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A Reduced Order Model IS:
• a MODEL that is a low-dimensional approximation of some 

High-Dimensional Model (HDM)
• built on-top of a HDM

A Reduced Order Model IS NOT:
• a simplification of the HDM
• a response surface 

Motivation/Introduction

The incorporation of CFD-based optimization into the design of 
aircrafts would enable the automation of the iterative process that is 
currently driven by humans.  This automation would enable the 
design of “better” aircrafts where the ordering of aircrafts is defined 
by some objective function.  Unfortunately, full 3D CFD codes on 
industry-scale problems are too expensive to incorporate into an 
optimization loop, which may require thousands of iterations.  This 
is where Reduced Order Models (ROMs) come into play.  If we can 
construct a parametrically-robust ROM from only a few high-fidelity 
simulations and exploit this ROM throughout the design loop, there 
is potential for dramatic CPU savings.

Model Order Reduction

We are interested in the solution of the following system of ODEs

which may come from the semi-discretization of a PDE or represent 
the governing equations of a discrete system.  Full discretization 
(with a 1-step scheme) yields:

This is Model I, the HDM.

Now, we make the assumption that the solution lies in a low-
dimensional affine subspace

Substituting this into the discrete form, we reduced the number of 
unknowns resulting in an overdetermined system.  To recover a 
square system of equations, we introduce the left bases           and 
force the equations to be orthogonal to its columns, yielding

This is Model II, the ROM.

du

dt
= F (u, z)

R(un+1, z;un) = 0.

u ∈ RN − state variable

z ∈ Rp − design variable

ur ∈ Rny − reduced coordinates.

Ψ(i)

Right Basis Construction

u ≈ ū+ Φ(i)ur, i ∈ {1, 2, . . . , Nv}

• Let                       be a collection of solution snapshots from the 
HDM under different design parameter configurations,      for

• Cluster columns of      into        disjoint sets                              , 
e.g. kMeans.  This also defines cluster centers: 

• Reference the snapshots:
• Use Proper Orthogonal Decomposition on each         to 

generate right bases        .

X ∈ RN×ns

zk
k = 1, 2, . . . , n.

X Nv X(1), . . . ,X(Nv)

X(i)

Φ(i)

X(i) ← X(i) − ūeT .

Left Basis Choice

• Galerkin Approximation: 

‣ “Optimal” for problems with SPD Jacobian

• Least-Square Petrov-Galerkin: 

‣ “Optimal” for problems with non-SPD Jacobian

Ψ(i) = Φ(i)

Ψ(i) =
∂R

∂u
(u, z)Φ(i)

u(1)
c , . . . , u(Nv)

c .

Online Exploitation of ROM (LSPG)

Suppose      is the initial condition for the problem of interest, then 
the online ROM algorithm is:
• At step n, determine the cluster to which        is closest.  Call 

this cluster      .
• Solve 

    where

    using the iteration

     where

This is the globally-convergent Gauss-Newton method applied  to

u0

Collect Snapshots Cluster Snapshots 
Define Cluster Centers

Discard Snapshots Run ROM simulation; 
Use “best” basis at each step
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Pre-compute

Linear System Schematic - LSPG

To speed up the bottleneck in the ROM (the formation of the linear 
system), we approximate the residual and the action of the Jacobian 
on the reduced order basis         as

where

This is Model III.  The method is called Gauss-Newton Approximated 
Tensors (GNAT).

Φ(i)

�
Rk ≈ Φ(i)

r Rr,k

JkΦ(i) ≈ Φ(i)
j Jr,k

Rr,k ∈ RnR , Jr,k ∈ RnJ×nY

Φ(i)
r ∈ RN×nR , Φ(i)

j ∈ RN×nJ .

Linear System Schematic - LSPG + Hyperreduction

PDE-Constrained Optimization

Hyperreduction
Let

denote the discretization of a steady PDE, where q is the state 
variable and z is the parameter or design variable.  Also, let
denote the quantity we would like to minimize.  Then, the problem 
of interest is:

• Nested Analysis and Design (NAND)
- Use                         to write                  and solve the 

unconstrained problem: 

• Simultaneous Analysis and Design (SAND)
- Solve the original nonlinear programming problem over state 

and design variables.

Rs(q, z) = 0

L(q, z)

Rs(q, z) = 0 q = q(z)

minimize
q,z

L(q, z)

subject to : Rs(q, z) = 0.

minimize
z

L(q(z), z)

Applications

�
Ψ(i)

�T
R(ū+ Φ(i)un+1

r , z; ū+ Φ(j)un
r ) = 0.

�
Ψ(in)

�T
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r ) = 0
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Clustering of Snapshots

 

 

Clusters before overlap

Clusters after overlap
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NV = 4, u(1)
c

NV = 4, u(2)
c

NV = 4, u(3)
c

NV = 4, u(4)
c
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Compari son of Model I , I I , and I I I for Burger’ s Equation

 

 

HDM

ROM - NV = 4, ū = u0

ROM + GNAT - ū = u0

5 10 15 20 25 30 35 40 45 50
1%

10%

100%

Time (sec)

A
ve

ra
ge

R
el

at
iv

e
L

2
E

rr
or

in
St

at
e

Compari son of Affine Offsets

 

 
NV = 4, ū = u0

NV = 4, ū = un−1

NV = 4, ū = 0

NV = 4, ū = uini t,j (Onl ine Update)

NV = 4, ū = uini t,j (Exact)

∂u

∂t
+ u

∂u

∂x
= 0.02e0.02x

u(t, 0) =
√
5

u(0, x) = 1

Burger’s Equation

Potential Nozzle Flow

References

• 1D Nozzle Problem with flow governed by potential equations
• Nozzle shape parametrized by cubic splines with 10 control points
• Parameter estimation
• NAND PDE-optimization framework

• HDM has 10,000 dof
• ROM uses 4 local bases of size 

20, 14,10, and 4, respectively
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