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Nonlinear Module Results

  The MOR testbed provides a means to effectively compare MOR 
techniques for linear and nonlinear problems.  The testbed was useful for 
comparing MOR techniques and is intended for researchers to test new 
methods against those currently in existence.
  For the Penzl problem, Balanced Truncation performed the best.  This 
observation roughly generalized to the other linear problems.  For the 
MEMS switch, SAGN performed best, which is an observation that did not 
generalize to all nonlinear problems.

Nonlinear Module Results (continued)

The first author can be contacted at bokie89@sbcglobal.net 
(Matthew J. Zahr) for additional information regarding this project.

Nonlinear Systems

There has been little work done comparing model reduction 
techniques across a variety of linear and nonlinear systems; the 
goal of this work is to provide a testbed that enables a thorough 
comparison of techniques on different types of systems.
Model reduction of simple systems such as linear time-invariant 
systems is relatively mature, while nonlinear model reduction is 
much more complicated.
A natural question is: which of these model reduction techniques 
performs best on which problems?
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• The only MOR technique with unstable ROMs is the Lanczos Krylov method.
• The Krylov methods are the least expensive methods, but induce the largest 

error.  The time POD methods are the most expensive.
• Balanced Truncation has low cost, low error in both norms, and remains stable 

throughout all ROMs investigated.
• The snapshots referencing the initial condition have the lowest error and those 

referencing the previous condition have the largest error.

4 Comparison Results

This section presents the results of the various model reduction methods on the examples introduced in

the previous sections. Linear systems will be considered first in Section 4.1 and nonlinear systems in

Section 4.2.

4.1 Linear Systems

The results of the model reduction comparison will be presented in a 3x3 subplot for each problem. The

first row of subplots will correspond to the L2 error between the FOM and the ROM as a function of

the order of the reduced model. The second row will present the H2 error vs. order of the ROM. The

third row is the offline time required for each model reduction technique. The first two columns of these

subplots simply compare the different reduction techniques, while the third column compares different
snapshot collections for POD in the time domain. For space efficiency, the marker and color legend for

the linear analysis are provided in Figure 12 and Table 1, respectively.

Figure 12: Legend for Linear Results

Table 1: Linear Results Color Legend

Color Meaning
red unstable system
black stable system
blue u(ti) Snapshots
green u(ti)− u(t0) Snapshots
magenta u(ti)− u(ti−1) Snapshots

Multiple Mass-Spring-Damper
In addition to the plots discussed above, the mass-spring-damper problem includes plots of H∞ -Error

vs. order of the ROM.

Figure 13 presents the results of the anaylsis of the mass-spring-damper problem. The POD techniques

in the time domain have a large number of unstable points, but an unstable ROM does not necessarily

correspond to large error. The Balanced POD (BPOD) and Balanced Truncation methods remained

stable throughout all degrees of model reduction, which is a theoretical expectation. Furthermore, the

POD methods in the time domain tend to have the lowestL2 error across all ROM orders considered and

the POD methods in the frequency domain have the lowest H2 and H∞ errors. Notice the large number

of unstable systems that were generated by reducing the order of the mass-spring-damper system.

Due to the nature of linear systems, the online computational time for all MOR techniques are roughly

equal, so the quantification of speedup will involve the offline time. The POD methods in the frequency
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Linear Module

• Systems
- Multiple Mass-Spring-Damper
- “Penzl” Problem [5]
- Heat Flow

• MOR Techniques
- POD [1,2]

1. time domain
2. frequency domain

- weighted POD [7]
3. time domain
4. frequency domain

5. Balanced POD [1,2]
6. Balanced Truncation [1,2]
- Krylov Moment Matching [2]

7. Two-Sided Lanczos
8. Arnoldi

Nonlinear Module

• Systems
- 1D Shock Propagation [6]
- Transmission Line [6]
- Neuron Activation Model [4]
- Steady-State Problem [4]
- MEMS [6]

• MOR Techniques
1. Galerkin Projection
2. Least-Squares Petrov-Galerkin 

Projection (LSPG) [3]
3. System Approximated Gauss-

Newton (SAGN) [3]
4. Trajectory Piecewise Linear 

Approximation (TPWL) [6]

Acknowledgements

SAGN Parameter Comparison

10
15

20
25

30
35

40 10
15

20

25
30

35
40

10

15

20

25

30

35

40

n
I

Gappy Space

nR

nJ

Student Version of MATLAB

0 1 2 3 4 5 6
x 10−4

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
Center Point Beam Deflection

u
(x

,
t
)

t

 

 

FOM

Tra jectory Curvature

Tra jectory Distance

Re sidua l Distance

Student Version of MATLAB

0 100 200 300 400 500 600 700 800 900 1000

Linearization Points Selected

u
(x

,
t
)

Time Step

 

 

Tra jectory Curvature

Tra jectory Distance

Re sidua l Distance

s = 50

s = 50

s = 62

Student Version of MATLAB

0 1 2 3 4 5 6
x 10−4

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
Center Point Beam Deflection

u
(x

,
t
)

t

 

 
FOM

Ga lerkin POD

Petrov-Galerk in POD

TPWL

Gappy POD

Student Version of MATLAB

100 101 102
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
Model Error vs. Sp eed-Up (Pareto Space)

L
2

E
rr

o
r

Speed-Up (FOM time/ROM time)

 

 

FOM

G alerkin POD

Petrov-Galerk in POD

TPWL

G appy POD

Student Version of MATLAB

0 1 2 3 4 5 6
x 10−4

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0 Center Point Beam Deflection

u
(x

,
t
)

t

 

 
FOM

Ga lerkin POD

Petrov-Galerk in POD

TPWL

Gappy POD

Student Version of MATLAB

10−4

10−3

10−2

10−1

100

101
Robustness Error Analysis

L
2

E
rr

o
r

 

 

Ga lerkin POD (onl ine)

Petrov-Galerk in POD (onl ine)

TPWL (onl ine)

Gappy POD (onl ine)

Ga lerk in POD (train)

Petrov-Galerk in POD (train)

TPWL (train)

Gappy POD (train)

Student Version of MATLAB

Robustness Analysis

Inter-Method Comparison

Conclusion

TPWL is a method that reduces the computational expense of nonlinear 
systems by linearizing the system about points along the solution trajectory.  
The selection of linearization points is vital to the accuracy of TPWL 
solutions.

The algorithms considered for selection points are classified as follows: 1) 
Trajectory Curvature (developed by first author), 2)Trajectory Distance, 3) 
Residual Distance.  The first method performs best for this problem and the 
third method performs the worst.  This result did not generalize to the other 
nonlinear problems.

SAGN is a technique for reducing the computational cost of nonlinear 
problems that was developed by Carlberg & Farhat [3].  There are three vital 
SAGN parameters: nR = number of POD basis vector to represent the 
residual, nJ = number of POD basis vectors to represent the Jacobian, and nI 
= number of indices for which the Jacobian and Residual are computed.

The error is strongly dependent on nR and nJ, but only weakly dependent on 
nI.  This trend was seen in all nonlinear problems.

In this section, unlike the other sections, the online and offline (training) 
inputs differ.  Train input = 49H(t) ; Online input = 81H(t).

All of the POD methods have a high degree of robustness, while TPWL 
does not.  Galerkin POD is the most robust of the POD methods and SAGN 
is the least.

With the optimal parameters gathered from the previous four sections, a final 
comparison is made to determine the best MOR technique for this problem.

TPWL and Gappy POD have the largest induced error and the most significant 
speed-up.  The other POD methods have negligible speed-up and negligible 
induced error.  These results generalized to all nonlinear problems.

Conclusion: SAGN performs best for the MEMS problem due to favorable 
balance between speed-up and induced error.
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All of the nonlinear MOR techniques are heavily dependent on 
adjustable parameters.  Before we can compare the MOR 
techniques against each other, it is necessary to determine the 
optimal parameters for each MOR technique.
This section presents the following:
• POD Snapshot Selection Comparison
• TPWL Linearization Pt. Selection Algorithm Comparison
• SAGN Parameter Comparison
• Robustness Analysis (different training and online inputs)
• Inter-Method Comparison

The three snapshot collections compared in the section are: 1) state vector 
referencing the initial condition, 2) state vector referencing the previous time 
step, 3) unreferenced state vector.  These collections were compared for 
both the Galerkin (same left and right projection bases) and Petrov-Galerkin 
(different left and right projection bases) POD techniques.

For both Galerkin and Petrov-Galerkin POD projections, the snapshots 1 
are best with respect to error minimization and the snapshots 3 led to the 
worst results.  Furthermore, LSPG projection is more stable than Galerkin 
projection.  The stability is assessed by magnitude of the oscillations of the 
approximate solutions about the exact solution.
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