V1 must be a good approximation of the subspace spanned by the
corresponding iterates of the HDM. If the basis V1 is formed using Algorithm 3 without truncation, that is
kj =Nsnaps,j , then there are several choices of snapshot reference condition that could be appropriate; how-
ever, when truncation is present, it is postulated that V1 will best approximate this subspace if constructed
from snapshots of the type ys

1 = ws
1 −w(0). In practice, it has been observed10, 11 that, for global ROMs,

this choice does indeed lead to more accurate reduced models than the common choice ys
1 =ws

1 or the choice
ys
1 =ws

1 −ws−1
1 presented in [6].

Consider now a later time step i from this same online local ROM simulation after the second local
ROB V2 has been selected. Here, m denotes the iteration at which this second local ROB was first selected.
At this time step, the counterpart to Eq. (10) is then

w(i) =w(0) +V1 ∑
1≤p≤m−1

∆w
(p)
k1
+V2 ∑

m≤p≤i

∆w
(p)
k2

. (12)

Since w(m−1) =w(0) +V1 ∑
1≤p≤m−1

∆w
(p)
k1

, the counterpart of Eq. (11) is then

w(i) −w(m−1) =V2 ∑
m≤p≤i

∆w
(p)
k2

. (13)

Appealing to the same logic as before, it appears that the second local ROB V2 should be constructed from
snapshots of the type ys

2 =ws
2 −w(m−1).

Generalizing this observation, it is expected that a given local ROB Vj will perform well online if
constructed from snapshots of the type ys

j = ws
j −wswitch,j, where wswitch,j denotes the state of the system

when the ROM switches to basis Vj . Unfortunately, this reference condition wswitch,j is not known at the
time of the ROB construction, and additionally, if a basis is used more than once by the simulation it would
need to be referenced with two different states.

The novel approach proposed in this paper is to first construct a database of local ROBs offline using
some reference states {wref,j}NV

j=1 , and to then perform inexpensive rank-one updates to the local ROBs online
when wswitch,j is known. In this paper, the initial condition of the online simulation is used as the reference
state wref,j for all clusters j = 1,⋯,NV, ensuring that the first local ROB does not need to be updated
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online; however, for parametric applications it could prove beneficial to use the centroids of the clusters as
the reference state, since the cluster centers should be closer to wswitch,j than the initial condition. This
represents a topic for future investigation.

After constructing the local ROB database using Algorithm 3 with reference snapshots {wref,j}NV

j=1 ,

range(Vj) ⊂ span({ws
j −wref,j}Nsnaps,j

s=1 ) = range (Yj) , (14)

where the columns of Yj contain the snapshots ws
j − wref,j. During the online ROM simulation, when a

new basis Vj is selected, a local ROB update is then performed using the state wswitch,j . The goal of the

proposed approach is to compute a modified local ROB Ṽj such that

range(Ṽj) ⊂ span({ws
j −wswitch,j}Nsnaps,j

s=1 ) = range(Ỹj) , (15)

where the columns of Ỹj contain the snapshots ws
j − wswitch,j . Ỹj and Yj are therefore related by the

identity
Ỹj =Yj + (wref,j −wswitch,j)1T , (16)

where T denotes the transpose operator and 1 is a vector of ones which has the dimension of the number of
snapshots in Yj . Hence, Ỹj is a rank-one update matrix to Yj . Since the basis Ṽj is constructed by a POD

that involves a Singular Value Decomposition (SVD) of the matrix Ỹj , the fast algorithm for updating an

SVD developed in [12] is used for a fast update of the local ROB Ṽj . This is described in Algorithm 4.

Algorithm 4 Online Update to Local ROB Vj , j ∈ {1,⋯,NV}
Input: Original SVD Yj ≈ VjΣjZ

T
j , Vj ∈ Rn×kj , Σj ∈ Rkj×kj , Qj = ZT

j 1 ∈ Rkj , qj = ∥1 − ZjQj∥2, original
reference state wref,j , online state wswitch,j

Output: Updated local ROB Ṽj

1: Compute a =wref,j −wswitch,j ∈ Rn

2: Compute m =VT
j a ∈ Rkj

3: p = a −Vjm ∈ Rn

4: Ra = ∣∣p∣∣2
5: p = p/Ra

6: K = [Σj 0

0 0
] + [m

Ra

] [Qj

qj
]
T

∈ R(kj+1)×(kj+1)

7: Compute the SVD of K =C S DT , where C,S,D ∈ R(kj+1)×(kj+1)

8: Compute V̄j = [Vj p]C ∈ Rn×(kj+1)

9: Let Ṽj = V̄j(∶,1 ∶ kj)
REMARK 1: Algorithm 4 performs an exact SVD update on a low rank approximation to the snapshot

matrix Yj . As a result, the modified basis Ṽj is an approximation to the exact basis that would have been

computed using the true snapshot matrix Ỹj . The error introduced due to this approximation is studied for
the one-dimensional Burgers’ equation in Section V.A.

REMARK 2: One of the main benefits of using local ROBs is that the bases can be of varying sizes;
however, picking each of these sizes by hand quickly becomes impractical as the number of bases grows. In
this work, the local ROBs sizes are chosen based on the decay of the singular values, and are constrained to
fall between an upper and lower bound. For the applications in this paper, this method yielded appropriately
sized local ROBs without requiring significant assistance.

IV. Online Phase: Simulation of the Reduced-Order Model Using Local Bases

After constructing the local ROBs {Vj}NV

j=1 offline, these bases are used to solve a sequence of minimization
problems of the form (6) during the online ROM simulation. At every time step, the appropriate ROB is
determined by computing the distance of the current state to the cluster centers and selecting the local ROB
that corresponds to the closest cluster center.

The approach proposed here is identical to the approach of [7], except that every time a new ROB is
selected it is updated online using Algorithm 4. This procedure is summarized in Algorithm 5.

7 of 16

American Institute of Aeronautics and Astronautics



Algorithm 5 Solution of Eq. (6) by the Gauss-Newton procedure

Input: Previous solution w(i−1), set of local ROBs {Vj}NV

j=1 , previous ROB Ṽ

Outputs: Solution w(i)

1: Choose a local model j based on the distances between the cluster centroids and the current state, w(i−1)

2: If the ROB j differs from the one used at the previous iteration i − 1, update the ROB Vj using

Algorithm 4 and obtain the modified ROB Ṽ = Ṽj , otherwise use the modified ROB Ṽ used at the
previous iteration

3: Let w(i,0) =w(i−1) and ∆w
(i,0)
kj
= 0

4: for l = 0,⋯, (until convergence) do
5: Compute r(i,l) = r(i)(w(i,l),µ).
6: Evaluate J(i,l) = ∂r(i)

∂w
(w(i,l),µ)

7: Compute W
(i,l)
j = J(i,l)Ṽ

8: Compute the thin QR decomposition W
(i,l)
j =Q(i,l)R(i,l)

9: Solve R(i,l)p(i,l) = −Q(i,l)T r(i,l)
10: Compute a step α(i,l) by a line-search procedure (or use the Newton step and set α(i,l) = 1)
11: Update ∆w

(i,l+1)
kj

=∆w
(i,l)
kj
+ α(i,l)p(i,l)

12: Update w(i,l+1) =w(i,I) + Ṽ∆w
(i,l+1)
kj

13: end for

14: Let w(i) =w(i,l)

REMARK 1: Since the distances from the current state to each of the cluster centers are computed at
every time step, it is important that these distance calculations be computationally efficient. It is shown
in [7] that, using the distance metric defined in Eq. (7), it is possible to compute distances with a complexity
that does not depend on the dimension n of the large-scale underlying model. Similarly, in the proposed
approach with updated local ROBs, it can be shown that the same low complexity can be achieved.

REMARK 2: In Eq. (6), the number of unknowns has been reduced through the introduction of a local
ROB for the state. In spite of this, the computational cost associated with solving this system of equations
via Algorithm 5 is still comparable to the cost of solving the high-fidelity model as it requires the evaluation
of the full-order residual and Jacobian r(i)(w(i,l),µ) and J(i)(w(i,l),µ) at each Newton iteration. It has
been shown in [7] that the computational cost of Algorithm 5 can be greatly reduced using hyper-reduction,
that is, by introducing an additional level of approximation. The local ROB update procedure outlined in
Algorithm 4 in Section III.C requires full state vectors and therefore has a complexity that scales with the
dimension n of the underlying HDM. As a result, it cannot be extended to the online phase of the local
hyper-reduction as is. Future work will focus on adapting this approach to hyper-reduction.

V. Applications

A. One dimensional Burgers’ Equation

1. High-Dimensional Model

The first system of interest originates from the inviscid Burgers’ equation

∂W

∂t
+W ∂W

∂x
= g(x, t), x ∈ [0,1], 0 ≤ t,

W (x,0) = 1, W (0, t) =
√
5,

(17)

where x denotes the space variable, W (x, t) is the quantity of interest, and g(x, t) = 0.02e0.02x is a source
term. This initial-boundary-value-problem (IBVP) is discretized in space using Godunov’s Finite Volume
method, resulting in a set of nonlinear ODEs of dimension n = 10000. Solutions of the HDM at six different
times are depicted in Fig. 2.
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Figure 2. HDM solution of the inviscid Burgers’ equation

2. Clustering Results

In this section, the particular case of NV = 4 has been selected to demonstrate the performance of the
clustering and overlap algorithms. These results are representative of those obtained for other values of
NV. In Fig. 3 (a), the NV = 4 state clusters are shown both before and after overlap is introduced using a
threshold of (r = 10%). Note that any two overlapping clusters are also linked in the training simulation.

The cluster centroids are depicted in Fig. 3 (b). This example demonstrates that the cluster centroids
are not necessarily physical states of the system – here, the centroids are characterized by smooth, blended
shocks that are clearly non-physical.

3. ROM Performance

The first set of numerical experiments examine the issue of snapshot reference condition discussed in Sec-
tion III.C. For these experiments, local ROBs {Vj}NV

j=1 were constructed from the NV = 4 clusters shown in
Fig. 3 using the following snapshot reference conditions,

1. ys
init,j =ws

j −w(0) (Initial state),

2. ys
prev,j =ws

j −ws−1
j (Previous state),

3. ys
none,j =ws

j (No reference),

4. ys
switch,j =ws

j −wswitch,j (State when ROM switches to Vj).

For comparison, reference condition 4 was implemented using both the proposed online updates and an
exact method. For the online updates, ROBs that were initially referenced with w(0) were updated using
wswitch,j as outlined in Algorithm 4. For the exact method, the SVD was computed online using Algorithm 3
with wref,j = wswitch,j . Clearly, this exact approach is too computationally expensive to be realistic in an
online framework, and it is reported here solely for assessing the accuracy of the proposed online update
approach.

After constructing the local ROBs corresponding to the various snapshot choices, local ROM simulations
were then performed. Error versus time for each of the snapshot choices is reported in Fig. 4. Examining

9 of 16

American Institute of Aeronautics and Astronautics



0 10 20 30 40 50

1

2

3

4

Time (s)

C
lu

st
er

N
u
m

b
er

 

 

Clusters before overlap

Clusters after overlap

(a) Overlapping clusters

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

x

w

 

 

Cluster #1

Cluster #2

Cluster #3

Cluster #4

(b) Cluster centroids

Figure 3. Clustering results, NV = 4

these results, the snapshot methods ys
prev,j and ys

none,j both performed very poorly, with relative errors
exceeding 10%. In fact, these two simulations were so inaccurate that the online ROM simulations did not
even use all of the precomputed ROBs; the ROM constructed with ys

prev,j used three of the four local ROBs,
and the ROM constructed with ys

none,j only used two. The ROM simulation using snapshot method ys
init,j

performed better, with relative errors of 6%, but as expected, the relative error increased as the simulation
progressed. In contrast, both ROMs constructed with ys

switch,j performed very well, with relative errors of
less than 4%. This study supports the earlier claim that the local ROBs should be constructed using the
snapshots ys

switch,j , and indicates that the proposed online update algorithm closely approximates the exact
ROBs built from these snapshots.
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Figure 4. Performance of the nonlinear MOR method with NV = 4 and kj = {16,11,7,4} as a function of snapshot
method; time iterates corresponding to a local ROB switch indicated as ◯ for ROB #1, ◻ for ROB #2,
☆ for ROB #3, and △ for ROB #4
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In Fig. 5, solutions computed with ys
switch,j (Online Updates) and ys

init,j are presented for comparison.
These two ROM simulations use the same local ROBs; the only difference being that the ys

switch,j simulation
performs online updates to the local ROBs using Algorithm 4. Examining the results in Fig. 5, the simulation
with the online updates is able to achieve better accuracy than the simulation without updates – especially
at the end of the simulation.
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Figure 5. Performance of the local ROMs with kj = {20,14,10,4} and NV = 4 for snapshot methods ys
init,j

and

ys
switch,j

(Algorithm 4)

In Fig. 6, the computational cost and relative errors for simulations using online updates are reported for
NV = 1,2,3,4. These results show that the use of local ROBs results in faster ROMs for a given accuracy,
but that there appears to be an upper limit on the performance benefits that can be gained by increasing
NV. Note that without hyper-reduction, these ROM simulations still scale with the large dimension of the
HDM, and as expected these simulations typically require more CPU time than the HDM. In [7], the authors
show that hyper-reduction can be applied to the local ROM framework, resulting in significant speedups.
Future work will focus on adapting the online updates proposed here to the local hyper-reduction method
presented in [7].
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B. Acceleration Study of a Transport Aircraft

1. High-Dimensional Model

The second system that is considered is a transport aircraft subjected to a constant acceleration. The geom-
etry of interest is NASA’s Common Research Model (CRM).13 The fluid mesh used for this study consists
of 3,252,078 unstructured tetrahedra, with 617,864 fluid nodes. In this simulation, the Euler equations are
solved using a node-based method, resulting in 3,089,320 degrees of freedom. The surface mesh of the model
is depicted in Fig. 7 (a).

During the unsteady simulation, the aircraft angle of attack is held fixed at zero degrees, and the free
stream Mach number is varied from M∞ = 0.8 to M∞ = 0.9 over 12.5 seconds using a single step ALE
formulation.14, 15 The resulting acceleration of approximately 2.5 m/s2 is fairly gradual, and as shown in
Fig. 7 (b), it does not appear to introduce substantial unsteadiness into the simulation.

In an effort to make compressibility effects readily apparent, drag has been chosen as the output of
interest. Note that since this is an inviscid simulation, the predicted drag is only a portion of the total drag.

(a) CRM surface mesh
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(b) Steady and unsteady HDM results

Figure 7. High-dimensional model

2. Clustering Results

For this system, ROMs based on NV = 1, NV = 2, and NV = 5 local ROBs are considered. The k-means
clustering results for NV = 2 and NV = 5 are shown in Fig. 8. Note that the overlap algorithm is performing
as intended, adding snapshots to each cluster from its nearest neighbors in the simulation trajectory.

The centroids of these clusters are presented in Fig. 9 for NV = 5 and Fig. 10 for NV = 2. Again,
these centroids are not physical states of the system, and upon close inspection the flow features are slightly
blurred. This effect is more pronounced for NV = 2 since each cluster contains a greater variety of states.
After clustering, the local ROBs are constructed using Algorithm 3 with wref,j =w(0), j = 1,⋯,NV.

3. ROM Performance

The drag histories for several global ROM simulations are presented in Fig. 11 (a). Global ROMs with more
than 50 basis vectors were able to reproduce the HDM results with less than 0.6% relative error.

Fig. 11 (b) and (c) show the drag histories for local ROMs with NV = 2 and NV = 5. As the number of
local ROBs is increased, each individual ROB can be smaller for a given accuracy; however, since there is
some redundancy required in the local ROB subspaces, more total basis vectors are required.

Fig. 12 (a) demonstrates the performance of the local ROMs with NV = 4 constructed using several of
the snapshot choices discussed in Section V.A.3. Note that the online updates can be performed quickly,
and provide a clear performance benefit over the alternative snapshot procedures.

Fig. 12 (b) compares the performance of the local ROMs using ROB updates as NV is increased. Again,
without hyper-reduction all of the ROM simulations ran slower than the HDM; however, performance was
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Figure 8. State clusters before and after overlap algorithm

significantly improved through the use of local ROBs. For the most accurate simulations (≤ 0.08% average
relative error in drag), the ROM with NV = 2 ran twice as fast as the global ROM, and the ROM with
NV = 5 ran four times as fast as the global ROM.

VI. Conclusions and Future Work

A novel Model Order Reduction (MOR) method based on the concept of local bases is introduced.
Like most MOR methods, this method consists of distinct offline and online phases. In the offline phase,
precomputed states are partitioned into overlapping clusters using an unsupervised learning algorithm that
relies on the concept of cluster connectivity. The local Reduced Order Bases (ROBs) are then constructed
from states contained in each cluster using Proper Orthogonal Decomposition (POD). During the online
phase, an appropriate local ROB is chosen at each time iteration based on the current state of the system.
An inexpensive rank-one update is applied whenever a new local ROB is selected, resulting in search spaces
that are tailored for the simulation. Applications to a model fluid problem and a three-dimensional CFD
problem reveal that the proposed local MOR method can achieve high levels of accuracy using much smaller
ROBs than would be required by a global MOR approach. The proposed method of online local ROB
updates is shown to improve the accuracy of local ROM simulations. Future work will focus on adapting
the proposed online update method to the local hyper-reduction framework introduced in [7].
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Figure 9. Pressure contours for the cluster centroids (NV = 5)
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Figure 10. Pressure contours for the cluster centroids (NV = 2)
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