

Motivation

- ► For industry-scale problems, topology optimization is a beneficial tool that is time and resource intensive
- ▶ Large number of calls to structural solver usually required
- \triangleright Each structural call is expensive, especially for nonlinear 3D High-Dimensional Models (HDM)
- ► We introduce a Reduced-Order Model (ROM) as a surrogate for the structural model in a material topology optimization loop
 - ▷ Large speedups attained by leveraging cubic structure of the nonlinear equations (large deformations of specific materials)
- ▶ ROM necessitates low-dimensional approx. to material distribution ► Avoid online computations that scale with HDM
 - ► Small vector controlling material distribution, to be used as optimization variables

0-1 Material Topology Optimization

 $\mathop{\mathrm{minimize}}\limits_{\chi\in\mathbb{R}^{n_{el}}}~\mathcal{L}(\mathrm{u}(\chi),\chi)$

subject to
$$c(u(\chi),\chi) \leq 0$$

 \triangleright **u** is implicitly defined as a function of $\boldsymbol{\chi}$ through the HDM equation $f^{int}(u) = f^{ext}$

$$\mathbb{C}^e = \mathbb{C}^e_0 \chi_e \qquad
ho^e =
ho^e_0 \chi_e \qquad \chi_e = egin{cases} 0, & e \ 1, & e \ 1, & e \ \end{array}$$

► Assume geometric *nonlinearity* and linearity in the constitutive law

Reduced-Order Model

► Model Order Reduction (MOR) assumption \triangleright State vector lies in low-dimensional subspace defined by Φ

 $u \approx \Phi y$

► Galerkin projection

$$\Phi^T \mathbf{f}^{int}(\Phi \mathbf{y}) = \Phi^T \mathbf{f}^{ext}$$

ROM Optimization Formulation

 $\begin{array}{c} \text{minimize} \\ \alpha_r \in \mathbb{R}^{n_\alpha} \end{array} \ \mathcal{L}(\mathrm{y}(\alpha_r), \alpha_r) \end{array}$ subject to $c(y(\alpha_r), \alpha_r) \leq 0$

 \triangleright y is implicitly defined as a function of α_r through the ROM equation $\Phi^T \mathbf{f}^{int}(\Phi \mathbf{y}) = \Phi^T \mathbf{f}^{ext}$

Rapid Topology Optimization using Reduced-Order Models Matthew J. Zahr^{*} and Charbel Farhat^{*,†,‡}

 $\notin \Omega^*$ $e\in \Omega^*$ Internal Force - Cubic Polynomial in Displacements

The expression for the internal force is

$$f_{jL}^{int} = \int_{\Omega_0} P_{ij} \frac{\partial N_I}{\partial X_i} dX$$
$$= \bar{A}_{jtIL} u_{tI} + \bar{B}_{LI} u_{jI} + \bar{C}$$

where $N_I(X)$ is the shape function corresponding to node I. Then

$$\begin{split} \bar{\mathbf{A}} &= \bar{\mathbf{A}} \left(\Omega, \lambda(\mathbf{X}) \right) & \bar{\mathbf{B}} \\ \bar{\mathbf{C}} &= \bar{\mathbf{C}} (\Omega, \lambda(\mathbf{X}), \mu(\mathbf{X})) & \widehat{\mathbf{C}} \\ \bar{\mathbf{D}} &= \bar{\mathbf{D}} (\Omega, \lambda(\mathbf{X}), \mu(\mathbf{X})) & \end{split}$$

Material Distribution Representation

Let material distributions be represented with the basis functions:

$\lambda(\mathrm{X}) = \phi_i^\lambda(\mathrm{X}) lpha_i^r,$	i
$\mu(\mathrm{X}) = \phi^{\mu}_i(\mathrm{X}) lpha^r_i,$	i
$ ho(\mathrm{X}) = \phi_i^ ho(\mathrm{X}) lpha_i^r,$	i

Then

 $ar{\mathrm{A}} = ar{\mathrm{A}}(\Omega,\phi_i^\lambda)lpha_i^r$ $ar{\mathrm{C}} = ar{\mathrm{C}}(\Omega,\phi^{\lambda}_{i},\phi^{\mu}_{i})lpha^{r}_{i}$ $ar{\mathrm{D}} = ar{\mathrm{D}}(\Omega,\phi^{\lambda}_{i},\phi^{\mu}_{i})lpha^{r}_{i}$

Reduced-Order Model via Precomputations

 $\Phi^T \mathbf{f}^{int}(\Phi \mathbf{y}) = \Phi^T \mathbf{f}^{ext}$

$\left[\Phi^{T} \mathbf{f}^{int}(\Phi \mathbf{y})\right]_{r} = \beta_{rp}(\alpha_{r})\mathbf{y}_{p} + \gamma_{rpq}(\alpha_{r})\mathbf{y}_{p}\mathbf{y}_{q} + \omega_{rpqt}(\alpha_{r})\mathbf{y}_{p}\mathbf{y}_{q}\mathbf{y}_{t}$

- Amenable to material topology optimization $\triangleright \alpha^r$ provide control over material distribution $\triangleright \alpha^r$ optimization variables in 0-1 topology optimization \triangleright Vary material distribution only in the column space of $\Phi^{\lambda}, \Phi^{\mu}, \Phi^{\rho}$ \triangleright Large speedups possible without hyperreduction, $\mathcal{O}(10^3)$
- Currently limited to StVK material, Lagrangian elements
- \triangleright Cost/storage scales poorly with k_{u} (ROM size) \triangleright Offline cost scales as $\mathcal{O}(n_{\alpha} \cdot n_{el} \cdot k_{\mu}^4)$
- \triangleright Offline storage scales as $\mathcal{O}(n_{\alpha} \cdot k_{\mu}^4)$ \triangleright Online storage scales as $\mathcal{O}(k_{1}^{4})$

Farhat Research Group, Stanford University, Stanford, CA *Institute for Computational and Mathematical Engineering, [†]Department of Mechanical Engineering, [‡]Department of Aerospace and Astronautics

 $\triangleright \alpha^r$ determines existence of voids

- Vertical displacement bounds
- ▶ 38,664 dof
- ► Loads: bending, twisting, self-weight
- \blacktriangleright ROM size: $k_{\mu} = 5$

41 Material Snapshots

- $\triangleright \alpha^r$ determines placement of ribs
- Vertical/horizontal disp bounds
- ► Loads: bending (lift and drag loads), twisting, self-weight
- ▶ 86,493 dof
- \blacktriangleright ROM size: $k_{\mu} = 5$

Conclusion

► New method for material topology optimization using reduced-order models $\triangleright \mathcal{O}(10^3)$ speedup over HDM Potential to address large problems

Cantilever - Weight Minimization

Online (sec) Speedup 750 HDM ROM 1564.80 pROM 0.37 2,051

Wing Box Design - Weight Minimization

Deformed configuration (Initial Guess)

Deformed configuration (Optimal Solution)

	Online (sec)	Speedup
HDM	811	-
ROM	376	2.16
pROM	1.51	538

