> Construction of Parametrically-Robust CFD-Based Reduced-Order Models for PDE-Constrained Optimization

Matthew J. Zahr, David Amsallem, Charbel Farhat

Farhat Research Group Stanford University

25th June 2013 San Diego, CA 43rd AIAA Fluid Dynamics Conference and Exhibit

Motivation

• Complex, steady-state problems

- Real-time analyses
 - Model Predictive Control
- Many-query analyses
 - Optimization
 - Uncertainty Quantification
 - Routine Analysis

Projection-based Model Reduction

• High-Dimensional Model (HDM)

- Large-scale discretization of Navier-Stokes equation
- Parametric: shape parameter, Mach number, angle of attack
- Reduced-Order Model (ROM)
 - Offline
 - Sample HDM at multiple parameter configurations (training set)
 - Collect snapshots
 - Compress snapshots \rightarrow Reduced-Order Basis (ROB) \rightarrow reduce dimension of state vector
 - Project governing equations onto a related subspace
 - Online
 - Query ROM

ROM Optimization Applications

- For the use of ROMs as surrogates in optimization, the "offline" cost must not be too large
 - Only timing important is the clock-time from the beginning of the design process to the time the solution is obtained
 - No distinction between offline cost and online cost
- Well-known that ROMs lack robustness away from their training configurations
- Sample HDM only in regions of interest
 - Vicinity of current iterate
 - Vicinity of optimal solution
- Such regions not known apriori, i.e. in the "offline" phase
- Offline/online framework not natural in optimization context

High-Dimensional Model (HDM)

We are interested in solving the following discretized, steady-state PDE:

 $\mathbf{R}(\mathbf{w};\boldsymbol{\mu})=0,$

where $\mathbf{w} \in \mathbb{R}^N$ is the state vector (N typically very large) and $\boldsymbol{\mu} \in \mathbb{R}^p$ is the vector of parameters.

Examples

- Navier-Stokes equations
- Euler equations

Reduced-Order Model (ROM)

- Define a ROB $\Phi^{\mathcal{D}} \in \mathbb{R}^{N \times n_y}$ generated from snapshots of the HDM in the training set $\mathcal{D} = \{\mu_1, \mu_2, \dots, \mu_{n_s}\}$
- Model Order Reduction (MOR) assumption

$$\mathbf{w} = ar{\mathbf{w}} + \mathbf{\Phi}^{\mathcal{D}} \mathbf{w}_r$$

where $\mathbf{w}_r \in \mathbb{R}^{n_y}$ are the reduced coordinates and $n_y \ll N$.

• N equations, n_Y unknowns

$$\mathbf{R}(\bar{\mathbf{w}} + \mathbf{\Phi}^{\mathcal{D}}\mathbf{w}_r; \boldsymbol{\mu}) \approx 0$$

• Require residual \perp to the subspace spanned by a left basis, $\Psi \in \mathbb{R}^{N \times n_Y}$

$$\boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_r; \boldsymbol{\mu}) = 0$$

Reduced-Order Model (ROM)

- Define a ROB $\Phi^{\mathcal{D}} \in \mathbb{R}^{N \times n_y}$ generated from snapshots of the HDM in the training set $\mathcal{D} = \{\mu_1, \mu_2, \dots, \mu_{n_s}\}$
- Model Order Reduction (MOR) assumption

$$\mathbf{w} = ar{\mathbf{w}} + \mathbf{\Phi}^{\mathcal{D}} \mathbf{w}_r$$

where $\mathbf{w}_r \in \mathbb{R}^{n_y}$ are the reduced coordinates and $n_y \ll N$.

• N equations, n_Y unknowns

$$\mathbf{R}(\bar{\mathbf{w}} + \mathbf{\Phi}^{\mathcal{D}}\mathbf{w}_r; \boldsymbol{\mu}) \approx 0$$

• Require residual \perp to the subspace spanned by a left basis, $\Psi \in \mathbb{R}^{N \times n_Y}$

$$\boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_r; \boldsymbol{\mu}) = 0$$

Hyperreduction

 \bullet Despite reduced dimension, still requires operations scaling with N

$$\boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_r; \boldsymbol{\mu}) = 0$$

• Build reduced basis for residual $\mathbf{\Phi}_r \in \mathbb{R}^{N \times n_r}$

$$\mathbf{R} \approx \mathbf{\Phi}_r \mathbf{R}_r$$

• Determine residual reduced coordinates via *gappy* approximation

$$\mathbf{R}_{r} = \arg\min_{\mathbf{r} \in \mathbb{R}^{n_{r}}} \left| \left| \mathbf{Z}^{T} \mathbf{R} - \mathbf{Z}^{T} \mathbf{\Phi}_{r} \mathbf{r} \right| \right|$$

where $\mathbf{Z} \in \mathbb{R}^{N \times n_i}$ is a restriction operator

- Similar procedure for Jacobian
- Avoids online operations scaling with N

ROM-Constrained Optimization

PDE-Constrained Optimization

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & f(\mathbf{w}(\boldsymbol{\mu}), \boldsymbol{\mu}) \\ \text{subject to} & \mathbf{c}(\mathbf{w}(\boldsymbol{\mu}), \boldsymbol{\mu}) \leq 0 \end{array}$$
(1)

w is implicitly defined as a function of $\boldsymbol{\mu}$ via the equation $\mathbf{R}(\mathbf{w}; \boldsymbol{\mu}) = 0.$

ROM-Constrained Optimization

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & f(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}) \\ \text{subject to} & \mathbf{c}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}) \leq 0 \end{array} \tag{2}$$

 \mathbf{w}_r is implicitly defined as a function of $\boldsymbol{\mu}$ via the equation $\boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_r; \boldsymbol{\mu}) = 0.$

Progressively Updated ROMs for Optimization

- Initial Guess
- Optimization Iterates
- Optimal Solution
- HDM Samples

Sample HDM Apriori

Progressively Updated ROMs for Optimization

- Initial Guess
- Optimization Iterates
- Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

- Initial Guess
- Optimization Iterates
- Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- Optimization Iterates
- ★ Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- Optimization Iterates
- ★ Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- Optimization Iterates
- ★ Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- Optimization Iterates
- ★ Optimal Solution
- HDM Samples

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- **Optimization** Iterates
- Optimal Solution
- HDM Samples 0

Sample HDM Apriori

Zahr, Amsallem, Farhat

Sample HDM Progressively

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- Optimization Iterates
- ★ Optimal Solution
- HDM Samples

Sample HDM Progressively

Progressively Updated ROMs for Optimization

Progressively construct a ROM specialized to a particular region of the parameter space while using it to solve the optimization problem of interest

- Initial Guess
- **Optimization** Iterates
- Optimal Solution
- HDM Samples 0

Sample HDM Apriori

Sample HDM Progressively

Progressively Updated ROMs for Optimization

- Initial Guess
- **Optimization** Iterates
- Optimal Solution
- HDM Samples 0

Sample HDM Apriori

Progressively Updated ROMs for Optimization

- Initial Guess
- **Optimization** Iterates
- Optimal Solution
- HDM Samples 0

Sample HDM Apriori

Sequential Optimization Subproblem

Given $\Phi^{\mathcal{D}}$ generated from a very coarse sampling of parameters $\mathcal{D} = \{\mu_1, \mu_2, \dots, \mu_k\}$, solve

$$\begin{array}{ll} \underset{\boldsymbol{\mu}\in\mathbb{R}^{p}}{\text{minimize}} & f(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}}\mathbf{w}_{r}(\boldsymbol{\mu})) - \frac{\gamma}{2} \left| \left| \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}}\mathbf{w}_{r}(\boldsymbol{\mu}); \boldsymbol{\mu}) \right| \right|_{2}^{2} \\ \text{subject to} & \mathbf{c}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}}\mathbf{w}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}) \leq 0. \end{array}$$

$$(3)$$

 $\mathbf{w}_r(\boldsymbol{\mu})$ is implicitly defined via $\boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_r; \boldsymbol{\mu}) = 0.$

- Cost: Every iteration requires ROM solution.
- Does not require solution of HDM until sample is found

ROM-Constrained Sampling Algorithm

Algorithm 1 Progressively Updated ROMs for Optimization

Input: Initial ROB, $\Phi^{\mathcal{D}}$; $\gamma_0 \in \mathbb{R}_+$; $0 < \rho < 1$ **Output:** Solution to (2), μ^* (approximation to solution of (1)) 1: $\gamma = \gamma_0$

2: while optimality conditions of (2) not satisfied do

3: Solve
$$(3) \rightarrow \mu^*$$
 and \mathbf{w}_r^*

4: if
$$||\mathbf{R}(\bar{\mathbf{w}} + \mathbf{\Phi}\mathbf{w}_r^*, \boldsymbol{\mu}^*)|| > \epsilon$$
 then

5: Solve
$$\mathbf{R}(\mathbf{w}, \boldsymbol{\mu}^*) = 0 \to \mathbf{w}^*$$

6:
$$\mathcal{D} \leftarrow \mathcal{D} \cup \{ \boldsymbol{\mu} \}$$

- 7: Update $\mathbf{\Phi}^{\mathcal{D}}$ with new snapshots \mathbf{w}^*
- 8: end if

9:
$$\gamma = \rho \gamma$$

10: end while

Quasi-1D Euler Flow

Quasi-1D Euler equations:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{1}{A} \frac{\partial (A\mathbf{F})}{\partial x} = \mathbf{Q}$$

where

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho u \\ e \end{bmatrix}, \qquad \mathbf{F} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ (e+p)u \end{bmatrix}, \qquad \mathbf{Q} = \begin{bmatrix} 0 \\ \frac{p}{\partial A} \\ \overline{A} \frac{\partial x}{\partial x} \\ 0 \end{bmatrix}$$

- Semi-discretization \implies finite volumes with Roe flux and entropy corrections
- Full discretization \implies Backward Euler \rightarrow steady state

Nozzle Parametrization

Nozzle parametrized with *cubic splines* using 13 control points and constraints requiring

- convexity
- bounds on A(x)
- bounds on A'(x) at inlet/outlet

 $A''(x) \ge 0$ $A_l(x) \le A(x) \le A_u(x)$ $A'(x_l) \le 0, A'(x_r) \ge 0$

Numerical Experiment (Parameter Estimation)

Select μ^{ex} and let \mathbf{w}^{ex} be the solution of $\mathbf{R}(\mathbf{w}; \mu^{exact})$, then the parameter estimation problem is

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & f(\boldsymbol{\mu}) = \frac{1}{2} \left| \left| \bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_{r}(\boldsymbol{\mu}) - \mathbf{w}^{ex} \right| \right|_{2}^{2} \\ \text{subject to} & \mathbf{c}(\bar{\mathbf{w}} + \boldsymbol{\Phi}^{\mathcal{D}} \mathbf{w}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}) \leq 0 \end{array}$$

$$(4)$$

Optimization Comparison

- **HDMOpt**, whereby (4) is solved with standard PDE-constrained optimization technology (NAND framework) without introducing a reduced-order model,
- LHSOpt, whereby a ROM is built using standard techniques with parameter samples chosen based on a Latin Hypercube Sampling (LHS) of the feasible region; the HDM is replaced with the resulting ROM in (4),
- MergeOpt, whereby Algorithm 1 is applied to (4).

ROM Optimization Experiment Results

Table : Accuracy and performance comparison for variousPDE-constrained optimization methods for the shape optimizationproblem

	MergeOpt	LHSOpt 1	HDMOpt
μ^{ex} Error (%)	2.88	(3.32, 44.7, 16.4)	1.04×10^{-7}
\mathbf{w}^{ex} Error (%)	0.67	(0.84, 89.6, 12.3)	6.79×10^{-9}
# HDM	9	(12, 12, 12)	202
# ROM	770	(2, 613, 168)	-

 $^{1}(\min, \max, \max)$

Zahr, Amsallem, Farhat

Optimization-Based Sampling for ROMs

Experiment Results: LHSOpt

Figure : LHSOpt Nozzle Configuration Samples

Figure : Mach Distribution at LHSOpt Samples

Experiment Results: MergeOpt

Figure : MergeOpt Nozzle Configuration Samples

Figure : Mach Distribution at MergeOpt Samples

Conclusions and Future Work

- Proposed approach progressively updates a ROM while solving a PDE-constrained optimization problem using information regarding:
 - the physics of the problem
 - current state of the ROM
- Proposed approach *specializes* the ROM to the vicinity of the current iterate instead of attempting to make the ROM accurate in the entire parameter space
 - Requires fewer HDM queries than HDMOpt and LHSOpt
 - Achieves low errors in μ^{ex} and \mathbf{w}^{ex}
- Hyperreduction necessary to realize speedups

Acknowledgments

Department of Energy Computational Science Graduate Fellowship

