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Abstract
We present a novel discontinuity-tracking framework for resolving discontinuous solutions of conservation laws
with high-order discontinuous Galerkin methods [1, 2]. The proposed method aims to align the inter-element
boundaries with discontinuities by deforming the computational mesh. A discontinuity-aligned mesh ensures the
discontinuity is represented through inter-element jumps while smooth basis functions interior to elements are only
used to approximate smooth regions of the solution, thereby avoiding Gibbs’ phenomena that create well-known
stability issues. Therefore, very coarse high-order discretizations accurately resolve the piecewise smooth solution
throughout the domain. The method recasts the conservation law as a PDE-constrained optimization problem that
simulataneously solves the conservation law and aligns the mesh with discontinuities. We demonstrate optimal
O(hp+1) convergence rates and show that accurate solutions can be obtained on extremely coarse meshes.

Motivation and Impact

• Discontinuities and shape gradients arise in many important applications across engineering and sciences
such as interfaces (multiphase flow, fluid-structure interaction) and shock waves (transonic and supersonic
aerodynamics, hypersonic vehicle re-entry, explosion/implosion).
• However, the problem of finding (numerically) the solution of conservation laws when the solution contains

discontinuities or sharp gradients has been a longstanding difficulty, particularly when high-order methods are
used due to the smooth, high-order polynomial basis to represent the solution.
• Our method is designed to overcome these difficulties by simultaneously aligning the computational mesh with

the discontinuities such that they can be exactly represented by the inter-element jumps without relying on
the smooth, high-order basis.

High-order shock tracking framework
Governing equations and high-order numerical discretization

Consider a general system of conservation laws, defined on the physical domain Ω ⊂ Rd,

∇ · F(U) = 0 in Ω. (1)

This could either represent a static conservation law on a d-dimensional spatial domain or a time-
dependent conservation law on a (d− 1)-dimensional spatial domain and the dth dimension is time, i.e.,
a space-time formulation. Discretization with a standard high-order nodal DG method in an arbitrary
Lagrangian-Eulerian formulation yields

r(u, x) = 0, (2)

where the dependence on the discretize solution, u, and coordinates of the mesh nodes, x, is made explicit.

High-order discontinuity tracking via optimization-based r-adaptivity

The proposed method for high-order resolution of discontinuous solutions of conservation laws reformulates
the discrete nonlinear system in (2) as a PDE-constrained optimization problem that searches for the
discrete solution, u, and mesh, x, that minimize some objective function and satisfy the discrete PDE

minimize
u,x

f(u, x)

subject to r(u, x) = 0.
(3)

For the proposed framework to successfully align faces of the computational mesh with discontinuities in
the solution the objective function must 1) attain a local minimum at some discontinuity-aligned mesh
and 2) monotonically decrease to such a minima is a neighborhood of radius approximately h/2. We
define the objective function as

f(u, x) = fshk(u, x) + αfmsh(x)

fshk(u, x) = h−20

∑
K∈Eh,p

∫
G(K,x)

∣∣∣∣uh,p − ūKh,p∣∣∣∣2W dV

fmsh(x) = hd0
∑

K∈Eh,p

1

|G(K, x)

∫
G(K,x)

(
||Gh,p||2F

(detGh,p)
2/d
+

)r
.

(4)

fshk promotes transforming the mesh such that element faces align with discontinuities and fmsh ensures
the mesh is well-conditioned.
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The objective function for α = 1 (left) and α = 10 (right) as a function of 1D mesh deformation to show monotonicity of
the objective function and it attains a minimum at the shock location ( ) for DG elements with polynomial orders

p = 1 ( ), p = 2 ( ), p = 3 ( ), p = 4 ( ).

Full space optimization solver and initialization

The final ingredient is the numerical solver for the PDE-constrained optimization problem in (3). Com-
monly used reduced space approaches cannot be used because nonlinear instabilities will cause the CFD
solver to crash and the mapping u(x) will not be defined. Instead, we use a full space approach that
directly solves (3), e.g., by finding a stationary point of the L(u, x, λ) = f(u, x) − λTr(u, x). A key
feature of this approach is it never explicitly requires the solution of the nonlinear equations r(u, x) = 0
(robustness issues), only its linearization

r(uk, xk) +
∂r

∂u
(uk, xk)∆u+

∂r

∂x
(uk, xk)∆x = 0.

An initial guess for the optimization problem is generated by computing a viscous solution of the conser-
vation law under consideration, i.e.,

rν(u, x) = 0, (5)

where enough viscosity is added such that the solution can be reliably computed.

Results: 1D and 2D model problems
Inviscid Burgers’ equation with discontinuous source term

Here, we present the shock tracking framework applied to the inviscid, modified one-dimensional Burgers’
equation

∂

∂x

(
1

2
u2
)

= βu+ f(x), for x ∈ Ω ⊂ R,

where β = −0.1 and

f(x) =

{
(2 + sin(πx2 ))(π2 cos(πx2 )− β), x < 0

(2 + sin(πx2 ))(π2 cos(πx2 ) + β), x > 0.
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Results of discontinuity-tracking framework applied to the solution of the inviscid Burgers’ equation on a mesh with 5, 9,
17 (left to right) cubic elements. Legend: exact solution ( ) and solution obtained from tracking framework ( ).
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Convergence of tracking method applied to inviscid Burgers’ equation for polynomial orders p = 1 ( ), p = 2 ( ), p = 3 ( ),
p = 4 ( ), p = 5 ( ), p = 6 ( ). The expected convergence rates of p+ 1 are obtained in most cases. The slopes of the

best-fit lines to the data points in the asymptotic regime are: ∠ − 1.95 ( ), ∠ − 3.13 ( ), ∠ − 3.85 ( ), ∠ − 5.47
( ), ∠ − 4.36 ( ), ∠ − 8.67 ( ).

Transonic, inviscid flow through nozzle

Our final one-dimensional example considers the relevant situation of transonic, inviscid flow through a
converging-diverging nozzle. The quasi-one-dimensional Euler equations are used to model the inviscid,
compressible flow in a variable-area stream tube A(x)

∂

∂x
(Aρu) = 0,

∂

∂x
(A[ρu2 + p]) =

p

A

∂A

∂x
,

∂

∂x
(A[ρE + p]u) = 0 (6)
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The solution of the quasi-1d Euler equations using 300 linear elements ( ) and 4 quartic elements ( ). Left : The
high-order elements are not aligned with the shock and cause substantial over/under-shoot. Right : The high-order DG

shock tracking framework is applied to align the high-order elements with the shock and the resulting solution matches the
300 element reference solution very well, with substantially fewer degrees of freedom.

Supersonic flow around 2D cylinder
Finally, we demonstrate the shock tracking framework on the relevant problem of supersonic (M = 2)
flow around a cylinder, modeled using the 2D Euler equations. For convenience, only 1/4 of the domain
is modeled.

∂

∂xj
(ρuj) = 0,

∂

∂xj
(ρuiuj + p) = 0,

∂

∂xj
(uj(ρE + p)) = 0.

Solution of supersonic flow around cylinder using shock shocking framework (top) and elementwise
shock indicator, fshk(u, x) (bottom). Columns, left-to-right : viscosity solution on the non-aligned
p = 1 mesh and the inviscid solution with shock tracking method with p = 1, 2, 3, 4 elements.

Polynomial order (p) 1 2 3 4
Degrees of freedom (Nu) 576 1152 1920 2880

Enthalpy error (eH) 0.0106 0.000462 0.00151 0.000885
Stagnation pressure error (ep) 0.0711 0.00479 0.0112 0.000616

Number of optimization iterations 396 283 103 121

Synopsis of my contributions
• Moved prototyped Python implementation into scalable C++ implementation, which enabled easier

parallel implementation and usage of sparse-data structures.
• Implemented the idea of ‘space-time’ problem solving using the existing steady-state framework in [1].
• Computed the exact derivatives of the objective function for optimization, instead of approximating

using finite differences, leading to better accuracy.

Conclusions and Future work
• The introduced framework was tested on various 1D and 2D problems. The objective function is

succesful in aligning the computational mesh with the discontinuities.
• Also the objective function attained a local minimum at the discontinuity.
• The optimization problem is solved using a full-space optimizer, which is highly effective for our setting,

than the reduced-space solvers.
• Next, we intend to use more-refined parallelism, and exploit the sparsity of the Jacobians of the residual

to increase the efficiency.
• After successfully implementing the 1D spacetime idea, we next aim to tackle the 2D and 3D problems.
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