
RobustHigh-OrderImplicitShockTrackingforComplexHigh-SpeedFlows
Charles Naudet (cnaudet@nd.edu), Tianci Huang (thuang5@nd.edu), and Matthew J. Zahr (mzahr@nd.edu)

Department of Aerospace and Mechanical Engineering; University of Notre Dame

Abstract
Shock tracking, as an alternative method to shock capturing, moves the computational mesh to align with the shock and has the potential to obtain high-order accuracy without extensive mesh refinement around
the discontinuity. However, an aligned mesh is required to achieve such advantage, which is a challenge. In previous work, we introduced an implicit shock tracking framework that solves an optimization problem
whose solution is a mesh that aligns with discontinuities and the corresponding flow solution, which does not require a priori knowledge of the discontinuities. Here, we present improvements to the robustness of
the optimization solver and to the mesh motion that enable the solution of complex flows on high-order meshes. This is achieved by: (1) introducing shock-preserving, arbitrary-order element collapse in arbitrary
dimensions to preserve solution features; (2) integrating solution re-initialization strategy for oscillatory elements to promote good mesh motion; and (3) developing a time-slab approach for solving space-time problems
so that moving shocks can be tracked simultaneously in space and time. We demonstrate the robustness of the method using a suite of two- and three-dimensional flows.

Background and Motivation
• The problem of numerically finding the solution of conservation laws when the solution contains discon-

tinuities or sharp gradients is difficult.

• Challenges arise within this situation as polynomial basis is used to approximate discontinuous features,
which is likely to exhibit Gibbs’ phenomena.

• Numerical dissipation can be added to smooth out the sharp features to make the approximation feasible,
but can require large amount of refinement.

• The intrinsic inter-element solution discontinuity of the discontinuous Galerkin (DG) methods provides
advantages for approximating discontinuous features with a mesh that aligns with such features.

Problem Formulation
• As introduced in [3] and improved in [4], we

develop a PDE-constrained optimization frame-
work to find solution to conservation laws with
discontinuities, without the need to know or first
solve for shock location.

• We seek for the discretized DG solution u along
with the nodal positions of the computational
mesh x that minimizes an objective function
fpu, xq while satisfing the discretized conserva-
tion law rpu, xq “ 0

minimize
u,x

fpu, xq

subject to rpu, xq “ 0,

where

fpu,xq “ ferrpu,xq ` κ
2fmshpxq.

• ferrpu,xq is a measure of the DG solution error,
fmshpxq penalizes the distortion of the mesh, and
κ is a weight parameter.

• The error term of the objective function is the
norm of the one-degree enriched DG residual R

ferrpu,xq “
1

2
Rpu,xqTRpu,xq,

that is to use one degree higher polynomials to
approximate equations (test space) than to ap-
proximate solutions (trial space). This adds ad-
ditional constraints to the optimization: a solu-
tion u can satisfy rpu,xq “ 0 with a non-aligned
mesh but will likely not minimize Rpu,xq.

• fmsh prevents the mesh to be overly-askew, while
ferr promotes mesh alignment as an aligned mesh
should result in a much lower solution residual.

Mesh Operation
During the optimization, mesh nodes are being moved to track the shock. Elements near a shock will be
squeezed towards the shock and result in small and askew elements, which are problematic as they can
cause singularities and crash codes.

Shock-Aware Element Collapse

• Small elements are removed by collapsing their shortest edge. For high-order elements, the edge lengths
are calculated based on the end-nodes.

• The edge collapse is performed by merging one end-node to the other, where the choice of the moving
end-node ensures the mesh always conforms to the domain boundaries.

• Besides the boundary constraints, we add an additional constraint for node movement based on solution
value jump to ensure nodes on a shock do not move away from the shock. This is based on the logic
that if a node lies on a shock, then the solution values on the node should see a larger value jump than
a node that is away from the shock.

Ð Ñ

Initial mesh (middle), after a non-preserving collapse (left) and after a shock-preserving collapse (right).

Element Smoothing

• While the mesh is being moved, and particularly after element collapses, elements can become singular
or near-singular. This situation occurs more frequently when using high order meshes.

• For poorly shaped elements, we smooth the high order nodes by replacing the curved elements with their
corresponding straight-sided version.

The left group of images shows a p “ 3 element collapse (from left to right) where the collapsed element has its nodes
labeled. The right group of images shows the smoothing process of the mesh after the collapse.

Solution Re-initialization

• When using high-order approximations, the
element-wise solution can become oscillatory,
which leads to poor search directions for the
mesh motion.

• We observe that a piecewise constant solution
promotes good mesh motion, thus, we replace
the element solution that is highly oscillatory
with the solution average.

Ð Ñ

Ð Ñ

Example of oscillatory solution (top) and mesh (bottom). From
middle to the left is after a step without re-initialization, while

to the right is a step with re-initialization.

Space-time High-Order Tracking using Time Slabs
Resolving fine solution details for problems of higher than one-dimension over the entire space-time domain
is very difficult. Our approach is to break the time-dimension into smaller bite-sized chunks, or “slabs”, as
seen in [1] and [2]. We then solve for the solution on each individual time slab, starting with the slab at
the initial time, and stack each one on top of the previous.
Time Slab Requirements

• Inter-Slab Conformity: For N time slabs, the domain is defined as χn “ Ωˆ rtn, tn`1s, where χn is the
space-time domain for the nth time slab, Ω is the spatial domain, and tn and tn`1 are the initial and
end times of the nth slab, respectively. The boundary at the top of the nth slab χn|tn`1

must conform
to the boundary at the bottom of the n ` 1th slab χn`1|tn`1

in both topology and solution space, for
n “ 1, . . . , N ´ 1.

• Initial Condition for each Time Slab: The topology and solution space from the top boundary of a
previous slab χn´1|tn is held fixed as a boundary condition for the bottom of the nth time slab on the
boundary defined as χn|tn so that features in the solution can be preserved and tracked between time
slabs.

Extrusion as a Method for Time Slabs

• One approach to create time slabs is to take the spatial domain Ω and to extrude it into the space
rtn, tn`1s. This is done by taking a tensor product of the space and time domains χn “ Ω

Â

rtn, tn`1s.

• Extruding an M -dimensional simplex with FM “M ` 1 faces into a new dimension creates a pM ` 1q-
wedge geometry, with 2 ` FM faces, where two faces are simplices and the remaining FM faces are
M -dimensional wedge geometries. Wedge geometries must be split or decomposed to form simplices.

1D elements (left), extrusion/splitting of 1D elements to 2D (middle), extrusion/splitting of 2D elements to 3D (right).

Extrusion Considerations

• The decomposition of topology of the face of an element must conform to its neighboring element for
extrusion. This is simple in two-dimensions because the faces of a 2D simplex are lines, thus, connecting
existing vertices forms conforming simplices.

• The trivial decomposition of the above will not satisfy the conforming face rule for higher dimensions.
We must add nodes to achieve a uniform face.

Extrusion/splitting of a 2D simplex to a 3D wedge: non-conforming (left), conforming (right).

Extrusion and Splitting in Four Dimensions
• Using properties of extrusion that we have previously defined, we formalize a strategy to extrude into 4D

space and split wedges into simplices so that the topology of the 3-D faces between elements conform.

• Upon extruding a 3-simplex into 4D space there are six faces (two 3-simplices and four 3D wedges). We
look at one 3D wedge face for simplicity, as the process will apply to each. We first add one node to
the center of the 3D wedge and define two 3-simplex caps and three pyramids. We then add a node to
the center of each of the 2D faces to decompose each pyramid into 3-simplices. Once each 3D wedge
is axisymmetrically decomposed into 3-simplices, we define edges from each vertex to a new vertex in
the center of the original 4D wedge. This defines 4-simplices from the 3-simplices while each face of the
original 4D wedge is axisymmetrically decomposed for conformity.

• This means that each 4-simplex will be split into 58 4-simplices (2 [simplex caps] + 4 [3D wedge faces] ¨ 14
[simplices decomposed per wedge face]). This is a general procedure that works in up to four dimensions.

Decomposition of 3D wedge face of a 4D wedge: Original 3D wedge (left), decomposition into two 3D simplices (center),
and decomposition of remaining pyramid faces into 3D simplices (right).

Numerical Example: Space-Time With Time-Slabs
1D Space-Time Burger’s Equation

Burger’s equation in 1D space and time for four time slabs, stacked on each other.

1D Space-Time Sod’s Shock Tube

Sod’s shock tube in 1D space and time for three time slabs, stacked on each other and the solution without the mesh (right).

Numerical Example: Linear Advection
• In this example, we simulate linear advection with piecewise constant solution, and we consider (1) a

straight shock surface and (2) a trigonometric surface.

3D advection with straight shock (left) and curved shock (right) after tracking. Mesh is pulled apart from the shock surface.

Numerical Example: Euler Equations
Inviscid, compressible flow through area variation

• We demonstrate our framework’s optimal convergence rates with a h´ and p´convergence study.

10−2 10−1 100
10−12

10−7

10−2

h

E
ρ

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

ρ
(x
)

1D Euler nozzle convergence study with p “ 1, ..., 5 where h is the mesh size and Eρ is the solution error (left), and the
shock tracking solution comparing to shock capturing solution (right).

Inviscid, compressible flow over a smooth square

• We simulate supersonic flow (M “ 4) over a smooth square using p “ 2 solution and q “ 2 mesh. From
left to right are: the initial guess, the solution at 2, 4, 6, 9, 12, 15 iterations. The initial guess is the p “ 0
solution to the fixed-mesh.

Inviscid, compressible flow through scramjet intake

• The geometry here is the upper symmetric half of a scramjet intake, where the left boundary is the inlet.
We simulate a M “ 5 supersonic flow with p “ 2 solution and q “ 2 mesh.

• The first row shows the initial guess, and the second row shows the result after tracking.

Conclusions
We have extended our previous framework to deal with more complex flow problems, and we have greatly
improved robustness. We have also developed a mesh extrusion strategy for space-time problems to solve
for solutions in space and time simultaneously.

References

[1] Andrew Corrigan, Andrew D. Kercher, and David A. Kessler. A moving discontinuous galerkin finite element method for
flows with interfaces. International Journal for Numerical Methods in Fluids, 89(9):362–406, 2019.

[2] Andrew T. Corrigan, Andrew Kercher, and David A. Kessler. The Moving Discontinuous Galerkin Method with Interface
Condition Enforcement for Unsteady Three-Dimensional Flows.

[3] Matthew J. Zahr and Per-Olof Persson. An optimization-based approach for high-order accurate discretization of conser-
vation laws with discontinuous solutions. Journal of Computational Physics, 365:105 – 134, 2018.

[4] Matthew J. Zahr, Andrew Shi, and Per-Olof Persson. Implicit shock tracking using an optimization-based high-order
discontinuous Galerkin method. Journal of Computational Physics, 410, 2020.

Acknowledgments
This material is based upon work supported by AFOSR, award number FA9550-20-1-0236.


