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Abstract

This document presents the results of a testbed developed for the comparison of model reduction
techniques on large-scale linear and nonlinear, static and dynamic systems. The current capabilities of
the testbed allow the user to compare eight model reduction methods on three linear, dynamical systems
and three reduction techniques on five nonlinear systems (four dynamic and one static).

1 Introduction

As engineers and scientists strive to simulate increasingly large and complex real-world systems,
there comes a point when their ambition is restricted by the speed and memory capacity of modern
computers. Computational restrictions are more pronounced when real-time applications are involved.
Attempts to lessen these restrictions have led to methods to reduce the size of the model at hand. The
model reduction is achieved by projecting the full order model onto a subspace in which solutions are
sought.

The goal of model order reduction (MOR) is to solve high-fidelity models much faster, while main-
taining the accuracy of the solution. An important application of reduced order models (ROMs) is an
area called “deployed” analysis, wherein computer-based models are used in real-time, in-the-field ap-
plications. An example would be using real-time flight conditions to calculate the optimal speed and
altitude to minimize the drag on an aircraft. Another application is in control, wherein computer models
are used to control the behavior of some system, such as an unmanned aircraft. Nondestructive eval-
uation/parameter estimation is the final application of model reduction that will be mentioned in this
document, but there are many others. In this application, damaged components of a complex body are
identified unintrusively. This is generally done by applying a disturbance to both the model and the
physical system; then an inverse problem is solved wherein problematic areas of the body are identified
by matching the responses of the two systems. All of the applications above are very dependent on
having the ablility to solve the governing equations very quickly, while only introducing marginal error.

Many different methods for choosing an appropriate search subspace exist for linear dynamical sys-
tems, which include Proper Orthogonal Decomposition (POD), Balanced POD, Balanced Truncation,
and Krylov Methods. Since nonlinear systems are more difficult and less well-understood than linear
systems, the only common model reduction methods are Galerkin and Petrov-Galerkin POD.

In practice, it is highly unlikely that one particular model reduction technique will be equally well-
suited for all systems. It is more likely that certain techniques will be optimal for one class of problems,
but not for others. The aim of this document is to investigate which techniques are best-suited for the
example systems chosen.

To properly study the systems in this paper, the governing equations were spatially discretized using
either finite differences or the finite element method. The problems were then discretized in time using
finite differences and evolved over all time steps using the backward Euler integration scheme. Subsequent
sections present the governing equations (continuous) of each problem and the discreted form of the
equation or a reference to it.
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Since linear and nonlinear systems are treated quite differently, this document analyzes them sepa-
rately. Linear systems will be treated in Section 2 and nonlinear systems in Section 3 . The linear and
nonlinear sections will introduce the model reduction techniques, the governing equations of the example
problems, and the results of the analysis of the full order model. Section 4 will present the results from
the model reduction comparison.

2 Linear Systems

2.1 Model Reduction Methods

A number of model reduction techniques have been developed for linear dynamical systems, but the
scope of this paper is limited to the following reduction methods:

1. POD in the Time Domain

2. Weighted POD in the Time Domain

3. POD in the Frequency Domain

4. Weighted POD in the Frequency Domain

5. Balanced POD

6. Balanced Truncation

7. Moment Matching via Lanzcos Algorithm

8. Moment Matching via Arnoldi Algorithm

The reader is directed to [2], [1], and [7] for additional information on the above reduction methods.

2.2 Problem Formulations

All of the systems defined in this section are linear dynamical systems since they can be written in the
following form: {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

The scope of this paper is limited to single-input, single-output systems (SISO), therefore, A ∈ RN×N ,
B ∈ RN , CT ∈ RN , D ∈ R, x ∈ RN , and y ∈ R. Furthermore, this paper assumes D = 0 for simplicity.
Throughout this paper, x(t) will be used to denote the state vector at time t; not to be confused with
x̂, which will represent generalized coordinates of the problem (i.e. x in 1D, [x, y]T in 2D, and [x, y, z]T

in 3D).

Multiple Mass-Spring-Damper System
The mass-spring-damper (MSD) configuration analyzed is illustrated in Figure 1. The configura-

tion consists of N degrees of freedom (DOF) where each DOF has the same triplet of parameters (mass,
damping, stiffness). The output of interest in this problem is the velocity of the last mass. The system
has 250 masses, where all masses are initially at rest and have an initial displacement of +2 units. There
are two reasons this system was choosen: 1) Distinct spikes in the Bode Plot make it a difficult problem
to solve with a reduced model and 2) the mass-spring-damper system is well-understood and has become
a canonical engineering problem. The governing equations for the multiple mass-spring-damper system
is presented in (2).

M ẍ + Cẋ +Kx = F (2)

M ∈ RN×N is the a diagonal matrix whose (i, i) entry contains the mass of block i. C ∈ RN×N is
the damping matrix and K ∈ RN×N is the stiffness matrix of the system; both of which are symmetric.
As previously mentioned, all blocks have the mass (m), stiffness coefficient (k), and damping coefficient
(d). It is more intuitive to define the characteristics of each block in terms of the mass, damping ratio
(ζ), and natural frequency (ω0) using the following relationships.

ω0 =
√

k
m

2



ζ = d
2mω0

Therefore, the parameter triplet used for this system is (m, ζ, ω0) = (5, 0.2, 2). The time history and
Bode plots for the full order model are included in Figures 2a and 2b.

Figure 1: Mass-Spring-Damper Configuration (N = 250)

Figure 2: Full Order Analysis of Mass-Spring-Damper System

(a) Time History for Full Order MSD System (b) Bode Plot for Full Order MSD System

Penzl Example
The so-called Penzl example is a numerical experiment investigated in [5] with supporting MAT-

LAB code provided by David Amsallem. There are 1006 DOFs in the full order system. Unlike the other
two linear dynamical systems , it is not directly linked to a physical phenomena. The initial condition is
a vector of ones. For additional information, the reader is referred to [5].

Since this problem has no physical relevance, this paper will only use the Bode plot for the output of
the system. The Bode plot for the full order model is in Figure 3.

Transient Heat Flow
The final linear dynamical system investigated is 2D transient heat flow through a rectangular

plate. The complete strong formulation of the heat transfer problem, including initial and boundary
conditions, is provided in (3) - (8).

ρ(x̂)c(x̂)
∂T (x̂; t)

∂t
= ∇ · k(x̂)∇T (x̂; t) + f(x̂; t) (3)

T (x̂; 0) = T0 ∀x̂ ∈ Ω (4)

T (x̂, t) = T̄ ∀x̂ ∈ ΓT (5)

3



Figure 3: Bode Plot for Full Order Penzl Model

q(x̂; t) · n = q̄ ∀x̂ ∈ ΓQ (6)

q(x̂; t) · n = σε(x̂; t)(T (x̂; t)4 − T 4
∞) ∀x̂ ∈ ΓR (7)

q(x̂; t) · n = β(T (x̂; t)− T∞) ∀x̂ ∈ ΓH (8)

where Ω ∈ [0, 1]2 (meters) is the domain and ∂Ω = ΓT ∪ΓQ∪ΓR∪ΓH is the boundary of the domain.

Since the scope of this section is restricted to linear systems, the radiation boundary conditions in (7)
will be ignored. The rectangular plate is a non-homgeneous plate consisting of aluminum with a hole of
radius 0.25m cut out of the center and replaced with brass. Furthermore, there are two energy sources
in the body of the plate at the midpoint of the upper left and lower right quadrants and one energy sink
at the center of the plate. The energy sources add 106 J to the plate, while the energy sink extracts 106

J . The parameters of the problem are: T∞ = 300 K, q̄ = 0, T̄ = 500 K, T0 = 500 K, β = 45, ρAl = 2700
kg/m3, ρBrass = 8700 kg/m3, cAl = 910J/K, and cBrass = 377J/K. Finally, the boundary conditions
are: ΓT = [0, y]T , ΓQ = [1, y]T , ΓH = [x, 0]T ∪ [x, 1]T .

The complete weak formulation of the heat transfer equation is given in (9) and (10). It was discretized
in space using the finite element method to yield a linear dynamical system in the form of (1). The output
of this system is the temperature at the center of the plate. There were 30 4-node quadrilateral elements
used in each dimension in the finite element mesh, so the full order model has 930 degrees of freedom
after application of Dirichlet boundary conditions.∫

Ω

(w(x̂)ρ(x̂)c(x̂)
∂T (x̂; t)

∂t
+∇w(x̂) · k(x̂)∇T (x̂; t)− wf(x̂; t))dΩ = 0 (9)

w(x̂) ∈ S = {w(x̂) | w(x̂) = 0 ∀x̂ ∈ ΓT } (10)

The time history of the output for the full order model is presented in Figure 4.
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Figure 4: Output for Full Order Heat Flow Model

3 Nonlinear Systems

3.1 Model Reduction Methods

As previously mentioned, nonlinear systems are more complicated and less well-understood than linear
systems. Therefore, there are a limited number of model reduction techniques for nonlinear systems.
The two reduction methods investigated in this documents are:

1. Galerkin POD

2. Petrov-Galerkin POD

Numerical solutions to nonlinear, unsteady partial differenetial equations involves performing Newton
iterations at each time step. This requires computing the full residual and Jacobian of the nonlinear terms
n× τ̄ times, where n is the number of time steps and τ̄ is the average number of Newton iterations over
all time steps. Evaluation of the full residual and Jacobian is very expensive for large systems, so the
necessity for model reduction is much more pronounced for nonlinear problems.

Model reduction on nonlinear systems amounts to reducing the dimension of the nonlinear system and
performing Newton iterations on the reduced system. However, computing the full residual and Jacobian
and performing required matrix multiplication with the reduced basis bears cost that scales with the
size of the FOM. Therefore, the resulting reduced model may offer only marginal cost saving and can
even be more expensive. To actually improve performance, another level of approximation is necessary,
which can be acheived using Trajectory Piece-Wise Linear (TPWL) approximation or a “Gappy POD”
method.

TPWL attempts to approximate the solution to the full nonlinear system by linearizing the trajectory
of the solution. At a high level, this method involves selecting points along the trajectory to linearize
about and then solving the resulting linear systems using one of the techniques from Section 2. Additional
information on this topic can be found in [6].

Gappy POD improves performance by only requiring the computation of certain rows of the residual
and Jacobian. Gappy-like methods are an advanced topic that are beyond the scope of this paper, so
the interested reader is referred to [3].

The remainder of this document will make use of the terms “training” input and “online” input.
Training input refers to the input parameter that was used to generate the snapshots during the offline
calculations. The online input is the input used during the online computations. A majority of the
analysis in the document only considers the case where the training and online inputs are the same.
Section 4 will test the robustness of nonlinear model reduction methods by using online inputs that differ
from the training input.
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3.2 Problem Formulations

This paper uses six nonlinear systems to demonstrate the efficiency and robustness of the model reduction
techniques discussed above. The nonlinear systems in this section include: 1) 1D Burger’s Equation,
2) Nonlinear Transmission Line, 3) FitzHugh Nagumo Equation, 4) Transient Heat Flow with Radiation
BCs, 5) Micromachined Device, and 6) A Highly Nonlinear 2D Steady State Problem. All six nonlinear
systems are formulated in this section and the results of the full order models are presented.

1D Shock Propagation through Fluid
In this system, Burger’s Equation is used to model shock propagation through a fluid. In (11), U

denotes the unknown conserved quantity (mass, density, heat, etc.) and the source term is chosen to be:
g(x) = 0.2e0.02x.

∂U(x; t)

∂t
+
∂f(U(x; t))

∂x
= g(x) (11)

With initial condition U(x, 0) = 1, ∀x ∈ [0, L] and boundary condition U(0, t) = u(t), t > 0. The
nonlinearity of this problem arises from f(U(x; t)) = 0.5U2. The incoming flow is taken as u(t) =

√
5

and the length of the domain is L = 100. The full order model has 101 unknowns. The output of this
model is the conserved quantity U at t = [2.5, 10, 20, 30, 40, 50]. The results from the full order analysis
of this problem are presented in Figure 5. For more information on the formulation of this problem or
for the discretized form the governing equation, the reader is directed to [6].

Figure 5: Full Order Model of Burger’s Equation

Nonlinear Transmission Line Circuit
The nonlinear transmission line citcuit system was also considered in [6]. The circuit consists of linear

resistors and capacitors and nonlinear diodes with a constitutive equation id(v) = e40v − 1, where v is
the voltage between the diode’s terminals. All capacitors and resistors have unit values, current sources
u(t) = i(t) = 1

2

(
cos 2πt

10
+ 1
)

and i(t) = e−t are considered, and the output is the voltage at node 1.
The full order model consists of 100 nodes. This problem is similiar to the MSD problem in that it
is naturally discretized, since the unknowns are the voltage at each node. The problem just described
yields the following governing equations: 

dx

dt
= f(x) +Bu

y = CTx

(12)
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The results of the full order model are presented in Figure 6. For more information on the problem
formulation, including the nonlinear function f(v) and the discretized equation, see [6].

Figure 6: Full Order Model of Nonlinear Transmission Line System

(a) Input Current: i(t) = e−t (b) Input Current: i(t) = 1
2

(
cos 2πt

10
+ 1

)

1D Model for Neuron Activity in the Brain
The FitzHugh-Nagumo equations are used for the prediction of neuronal exitability and spike-generating

mechanisms. It is a simplied version of the Hodgkin-Huxley model, which is considered one of the most
realistic and physically sound models related to neuronal activity. This paper analyzes the FitzHugh-
Nagumo equations for simplicity and convenience with regard to presentation of results. The governing
equations for this system are presented in (13) and (14). The model consists of two coupled equations
in two unknown variables, voltage (v) and voltage recovery (w). The full order model consists on 1024
unknowns (512 voltages and 512 voltage recoveries).

ε
∂v(x, t)

∂t
= ε2

∂2v(x, t)

∂x2
+ v(x, t)(v(x, t) + α)(β − v(x, t))− w(x, t) + c (13)

∂w

∂t
= bv(x, t)− γw(x, t) + c (14)

With initial condition: v(x, 0) = w(x, 0) = 0 ∀x ∈ [0, L] and boudary conditions: ∂v(0,t)
∂x

=

−i0(t), ∂v(L,t)
∂x

= 0 ∀t ≥ 0. The parameters in this problem take the following values: L = 1, ε =
0.015, b = 0.5, c = 0.05, α = −0.1, β = 1, γ = 2, and i0(t) = 50000t3e−15t.

The spatially discretized form of this problem was derived using finite differences and presented in
equations (15) - (19).

v =
[
v1 v2 ... vN

]T
(15)

w =
[
w1 w2 ... wN

]T
(16)

c =
[
c c ... c

]T
(17)

[
v,t
w,t

]
=

[ ε
(∆x)2

A − 1
ε
I

bI −γI

] [
v
w

]
+

ε

(∆x)2

[
−(∆x)i0(t)

0

]
+

1

ε

[
f(v)
0

]
+

[
1
ε
c
c

]
(18)
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A =


−1 0 (0)
1 −2 1

. . .
. . .

. . .

1 −2 1
(0) 0 −1

 (19)

where c ∈ RN , I is the identity matrix ∈ RN×N , and A ∈ RN×N .

Since this system has two unknown variables, which are both functions of position and time, it is
conveninent to choose a phase-space diagram as the output. Other outputs that are considered are
v(x, t = 4s), v(x = 0.5, t), w(x, t = 4s), and w(x = 0.5, t). The result of the full order model are in
Figures 7 and 8. Additional information on this problem can be found in [4].

Figure 7: Phase Diagram for Full Order Model of FitzHugh-Nagumo Equations

Transient Heat Flow with Radiation Boundary Conditions
The nonlinear, transient heat flow problem has the same governing equations as the linear, transient

heat flow from (3) - (10). The nonlinearity arises from radiation boundary conditions in (7) that will now
be included. The example problem choosen will consist of a homogeneous aluminum plate with the same
domain characteristics as the linear heat flow problem from Section 2. The plate is initially at a uniform
temperature of 950K, the boundary conditions are: ΓR = [x, 1]T ∪ [1, y]T and ΓQ = [x, 0]T ∪ [0, y]T ,
and the body energy term is f(x̂, t) = 1010 sin

(
π
10
t
)
J applied at the center of the lower left and upper

right quadrants of the plate. This problem was also solved using a 30 x 30 mesh of 4-node quadrilateral
elements; however, there are 961 degrees of freedom due to the lack of a Dirichlet boundary condition.
The solution of the FOM for this problem is presented in Figure 9.

A Micromachined Device
Due to the complexity of this problem and the large number of parameters, the reader will be referred

to [6] for background on this problem. Two important points to consider are: 1) the full order model has
880 degrees of freedom and 2) the input voltage for the problem is v(t) = 9H(t), where H(t) is the step
function.

EI
∂4u

∂x4
− S ∂

2u

∂x2
= Felec +

∫ w

0

(p− pa)dy − ρ∂
2u

∂t2
(20)
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Figure 8: Other Outputs for FHN Full Order Model

(a) 1D Outputs for FHN Full Order Model (b) 2D Outputs for FHN Full Order Model

Figure 9: Output of Full Order Nonlinear Heat Transfer Problem

∇ · ((1 + 6K)u3p∇p) = 12µ
∂(pu)

∂t
(21)

The output of the MEMS problem is the center point deflection of the beam. The output of the full
order model is in Figure 10

Highly Nonlinear 2D Steady State Problem
Unlike most of the examples in this paper (with the exception of the Penzl example), this system

does not directly correspond to a physical phenomena. This toy problem was choosen for two reasons:
1) a high degree of nonlinearity makes it difficult to solve with a ROM and 2) it is a static system, which
necessitates a parametic study. Both of these topics will be discussed more is subsequent sections. The
governing (continuous equation) is given in (22) and the discretized form in (23). The full order model
consists of 50 grid points in each dimension, so there are 2304 unknowns after application of Dirichlet
boundary conditions. For more information, the reader is referred to [4].

−∇2u(x̂) +
µ1

µ2
(eµ2u(x̂) − 1) = 100 sin(2πx) sin(2πy) (22)
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Figure 10: Output of Full Order MEMS Problem

x̂ = (x, y) ∈ Ω = [0, 1]2

µ = (µ1, µ2) ∈ D = [0.01, 10]2 ⊂ R2

u(x̂) = 0 ∀x̂ ∈ ∂Ω

−up+1,q + up−1,q

(∆x)2
− up,q+1 + up,q−1

(∆y)2)
+2up,q

[
1

(∆x)2
+

1

(∆y)2

]
+
µ1

µ2
(eµ2up,q−1)−100 sin(2πxp) sin(2πyq)

(23)
up,q = u(xp, yq)

The output for this problem is u(x, y) along the line x = y, instead of the solution over the entire
domain. In the subsequent sections, it will be much easier to make comparisons on a single plot with a
one-dimensional output. For completeness, the one- and two-dimensional output are given in Figures 11a
and 11b for the full order model. The line x = y is shown in Figure 11b with a bold, black line.

Figure 11: Highly Nonlinear 2D Steady State FOM

(a) One-Dimensional Output of HNL2dSS Problem (b) Two-Dimensional Output of HNL2dSS Problem
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4 Comparison Results

This section presents the results of the various model reduction methods on the examples introduced in
the previous sections. Linear systems will be considered first in Section 4.1 and nonlinear systems in
Section 4.2.

4.1 Linear Systems

The results of the model reduction comparison will be presented in a 3x3 subplot for each problem. The
first row of subplots will correspond to the L2 error between the FOM and the ROM as a function of
the order of the reduced model. The second row will present the H2 error vs. order of the ROM. The
third row is the offline time required for each model reduction technique. The first two columns of these
subplots simply compare the different reduction techniques, while the third column compares different
snapshot collections for POD in the time domain. For space efficiency, the marker and color legend for
the linear analysis are provided in Figure 12 and Table 1, respectively.

Figure 12: Legend for Linear Results

Table 1: Linear Results Color Legend

Color Meaning
red unstable system
black stable system
blue u(ti) Snapshots
green u(ti) − u(t0) Snapshots
magenta u(ti) − u(ti−1) Snapshots

Multiple Mass-Spring-Damper
In addition to the plots discussed above, the mass-spring-damper problem includes plots of H∞ -Error

vs. order of the ROM.
Figure 13 presents the results of the anaylsis of the mass-spring-damper problem. The POD techniques

in the time domain have a large number of unstable points, but an unstable ROM does not necessarily
correspond to large error. The Balanced POD (BPOD) and Balanced Truncation methods remained
stable throughout all degrees of model reduction, which is a theoretical expectation. Furthermore, the
POD methods in the time domain tend to have the lowestL2 error across all ROM orders considered and
the POD methods in the frequency domain have the lowest H2 and H∞ errors. Notice the large number
of unstable systems that were generated by reducing the order of the mass-spring-damper system.

Due to the nature of linear systems, the online computational time for all MOR techniques are roughly
equal, so the quantification of speedup will involve the offline time. The POD methods in the frequency
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domain and BPOD were the most computationally expensive MOR techniques, while the Krylov methods
are the least expensive.

The snapshot collection that references the initial condition minimized the L2 error for most model
reduction orders. Notice that the H2 and H∞ plots did not yield any useful information due to the large
number of unstable points (H2 and H∞ errors of an unstable system are infinite).

Figure 13: Results of MOR Comparision for Mass-Spring-Damper System

Penzl Example
Similar to the mass-spring-damper system, the time POD methods have lower L2 errors and higher

H2 errors than the frequency POD methods. For the ROM order spectrum investigated, Balanced
Truncation yielded the most accurate ROMs since it generated the smallest L2 and H2 errors.

Unlike the mass-spring-damper system, the time domain POD methods were more expensive than
the frequency POD methods. However, similar to the mass-spring-damper system, the Krylov methods
were the most computationally inexpensive.

The snapshot comparison for this system was inconclusive because the optimal snapshot collection

12



was dependent on the order of the ROM. However, all snapshot collections produced ROMs with very
small L2 errors.

Figure 14: Results of MOR Comparision for Penzl Example

Linear Heat Flow
As was seen in the other linear systems, the time domain POD methods have lower L2 errors and

larger H2 errors than the frequency domain POD methods. Similar to the Penzl Example, Balanced
Truncation is the optimal MOR technique for the heat flow problem since it generates ROMs with the
smallest L2 and H2 errors. The heat flow problem has more unstable ROM systems than the Penzl
Example, but fewer than the mass-spring-damper system. Most of the unstable systems were generated
using the Lanczos algorithm for Krylov moment-matching.

The snapshots that reference the initial condition are the optimal snapshot collection for this problem.
The trends in computational complexity are identical to those seen in the mass-spring-damper system.
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Figure 15: Results of MOR Comparision for Linear Heat Flow System

4.2 Nonlinear Systems

This section presents the results from the model reduction comparison on nonlinear problems. As dis-
cussed previously, this section will compare the accuracy and performance of Galerkin POD, Petrov-
Galerkin POD, Gappy POD, and TPWL on six nonlinear problems. However, each of these reduction
techniques have variable parameters that will affect the accuracy and performance of the reduced model.
For the remainder of this paper, it will be assumed that the training input and the online input are the
same unless otherwise specified.

For Galerkin and Petrov-Galerkin POD, there are different snapshot collections available that will
affect the quality of the reduced model. The three common snapshot collections are: 1) non-referenced,
current state vector (u(t)), 2) current state vector referenced using the initial condition (u(ti) − u(t0)),
and 3) current state vector referenced using the previous state vector (u(ti)− u(ti−1). The first step in
the comparison of model reduction techniques will be to determine the best snapshot collection for each
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problem.
The second step in the evaluation of model reduction techniques is to determine the optimal Gappy

parameters for each problem. There are three adjustable parameters for Gappy POD that will have
dramatic affects on the quality of the reduced model. These parameters are nR, nJ , and nI ; however,
the discussion of these parameters is beyond the scope of this paper. The notation was taken directly
from [3], which is where an in-depth theoretical discussion of the Gappy method is provided.

The next step in the comparison of MOR techniques is to determine the optimal TPWL linearization
point selection algorithm for each problem. The quality of the reduced model that results from TPWL
is extremely dependent on the linearization points selected. Three algorithms for selecting linearization
points were employed. The first two algorithms use distance between state vectors [6] and a residual-
based distance [7], respectively, to select linearization points. The final algorithm uses the curvature of
the solution trajectory to determine linearization points. This algorithm was developed by the author
using the heuristic that it is advantageous to select more points in areas that are the most nonlinear.
The algorithm also attempts to separate the linearization points enough so the entire trajectory space
is covered. Equation 24 was used to calculate the curvature at each point along the trajectory of the
solution.

ρ =
| γ′ |3√

| γ′ |2| γ′′ |2 −(γ′ · γ′′)2
(24)

The final step of the inter-MOR analysis procedure is to compare Galerkin POD, Petrov-Galerkin
POD, Gappy POD, and TPWL using only the optimal parameters determined from the previous steps.

The final comparison made is an intra-MOR robustness analysis. The robustness study will use the
optimal parameters determined from the previous analyses and compare each ROM trained with the
“training” input to the corresponding ROM trained with the “online” input.

Burger’s Equation
A ROM order of 15 was selected for the Burger’s Equation model, which is a fairly modest reduction

given that the order of the FOM was 101. Given the degree of reduction, one would expect all of the
model reduction techniques to perform well on this problem, which is not necessarily the case. The
scaled-up FOM and ROM for this problem have 4000 and 40 degrees of freedom (dofs), respectively.

A snapshot collection comparison was made using Galerkin and Petrov-Galerkin POD projections.
It is evident from Figure 16 and Tables 2 and 3 (at the end of the document) that the unreferenced
snapshot collection and the snapshots referencing the initial vector outperform the snapshots referencing
the previous time step.

Figure 16: Snapshot Collection Comparison for Burger’s Equatin

(a) Galerkin POD (b) Petrov-Galerkin POD

The comparison of the TPWL linearization point selection algorithms are provided in Figure 17 along
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with the linearization points selected by each algorithm. The trajectory distance and residual distance
algorithms are very dependent on a tolerance parameter that determines the minimum distance between
snapshots or residuals, respectively. Furthermore, residual distance algorithm is designed such that the
number of linearization points is an output rather than an input. This is the reason that residual distance
algorithm usually doesn’t have the same number of linearization points as the other two linearization
point selection algorithms. Figure 17 shows that trajectory and residual distance algorithms fail to
select appropriate linearization points and the resulting solution is not meaningful, while the trajectory
curvature algorithm matches the full order solution very closely.

Figure 17: TPWL Linearization Point Selection Algorithm Comparison for Burger’s Equation

The next step in the analysis is to determine the optimal Gappy parameters for the given problem.
This will be done by utilizing what will be called “Gappy Space” (G), where G ⊂ Z3. G does not span all
of Z3 due to the following parameter constraints described in [3]: min{nR, nJ} ≥ nY and nI ≥ max{nR,
nJ}. From Figure 18, it can be concluded that the nR is the most sensitive Gappy parameter. Therefore,
a logical method to select Gappy parameters would be to first determine the nR that corresponds to
the maximum acceptable L2 error, then select nJ and nI that are as small as possible (to minimize
computational cost) while still remaining in G.

Figure 18: L2 Error in “Gappy Space” for Burger’s Equation

The next step of the analysis procedure is to use the best results from the preceeding analyses
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and compare all reduction techniques. Since this is a straight comparision of MOR techniques, not a
robustness study, the “training” and “online” inputs are the same. For this component of the MOR
analysis, the model is scaled up to highlight the speed-ups that result from each MOR technique. This
comparison was made using snapshots that reference the initial vector for all of the POD techniques,
trajectory curvature algorithm for TPWL, and the Gappy parameters (nR, nJ , ni) = (50, 20, 50). Since
the model was scaled up for this part of the analysis, it follows that the Gappy parameters will need to
be scaled up as well, (nR, nJ , ni) = (130, 40, 130).

Figure 19: Final Model Reduction Comparison for Burger’s Equation’

The final MOR analysis performed on this problem is a robustness study. This part of the analysis
uses the original “scaled-down” model, where the “training” input differs from the “online” input. For
this problem, the “training” input is the step function (H(t)) with an amplitude of 1 and the “online”
input is the step function with an amplitude of 5.

Figure 20: Model Reduction Robustness Analysis for Burger’s Equation’

Nonlinear Transmission Line
Unlike the other problems in this paper, the nonlinear transmission line was analyzed for two different

input currents, which are provided in Section 3. The FOM and ROMs have 100 and 10 dofs, respectively,
for a majority of the analysis. The scaled-up model used in the final MOR comparison has 4000 and 30
dofs, respectively.
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For this problem, all three snapshot collections perform quite well, but the snapshots that reference
the previous state vector has a slight advantage. Recall that snapshots that reference the previous state
vector performed the worst on Burger’s Equation. Also, recall that the initial condition is the zero
vector for this problem, so the nonreferenced snapshot collection and the collection referencing the initial
condition are identical.

Figure 21: Snapshot Collection Comparison for the Nonlinear Transmission Line

(a) Galerkin POD, i(t) = e−t (b) Petrov-Galerkin POD, i(t) = e−t

(c) Galerkin POD, i(t) = 1
2

(
cos 2πt

10
+ 1

)
(d) Petrov-Galerkin POD, i(t) = 1

2

(
cos 2πt

10
+ 1

)

The TPWL comparison for this problem yielded vastly different results than were seen in the previous
problem. For both the cosinusoidal and exponential inputs, the residual distance algorithm selects the
linearization points that minimizes the L2 error. For the exponential input, the trajectory distance and
curvature algorithms result in ROMs that initially follow the FOM solution very closely, but veer of
after approximately 20% of the time steps. For the cosinusoidal input, the trajectory distance algorithm
generates a ROM that mimics the shape of the FOM, but the magnitudes do not match. The ROM
generated by the trajectory curvature method is quite inaccurate for a majority of the time domain.

For this problem, the trajectory curvature algorithm selects points that span nearly the whole time
domain, while the other two algorithms select all of their points at the beginning of the domain. Notice
that the residual distance algorithm outperform the other two, despite the fact that it uses less lineariza-
tion points. The residual distance algorithm selects only two points and the other algorithms select five
points.

Figure 24 presents the results from the Gappy analysis for the nonlinear transmission line problem.
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Figure 22: TPWL Linearization Point Selection Algorithm Comparison for Transmission Line with i(t) = e−t

Figure 23: TPWL Linearization Point Selection Algorithm Comparison for Transmission Line with i(t) =
1
2 (cos(2πt/10) + 1)

Similar Gappy POD parameter trends were seen in this problem as in Burger’s Equation. Namely, there
is a strong dependence on nR and a weak dependence on nJ and nI . The optimal Gappy parameters for
the exponential and cosinusoidal inputs are (nR, nJ , nI) = (40, 10, 50). After scaling the model up for
use in the next section, these parameters become (nR, nJ , nI) = (50, 30, 60).

The comparison of all MOR techniques for this problem are presented in Figures 25 and 26. As
with Burger’s Equation, TPWL results in the most speedup and largest error. Gappy POD has the
second largest error and speedup of the MOR techniques considered. Galerkin and Petrov-Galerkin POD
methods are the most accurate MOR techniques; however, they do not significantly reduce computational
cost.

Notice that in Figures 25 and 26 the Galerkin POD MOR method has a smaller L2 error than the
FOM. This is purely an artifact of the logarithmic ordinate. It was previously mentioned that the FOM is
considered to be the “exact” solution and thus has zero error. Since a logarithmic axis cannot represent
zero, a small number ε = 10−10 was assigned. For this problem, it turned out that the L2 error of
Galerkin POD model reduction is less than ε.

Figure 27 presents the robustness analysis for both inputs of the nonlinear transmission line problem.
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Figure 24: L2 Error in “Gappy Space” for the Transmission Line problem

(a) i(t) = e−t (b) i(t) = 1
2

(
cos 2πt

10
+ 1

)

Figure 25: Final Model Reduction Comparison for the Transmission Line problem with i(t) = e−t

All MOR techniques exhibit a great degree of robustness for this problem because the L2 error is roughly
the same regardless of whether or not the “training” and “online” inputs are equal. The “training” input
is a step function (H(t)) of ampltitude 1 for the the exponential and cosinusoidal “online” inputs. Notice
that of all the MOR techniques, TPWL is the least robust.
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Figure 26: Final Model Reduction Comparison for the Transmission Line problem with i(t) = 1
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)

Figure 27: Model Reduction Robustness Analysis for the Transmission Line problem

(a) i(t) = e−t (b) i(t) = e−t
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FitzHugh Nagumo System
Unlike the other systems in this document, FitzHugh Nagumo equations have multiple outputs of

interest. The first output is the phase-space diagram of the voltage and voltage recovery of the system.
The other outputs are the voltage and voltage recovery at specific times and positions that are indicated
in the following figures. For most of the analysis, the FOM and ROM have 1024 and 20 dofs, respectively.
The final, scaled-up MOR comparison uses a FOM and ROM with 2048 and 20 dofs, respectively.

Figure 28 presents the results of the snapshot comparison for Galerkin and Petrov-Galerkin POD
MOR techniques. Similar to the results seen in Burger’s Equation, the snapshot that references the initial
condition is the best snapshot collection with regard to L2 error, while the snapshot that references the
previous state vector is the worst.

Figure 28: Snapshot Collection Comparison for FitzHughh-Nagumo Equations

(a) Galerkin POD (b) Galerkin POD

(c) Petrov-Galerkin POD (d) Petrov-Galerkin POD

The TPWL linearization point selection algorithm comparison is presented in Figure 29. For this
problem, none of the algorithms select points that generate an accurate ROM. The residual distance
algorithm seems to be the superior algorithm with regard to the phase-space output, while the trajectory
curvature algorithm outperforms the others in the time and position domains. The trajectory distance
algorithm fails with regard to all outputs. The trajectory curvature algorithm is used for the final
“scaled-up” comparison.

Figure 30 shows that the Gappy parameter trends for the FitzHugh-Nagumo eqautions are the same
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Figure 29: TPWL Linearization Point Selection Algorithm Comparison for the FitzHugh-Nagumo Equations

as those from the previous problems. The optimal Gappy parameters for the “scaled-down” problem are
(nR, nJ , nI) = (90, 50, 110). The Gappy parameters used for the scaled-up model are (nR, nJ , nI) = (90,
50, 110).

Figure 30: L2 Error in “Gappy Space” for the FitzHugh-Nagumo problem

Figure 31 shows that the MOR techniques fall into the same heirarchy seen in the previous two
problems. TPWL and Gappy POD are the fastest, but incur the greatest error. For this problem, the
large speedup of the TPWL method is accompanied by an L2 error that is unacceptably large (∼ 101),
while Gappy POD is not as computationally efficient, but has a managable error (< 10−2). Galerkin
and Petrov-Galerkin POD have roughly the same speedup and L2 error, with Petrov-Galerkin having a
slight advantage.

Figure 32 presents the results of the robustness analysis for the FitzHugh Nagumo Equations. All
of the methods exhibit a large degree of robustness with TPWL being the least robust. The “training”
input is i(t) = 10/(t+ 1) and the “online” input is i(t) = 50000t3e−15t.
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Figure 31: Final Model Reduction Comparison for the FitzHugh-Nagumo Problem

Figure 32: Model Reduction Robustness Analysis for the FitzHugh-Nagumo Equations’

MEMS Switch
The MEMS switch problem turned out to be the most difficult and computationally expensive problem

of those considered. The FOM and ROM have 880 and 10 dofs, repsectively. Due to the computational
expense of this problem, the model was not scaled up for the final MOR comparison.

Similar to the previous problems, the snapshot collection that references the initial condition generates
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the most accurate ROM for the Galerkin and Petrov-Galerkin POD techniques. The snapshot collection
that references the previous condition also does quite well for both POD techniques. The unreferenced
snapshot collection completely fails on the Galerkin POD method only. For the Petrov-Galerkin method,
the ROM solution veers off the FOM solution toward the end of the time interval.

Figure 33: Snapshot Collection Comparison for MEMS Switch

Figure 34 presents the result of the TPWL comparison for the MEMS switch. Due to the high degree
of nonlinearity of this problem, it was difficult to approximate with a series of linear systems. To generate
an acceptable ROM, it was necessary to use a ROM order of 500. Figure 34 shows that the trajectory
curvature and distance algorithms generate the best approximations of the FOM, with the trajectory
curvature algorithm having the advantage. The residual distance algorithm fails on the MEMS problem,
despite the large order of the ROM.

Figure 34: TPWL Linearization Point Selection Algorithm Comparison for MEMS Switch

Figure 35 presents the results of the Gappy comparison for the MEMS switch. The trends are similar
to those seen in the previous problems. The optimal Gappy parameters are (nR, nJ , nI) = (32, 22, 42).

Figure 36 presents the results the final MOR comparion for the MEMS switch. The same heirarchy
described in the above problems govern this problem.

The robustness analysis for the MEMS switch is summarized in Figure 37. The “training” input is a
step function of amplitude 49 and the “online” input is a step function of amplitude 81. Due to the large
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Figure 35: L2 Error in “Gappy Space” for the MEMS Switch

Figure 36: Final Model Reduction Comparison for the MEMS Switch

differences between the amplitudes of the “training” and “online” inputs, there are discrepancies in L2

error between the ROMs trained with the “training” input and those trained with the “online” input.
Overall, these discrepancies are small, so the MOR techniques are fairly robust on the MEMS problem.
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Figure 37: Model Reduction Robustness Analysis for MEMS Switch

Highly Nonlinear 2D Steady State
The full order HNL2dSS problem was generated using a 50x50 grid of nodes, which translates to

2304 dofs after the adjustment for Dirichlet boundary conditions. The ROMs compared in the following
analysis have 100 dofs. Since this is a static problem, it isn’t meaningful to discuss snapshot collections,
TPWL algorithms, or an input robustness analysis. Hence, the only results presented are the Gappy
space comparisons and the final comparison between all three POD methods (Galerkin, Petrov-Galerkin,
and Gappy).

Figure 38 presents the Gappy parameter comparison for the HNL2dSS problem. Unlike the other
problems, the accuracy of the Gappy POD reduced order model is moderately dependent on nJ in
addition to nR. The optimal Gappy parameters for this problem are (nR, nJ , nI) = (80, 60, 80).

Figure 38: L2 Error in “Gappy Space” for the HNL2dSS Problem

Figure 39 presents the final MOR comparison for the HNL2dSS problem.
Nonlinear 2D Heat Flow
Unlike the other nonlinear problems analyzed in this study, the nonlinear heat transfer system was

solved using finite elements, not finite differences. This requires nontrivial generalizations in the testbed
code, which are currently in the implementation phase. Therefore, this version of the document will only
include the FOM for nonlinear heat flow system.
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Figure 39: Final Model Reduction Comparison for the HNL2dSS Problem

4.3 Tabular Summary

Table 2: Summary of Snapshot Collection Comparison Results for Galerkin POD

L2 Error u(ti) Snapshots u(ti) − u(t0) Snapshots u(ti) − u(ti−1) Snapshots
Burger’s Eqn 1.47% 1.32% 1.89%

TransLine - cos† 8.60 × 10−3% 8.60 × 10−3% 5.04 × 10−3%
TransLine - exp† 7.48 × 10−3% 7.48 × 10−3% 4.49 × 10−2%

FHN† 0.608% 0.608% ∼100%
HNL2dSS N/A N/A N/A
Heat Flow - - -

MEMS ∼180% 0.0438% 0.213%

Table 3: Summary of Snapshot Collection Comparison Results for Petrov-Galerkin POD

L2 Error u(ti) Snapshots u(ti) − u(t0) Snapshots u(ti) − u(ti−1) Snapshots
Burger’s Eqn 1.46% 1.32% 1.84%

TransLine - cos† 1.60 × 10−2% 1.60 × 10−2% 6.52 × 10−3%
TransLine - exp† 1.56 × 10−2% 1.56 × 10−2% 4.79 × 10−2%

FHN† 0.432% 0.432% ∼150%
HNL2dSS N/A N/A N/A
Heat Flow - - -

MEMS 37.2% 0.0617% 0.767%

†These systems have an initial condition equal to the zero vector, so the snapshot collections u(ti) and u(ti)−
u(t0) are identical.
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Table 4: Summary of TPWL Linearization Point Selection Algorithm Comparison

L2 Error Trajectory Curvature Trajectory Distance Residual Distance
Burger’s Eqn 1.77% 26.2% 15.2%

TransLine - cos† ∼1600% ∼900% 40%
TransLine - exp† ∼4000% ∼1400% 8.42%

FHN† ∼130% ∼550% 90%
HNL2dSS N/A N/A N/A
Heat Flow - - -

MEMS 0.195% 5.88% ∼150%

Table 5: Summary of Robustness Analysis

L2 Error G-POD PG-POD TPWL Gappy
Burger’s Eqn 1.86% 1.81% 14.6% 1.81%

TransLine - cos† 8.25 × 10−3% 1.53 × 10−2% 39.1% 2.37 × 10−2%
TransLine - exp† 8.36 × 10−3% 1.66 × 10−2% 8.31% 2.34 × 10−2%

FHN† 6.58% 6.78% ∼150% 6.80%
HNL2dSS N/A N/A N/A N/A
Heat Flow - - - -

MEMS 1.00% 6.49% ∼122% 14.8%

Table 6: Optimal Parameters for All Nonlinear Problems

FOM ROM G-Snapshots PG-Snapshots LinPt Algorithm GappyParameters
Burger’s Eqn 4001 40 u(ti) − u(t0) u(ti) − u(t0) Trajectory Curvature (130,40,130)

TransLine - cos† 4000 30 u(ti) − u(ti−1) u(ti) − u(t0) Residual Distance (50,30,60)
TransLine - exp† 4000 30 u(ti) − u(t0) u(ti) − u(t0) Residual Distance (50,30,60)

FHN† 2048 20 u(ti) − u(t0) u(ti) − u(t0) Residual Distance (90,50,110)
HNL2dSS 2304 20 N/A N/A N/A (80,60,80)
Heat Flow 961 25 - - - -

MEMS 880 10 u(ti) − u(t0) u(ti) − u(t0) Trajectory Curvature (32,22,42)

Table 7: Summary of Final Scaled-Up MOR Comparison

(L2 Error; Speed-Up) G-POD PG-POD TPWL Gappy
Burger’s Eqn (2.40%; 1.20) (2.66%; 1.19) (7.24%; 19,445) (2.82%; 59.7)

TransLine - cos† (∼ 10−15%; 1.00) (1.28 × 10−4%; 1.00) (39.4%; 20,238) (8.96 × 10−3%; 184)
TransLine - exp† (∼ 10−14%; 0.98) (6.51 × 10−5%; 0.97) (8.42%; 54,015) (8.69 × 10−3%; 157)

FHN† (7.87 × 10−3%; 1.17) (5.75 × 10−3%; 1.15) (∼130%; 12,913) (5.75 × 10−3%; 45)
HNL2dSS (50.9%; 7.50) (∼180%; 6.64) - (85.5%; 12.8)
Heat Flow - - - -

MEMS (0.0149%, 1.22) (0.194%, 1.10) (0.195%, 19) (0.0120%, 15)
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