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Optimization using Adaptive
Reduced-Order Models

The desire to solve optimization problems governed by partial differential equations exists in all fields of science and engineering.
These PDE-constrained optimization problems inevitably require a large nhumber of solutions of the partial differential equation of
Interest and become prohibitively expensive if a fine discretization is required. We introduce a fast algorithm for solving such
optimization problems that leverages adaptive reduced-order models and is provably globally convergent.
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Motivation

Aerodynamic Shape Optimization

* The problem of designing a hull to
maximize energy absorption of the
armor in order protect the occupants
In the event of an underbody blast is of
utmost importance

« Testing a given design incurs substantial
cost ($5M): turn to computational tools
to analyze and design such systems

« Computational analysis of a single
design may take many hours on a
supercomputer due to the complex
geometry and physics involved

In this section, the proposed
optimization algorithm that leverages
adaptive reduced-order models is
compared to a standard technique for
PDE-constrained optimization on the
problem of recovering a RAE2822
geometry from a NACAO0012 geometry
by considering only the discrepancy in
the pressure distribution.

 \We introduce a framework for
solving such PDE-constrained

« Optimization of such a system may optimization problems using
require simulation of thousands of reduced-order models with the SR _\Il/ |
designs, rendering the problem goal of substantial CPU saving. \ J —

practically infeasible

Accelerate solution of a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE o
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Conclusion

* Introduced new globally convergent method
for accelerating PDE-constrained optimization
Workflow Schematic Parameter Space using Reduced-Order Models.

* Factor of 4 fewer HDM queries observed on
aerodynamic shape optimization problem
where the optimal solution was recovered to
machine precision.

_ _ o , * Ongoing work is focused on demonstrating the
Define the implicit functions proposed approach on a large-scale problem -
design of the Common Research Model. Contact: mzahr(@stanford.edu
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Global Convergence Theorem

g(p) = f(w(p),p) mi(p) = f(Pry(p), 1)

and assume they are continuously differentiable with bounded Hessian. If the Collaborations
following relaxed first-order conditions are met (guaranteed by the proposed

minimume-residual primal and sensitivity reduced-order model framework): 3 & > 0

The following collaboration efforts are planned:

my (k) = g(pr) 1Vg(pr) — Vi (p) || < Emind[|[Vmg (pe)|], Ak}
ARL/CSD: Pat Collins, on the CFD ROM component and its introduction at ARL/VTD where
then the proposed trust-region algorithm produces a sequence of iterates that AERO-F 1s now known. Anticipated applications are design optimization of MAVs and
satisfies flapping wings, among others

lim inf || Vg ()| = lim inf | [V g()]| = 0
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TARDEC: Matt Castanier, on the structural dynamics ROM component with applications to
Thus the algorithm converges to a local minimum from any starting point. armor design optimization
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