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Motivation

I For industry-scale problems, topology optimization is a beneficial tool
that is time and resource intensive
. Large number of calls to structural solver usually required
. Each structural call is expensive, especially for nonlinear 3D

High-Dimensional Models (HDM)
I We introduce a Reduced-Order Model (ROM) as a surrogate for the

structural model in a material topology optimization loop
. Large speedups attained by leveraging cubic structure of the

nonlinear equations (large deformations of specific materials)
. ROM necessitates low-dimensional approx. to material distribution

I Avoid online computations that scale with HDM
I Small vector controlling material distribution, to be used as

optimization variables
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Fig. 1 Elliptic vs aerostructural optimum lift distribution.

Fig. 2 Natural laminar-flow supersonic business-jet configuration.

but an objective function that reflects the overall mission of the par-
ticular aircraft. Consider, for example, the Breguet range formula
for jet-powered aircraft:

Range = V
c

CL

CD
ln Wi

W f
(1)

where V is the cruise velocity and c is the thrust-specific fuel con-
sumption of the powerplant. CL/CD is the ratio of lift to drag, and
Wi/W f is the ratio of initial and final cruise weights of the aircraft.

The Breguet range equation expresses a tradeoff between the drag
and the empty weight of the aircraft and constitutes a reasonable ob-
jective function to use in aircraft design. If we were to parameterize
a design with both aerodynamic and structural design variables and
then maximize the range for a fixed initial cruise weight, subject to
stress constraints, we would obtain a lift distribution similar to the
one shown in Fig. 1.

This optimum lift distribution trades off the drag penalty associ-
ated with unloading the tip of the wing, where the loading contributes
most to the maximum stress at the root of the wing structure in order
to reduce the weight. The end result is an increase in range when
compared to the elliptically loaded wing because of a higher weight
fraction Wi/W f . The result shown in Fig. 1 illustrates the need for
taking into account the coupling of aerodynamics and structures
when performing aircraft design.

The aircraft configuration used in this work is the supersonic
business jet shown in Fig. 2. This configuration is being developed
by the ASSET Research Corporation and is designed to achieve a
large percentage of laminar flow on the low-sweep wing, resulting
in decreased friction drag.11 The aircraft is to fly at Mach 1.5 and
have a range of 5300 miles.

Detailed mission analysis for this aircraft has determined that
one count of drag (!CD = 0.0001) is worth 310 lb of empty weight.
This means that to optimize the range of the configuration we can

minimize the objective function

I = αCD + βW (2)

where CD is the drag coefficient, W is the structural weight in
pounds, and α/β = 3.1 × 106.

We parameterize the design using an arbitrary number of shape
design variables that modify the outer-mold line (OML) of the air-
craft and structural design variables that dictate the thicknesses of
the structural elements. In this work the topology of the structure
remains unchanged, that is, the number of spars and ribs and their
planform-view location is fixed. However, the depth and thickness
of the structural members are still allowed to change with variations
of the OML.

Among the constraints to be imposed, the most obvious one is
that during cruise the lift must equal the weight of the aircraft. In our
optimization problem we constrain the CL by periodically adjusting
the angle of attack within the aerostructural solver.

We also must constrain the stresses so that the yield stress of the
material is not exceeded at a number of load conditions. There are
typically thousands of finite elements describing the structure of
the aircraft, and it can become computationally very costly to treat
these constraints separately. The reason for this high cost is that
although there are efficient ways of computing sensitivities of a few
functions with respect to many design variables and for computing
sensitivities of many functions with respect to a few design variables,
there is no known efficient method for computing sensitivities of
many functions with respect to many design variables.

For this reason we lump the individual element stresses using
Kreisselmeier–Steinhauser (KS) functions. In the limit all element
stress constraints can be lumped into a single KS function, thus
minimizing the cost of a large-scale aerostructural design cycle.
Suppose that we have the following constraint for each structural
finite element:

gm = 1 − σm/σy ≥ 0 (3)

where σm is the von Mises stress in element m and σy is the yield
stress of the material. The corresponding KS function is defined as

KS = − 1
ρ

ln
(∑

m

e−ρgm

)
(4)

This function represents a lower bound envelope of all of the con-
straint inequalities, where ρ is a positive parameter that expresses
how close this bound is to the actual minimum of the constraints.
This constraint lumping method is conservative and might not
achieve the same result as treating the constraints separately. How-
ever, the use of KS functions has been demonstrated, and it consti-
tutes a viable alternative, being effective in optimization problems
with thousands of constraints.12

Having defined our objective function, design variables, and con-
straints, we can now summarize the aircraft design optimization
problem as follows:

Minimize:

I = αCD + βW, x ∈ Rn

Subject to:

CL = CLT , KS ≥ 0, x ≥ xmin

The stress constraints in the form of KS functions must be enforced
by the optimizer for aerodynamic loads corresponding to a number
of flight and dynamic load conditions. Finally, a minimum gauge is
specified for each structural element thickness.

Analytic Sensitivity Analysis
Our main objective is to calculate the sensitivity of a multidisci-

plinary function with respect to a number of design variables. The
function of interest can be either the objective function or any of the
constraints specified in the optimization problem. In general, such
functions depend not only on the design variables, but also on the
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0-1 Material Topology Optimization

minimize
χ∈Rnel

L(u(χ), χ)

subject to c(u(χ), χ) ≤ 0

I u is implicitly defined as a function of χ through the HDM equation

f int(u) = fext
I

Ce = Ce0χe ρe = ρe0χe χe =

{
0, e /∈ Ω∗

1, e ∈ Ω∗

I Assume geometric nonlinearity and linearity in the constitutive law

Reduced-Order Model

I Model Order Reduction (MOR) assumption
. State vector lies in low-dimensional subspace defined by Φ

u ≈ Φy

I Galerkin projection

ΦT f int(Φy) = ΦT fext

ROM Optimization Formulation

minimize
αr∈Rnα

L(y(αr), αr)

subject to c(y(αr), αr) ≤ 0

I y is implicitly defined as a function of αr through the ROM equation

ΦT f int(Φy) = ΦT fext

Internal Force - Cubic Polynomial in Displacements

The expression for the internal force is

f intjL =

∫
Ω0

Pij

∂NI

∂Xi

dX

= ĀjtILutI + B̄LIujI+

C̄LIJjukIukJ + ĈILQtujQutI + D̄IJQLukIukJujQ

where NI(X) is the shape function corresponding to node I .
Then

Ā = Ā (Ω, λ(X)) B̄ = B̄(Ω, µ(X))

C̄ = C̄(Ω, λ(X), µ(X)) Ĉ = Ĉ(Ω, λ(X), µ(X))

D̄ = D̄(Ω, λ(X), µ(X))

Material Distribution Representation

Let material distributions be represented with the basis functions:

λ(X) = φλi (X)αri , i = 1, 2, . . . , nα
µ(X) = φµi (X)αri , i = 1, 2, . . . , nα
ρ(X) = φρi (X)αri , i = 1, 2, . . . , nα

Then

Ā = Ā(Ω, φλi )α
r
i B̄ = B̄(Ω, φµi )α

r
i

C̄ = C̄(Ω, φλi , φ
µ
i )α

r
i Ĉ = Ĉ(Ω, φλi , φ

µ
i )α

r
i

D̄ = D̄(Ω, φλi , φ
µ
i )α

r
i

Reduced-Order Model via Precomputations

ΦT f int(Φy) = ΦT fext

[
ΦT f int(Φy)

]
r

= βrp(αr)yp + γrpq(αr)ypyq + ωrpqt(αr)ypyqyt

I Amenable to material topology optimization
. αr provide control over material distribution
. αr optimization variables in 0-1 topology optimization
. Vary material distribution only in the column space of Φλ,Φµ,Φρ

I Large speedups possible without hyperreduction, O(103)
I Currently limited to StVK material, Lagrangian elements
I Cost/storage scales poorly with ku (ROM size)
. Offline cost scales as O(nα · nel · k4

u)
. Offline storage scales as O(nα · k4

u)
. Online storage scales as O(k4

u)

Cantilever - Weight Minimization

46 Material Snapshots Deformed configuration (Initial Guess) Deformed configuration (Optimal Solution)

I αr determines existence of voids
I Vertical displacement bounds
I 38,664 dof
I Loads: bending, twisting, self-weight
I ROM size: ku = 5

Online (sec) Speedup
HDM 750 -
ROM 156 4.80

pROM 0.37 2,051

Remaining Material at Optimal Solution
(Outer Matrix Removed) Convergence History - Multiple Initial Guesses

Wing Box Design - Weight Minimization

41 Material Snapshots Deformed configuration (Initial Guess) Deformed configuration (Optimal Solution)

I αr determines placement of ribs
I Vertical/horizontal disp bounds
I Loads: bending (lift and drag

loads), twisting, self-weight
I 86,493 dof
I ROM size: ku = 5

Online (sec) Speedup
HDM 811 -
ROM 376 2.16

pROM 1.51 538

Optimal Solution
Convergence History - Multiple Initial Guesses

Conclusion

I New method for material topology
optimization using reduced-order models
. O(103) speedup over HDM

I Potential to address large problems
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