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Introduction

Multiphysics Optimization Key Player in Next-Gen Problems

Current interest in computational physics reaches far beyond analysis of a single
configuration of a physical system into design (shape and topology'), control,
and uncertainty quantification
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5% Emergence of additive manufacturing technologies has made topology optimizatiora
increasingly relevant, particularly in DOE.
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Introduction

Topology Optimization and Additive Manufacturing?

o Emergence of AM has made TO an
increasingly relevant topic

o AM+TO lead to highly efficient designs
that could not be realized previously

o Challenges: smooth topologies require
very fine meshes and modeling of
complex manufacturing process
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Model Order Red
Non-Quadratic T gion Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

PDE-Constrained Optimization I

Goal: Rapidly solve PDE-constrained optimization problem of the form
e, T ()
subject to r(u, p) =0

where
o 7 :R™ x R™ — R™ is the discretized partial differential equation
o J :R"™ x R™ — R is the objective function
o u € R™ is the PDE state vector

o p € R™ is the vector of parameters

red indicates a large-scale quantity, O(mesh)
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Model Order Reducti
Non-Quad
Shape Optimization: A

Optimization via Adaptive Model Reduction

Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers
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Model Order Reduct
Non-Quadra
Shape Optimization: Air

Optimization via Adaptive Model Reduction

Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Optimizer
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Projection-Based Model Reduction to Reduce PDE Size

@ Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

ou ou,
u~P,u — =P
where
°« &, = [d)i e cl)ﬁ"] € R™**u js the reduced basis
o u, € R* are the reduced coordinates of u
0 Ny > ku

o Substitute assumption into High-Dimensional Model (HDM), r(u, p) =0,
and project onto test subspace ¥,, € R™«*ku

U, Tr(®,u,, p)=0
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

o §S - infinite-dimensional trial space
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

S

o §S - infinite-dimensional trial space

o Sj - (large) finite-dimensional trial space
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

Sh
S

o § - infinite-dimensional trial space

o Sj - (large) finite-dimensional trial space

7 SK - (small) finite-dimensional trial space —_—
[% e SfcS,cS ODOE
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Few Global, Data-Driven Basis Functions v. Many Local Ones

o Instead of using traditional local
shape functions (e.g., FEM), use
global shape functions

o Instead of a-priori, analytical
shape functions, leverage data-rich
computing environment by using
data-driven modes
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Definition of ®,,: Data-Driven Reduction

State-Sensitivity Proper Orthogonal Decomposition (POD)

o Collect state and sensitivity snapshots by sampling HDM

X = [u(p) u(pz) - u(pn)]
Y= [S20n) Ge(uo) - Bo(un)]
o Use Proper Orthogonal Decomposition to generate reduced basis for each
individually
®x = POD(X)
Py =POD(Y)

o Concatenate to get reduced-order basis

®,=[®x ®v]

CSGF
N

Zahr PDE-Constrained Optimization with Adaptive ROMs



Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Definition of ¥,,: Minimum-Residual ROM

Optimization via Adaptive Model Reduction

Least-Squares Petrov-Galerkin (LSPG)? projection

Minimum-Residual Property

A ROM possesses the minimum-residual property if W, 7(®,u,, p) =0 is
equivalent to the optimality condition of (© > 0)

minimize ||[r(®,u,, p)llo
u,ERFu
o Implications
o Recover exact solution when basis not truncated (consistent?)
o Monotonic improvement of solution as basis size increases
o Ensures sensitivity information in ® cannot degrade state approximation®

o LSPG possesses minimum-residual property

CSGr
3[Bui-Thanh et al., 2008] X
4[Fahl, 2001]
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Definition of %iu Minimum-Residual Reduced Sensitivities

Traditional sensitivity analysis

-1

au'r:_ Z’I"'@Tar‘jé + &® T&Q
¥ Mk el ou u

N T
0%r or or
A
;m% udp " <8uq)“> op

+ Guaranteed to give rise to exact derivatives of ROM quantities of interest

- Requires 2nd derivatives of r

- P, %7: not guaranteed to be good approximate to full sensitivity g—z
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. . . . Model Order Reduction
Optimization via Adaptive Model Reduction Nom-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Definition of %iu Minimum-Residual Reduced Sensitivities

Minimum-residual sensitivity analysis

8/1; ou or T or - /or T or
= n||®,a— —|lle=—|| =Pu|] —Pu. —®, | —
op — deminl[®ua —Folle (8u ) ou <8u ) o
+ Minimum-residual property - @ua— is ©®-optimal solution to T in @,
w w
+ Does not require 2nd derivatives of r
du, , du, | :
S #+ v , i.e., it is not the true ROM sensitivity
op ow
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Model Order Reduction
Non-Quadratic Trust-R.
Shape Optimi

Optimization via Adaptive Model Reduction

Offline-Online Approach to Optimization
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Model Order Reduction
Non-Quadratic Trust-R.
Shape Optimi

Optimization via Adaptive Model Reduction

Offline-Online Approach to Optimization
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Schematic
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Model Order Re
Non-Quadratic Trus g
Shape Optimization: A Design

Optimization via Adaptive Model Reduction

Numerical Demonstration: Offline-Online Breakdown

o Parameter reduction (®,,)
o apriori spatial clustering
e k, =200
o Greedy Training
e 5000 candidate points (LHS)
e 50 snapshots
o Error indicator: ||r(@,ur, ®.pr||)
e State reduction (®,,)
s POD
o ky =25
o Polynomialization acceleration

Material Basis

e
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Model Order Reduction
Non-Quadratic Trust-Region
Shape Optimization: Airfo

Optimization via Adaptive Model Reduction

Numerical Demonstration: Offline-Online Breakdown

Optimal Solution (ROM) Optimal Solution (HDM)
HDM Solution | ROB Construction | Greedy Algorithm | ROM Optimization
2.84 x 10% s 5.48 x 107 s 1.67 x 10° s 30 s
1.26% 24.36% 74.37% 0.01%
DM Optimization: 1.97 x 10* s o
DOE
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Schematic

p-space

Breakdown of Computational Effort OggéF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Optimizer
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction
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Optimizer

Compress

ROM

Schematic

p-space

Breakdown of Computational Effort eggéF

PDE-Constrained Optimization with Adaptive ROMs



Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction
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Model Order Reduction
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Shape Optimization: Airfoil Design
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Nonlinear Trust-Region Framework with Adaptive Model Reduction
o Collect snapshots from HDM at sparse sampling of the parameter space
o Build ROB ®,, from sparse training
@ Solve optimization problem

minimize J(®uur, p)
w,€RFu, pER™H
subject to Qgr(ﬁuur, n) =0

Ir(®uur, p)l| <A

o Use solution of above problem to enrich training, adapt A using standard
trust-region methods, and repeat until convergence

CSGF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Ingredients of Proposed Approach [Zahr and Farhat, 2014]

o Minimum-residual ROM (LSPG) and minimum-error sensitivities

o J(u, p)=J(Puu,, p) and %(u, u) = %(@uuh p) for training
parameters p
o Reduced optimization (sub)problem
s o
A S
subject to \IluTr(‘I’uuT, pn)=0

I (Punr, w3 <e

o Efficiently update ROB with additional snapshots or new translation vector
o Without re-computing SVD of entire snapshot matrix

@ o Adaptive selection of € — trust-region approach
2 N DOE
w
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Optimization via Adaptive Model Reduction
Shape Optimization: Airfoil Design

Compressible, Inviscid Airfoil Inverse Design

Pressure discrepancy minimization (Euler equations)

NACAO0012: Initial RAE2822: Target

Pressure field for airfoil configurations at Mo = 0.5, a = 0.0°
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Model Order Re
Non-Quadratic T egion Solver
Shape Optimizat rfoil Design

Optimization via Adaptive Model Reduction

ROM-Constrained Optimization Solver Recovers Target

\ \ 0.6
— Initial
—_— Target
- - - HDM-based optimization
ROM-based optimization [ 0.4

Distance Transverse to Centerline

| | |
0 01 02 03 04 05 06 07 08 09 1

(%‘j Distance along airfoil [~
3 0 DOE
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- . . . . Model Order Re
Optimization via Adaptive Model Reduction Non-Quadratic Ti

egion Solver
Shape Optimizat rfoil Design

ROM Solver Requires 4x Fewer HDM Queries
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Model Order Re
Non-Quadratic T egion Solver
Shape Optimizat rfoil Design

Optimization via Adaptive Model Reduction

At the Cost of ROM Queries
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Optimization via Adaptive Model Reduction

HDM solution (Drag = 142.336kN) ROM solution (Drag = 142.304kN)
e HDM: 70 x 10° DOF, 2hr on 1024 Intel Xeon E5-2698 v3 cores (2.3GHz)
e ROM: 170s on 2 Intel i7 cores (1.8GHz)

o Relative error in drag 0.022%

CPU-time speedup greater than 2.15 x 10*

o Washabaugh, Zahr, Farhat (AIAA, 2016) QGJF
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Reduction of -Dimensional Parameter Space
Elastic Nonlin

Large-Scale, Constrained Optimization e e Oplim astiani oD Cantilover

PDE-Constrained Optimization II

Goal: Rapidly solve PDE-constrained optimization problem of the form
iz, TCu 1)
subject to r(u, p) =0
c(u, p) >0

where
o 7 :R™ x R™ — R™ is the discretized partial differential equation
o J :R"™ x R™ — R is the objective function
o c:R"™ x R™ — R" are the side constraints
o u € R™ is the PDE state vector
o 1 € R™ is the vector of parameters

CSGF
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\1 Parameter Space

Large-Scale, Constrained Optimization B - .

Problem Setup

@ 16000 8-node brick elements, 77760 dofs
o Total Lagrangian form, finite strain, StVK °
o St. Venant-Kirchhoff material
8 @ Sparse Cholesky linear solver (CHOLMOD®)
o Newton-Raphson nonlinear solver
40 o Minimum compliance optimization problem
minimize foxtLu
wER™w, peR™H
1
subject to Vip) < 5V0
r(u, p) =0

o Gradient computations: Adjoint method
Optimizer: SNOPT [Gill et al., 2002]

DOE
5[Bonet and Wood, 1997, Belytschko et al., 2000] QC\SGF
6[Chen et al., 2008]
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear “onstraints

Large-Scale, Constrained Optimization e e Oplim astiani oD Cantilover

Restrict Parameter Space to Low-Dimensional Subspace

o Restrict parameter to a low-dimensional subspace

APy

o ®, = [¢L . qbﬁ“] € R™#**u is the reduced basis

o p- € RF* are the reduced coordinates of p
o ny > ky

@ Substitute restriction into reduced-order model to obtain
o, r(®,u., ®op)=0

o Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
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Reduction al Parameter Space
Elastic Non 5

Large-Scale, Constrained Optimization Topology O ‘antilever

Restrict Parameter Space to Low-Dimensional Subspace

i
Sail

A i i HiT

e s
. -
p-space Background mesh
£
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Reduction of High-Dimensional Parameter Space

Large-Scale, Constrained Optimization Neeliaeer Com

Restrict Parameter Space to Low-Dimensional Subspace

p-space Macroelements
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Reduction of Hi Dimensional Parameter Space
Elastic Nonline: > 5 ints

Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilover

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

o Selection of ®,, amounts to a
restriction of the parameter space
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Reduction of High-Di enslonal Parameter Space

Large-Scale, Constrained Optimization e e Oplim astiani oD Cantilover

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

o Selection of ®,, amounts to a
restriction of the parameter space

o Adaptation of @, should attempt .
to include the optimal solution in
the restricted parameter space,
ie. p* €col(®,)

o Adaptation based on first-order
optimality conditions of HDM
optimization problem .

DOE
OCSGF
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization e e Ot et o S Cantilaver

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

Lagrangian

Karush-Kuhn Tucker (KKT) Conditions”

~
DOE

OCSGF
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Reduction of High-Di enslonal Parameter Space

Large-Scale, Constrained Optimization e e Oplim astiani oD Cantilover

Lagrangian Gradient Refinement Indicator

o From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:
VuL(p, X)=0

o Use |V, L(p, A)| as indicator for refinement of discretization of p-space
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR, [Zahr and Farhat, 2014]

minimize T (®uuy, ®pup,)
u, €ERFu, p, eRFH

subject to c(®,u,, ®,p,)>0
r(®uuy, ®up,) =0
||r(®utsr, (I)MP'T)H <A

CSGF
N
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR, [Zahr and Farhat, 2014]

minimize T (®uuy, ®pup,)
u, €ERFu, p, eRFH

subject to c(®,u,, ®,p,)>0
r(®uuy, ®up,) =0
||r(®utsr, (I)MP'T)H <A
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR, [Zahr and Farhat, 2014]

minimize T (®uuy, ®pup,)
u, €ERFu, p, eRFH

subject to c(®,u,, ®,p,)>0
r(®uuy, ®up,) =0
||r(®utsr, (I)MP'T)H <A
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR, (CNQTR-MOR)

minimize T (@uu,, ®up,)— ytT1
u,.€RFu, p,.€RF1, tERme
subject to c(Putty, Pup,) >t
r(Puuy, ®pp,) =0
I (Rurer, upr)l| <A
t<0
(o)
8 E 7
) B
@ N~/
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR, (CNQTR-MOR)

minimize J(@yur, ®,p)—yt"1
w,€RFu | p,.€RFr | teRme
subject to c(Putty, Pup,) >t

r(Puuy, ®pp,) =0
I (Rurer, upr)l| <A
t <0

CSGF
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR, (CNQTR-MOR)

minimize J(@yur, ®,p)—yt"1
w,€RFu | p,.€RFr | teRme
subject to c(Putty, Pup,) >t

r(Puuy, ®pp,) =0
I (Rurer, upr)l| <A
t <0
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR, (CNQTR-MOR)

minimize J(@yur, ®,p)—yt"1
w,€RFu | p,.€RFr | teRme
subject to c(Putty, Pup,) >t

r(Puuy, ®pp,) =0
I (Rurer, upr)l| <A
t <0

CSGF
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO A e i e o Cantilayer

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR, (CNQTR-MOR)

minimize J(@yur, ®,p)—yt"1
w,€RFu | p,.€RFr | teRme
subject to c(Putty, Pup,) >t
r(Puuy, ®pp,) =0
I (Rurer, upr)l| <A
t <0
' -\\
\ /
0 o
3 B
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Reduction of nal Parameter Space
Elastic Nonlin e s

Large-Scale, Constrained Optimization Y T

Compliance Minimization: 2D Cantilever

@ 16000 8-node brick elements, 77760 dofs

e Total Lagrangian form, finite strain, StVK®
o St. Venant-Kirchhoff material
@ Sparse Cholesky linear solver (CHOLMOD?)
o Newton-Raphson nonlinear solver
o Minimum compliance optimization problem
e T
25 Loinimize, Sext™ u
1
subject to Vip) < §V0
40
r(u, p) =0

o Gradient computations: Adjoint method
o Optimizer: SNOPT [Gill et al., 2002]

(%‘j e Maximum ROM size: k, <5 >
: Oooe

) CSGF
[ 8[Bonet and Wood, 1997, Belytschko et al., 2000] S
9[Chen et al., 2008]
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Reduction of Dimensional Parameter Space
Elastic Nonlin “onstraints

Large-Scale, Constrained Optimization ety Greibetitiom 575 Crystiieve

Order of Magnitude Speedup to Suboptimal Solution

HDM CNQTR-MOR + @, adaptivity
HDM Solution | HDM Gradient | HDM Optimization
7458s (450) 4018s (411) 8284s
HDM

Elapsed time = 19761s

HDM Solution | HDM Gradient | ROB Construction | ROM Optimization

1099 69 835 (9) 7275 (56) 30s (3676)
[( 3 CNQTR-MOR + &, adaptivity 0
iy Elapsed time = 2197s, Speedup ~ 9x

DOE
CSGF
N/
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Reduction of nal Parameter Space
Elastic Nonlin s

Large-Scale, Constrained Optimization Topology Opti e Ofc N -

Better Solution after 64 HDM Evaluations

CNQTR-MOR + @,, adaptivity

o CNQTR-MOR + @, adaptivity: superior approximation to optimal
solution than HDM approach after fixed number of HDM solves (64)

@ Reasonable option to warm-start HDM topology optimization

e
0 DOE
CSGF
N/
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Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilover

Macro-element Evolution

Iteration 0 (1000)
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Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilover

Macro-element Evolution

Iteration 1 (977)
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- Space

Large-Scale, Constrained Optimization Topology ophm‘zatmn DY -

CNQTR-MOR + adaptivity

DOE
CSGF
N/
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High-Order Methods for Optimization of Conservation Laws

o Derived, implemented fully discrete adjoint method for globally high-order
discretization of conservation laws on deforming domains

o Incorporation of time-periodicity constraints

minimize  W(U, ) minimize  W(U, )
U7 12 U, j73
subject to  J,(U,pn) =2.5 subject to  J,(U,pn) =2.5
Uz, 0) =U(z) Uz, 0)=U(z, T)
ou ou
S+ V- FU, VU)=0 SV FU, VU) =0
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Energetically Optimal Flapping under Thrust Constraint

Energy = Energy = Energy =
9.4095839014e4-00 4.9475637668e+00 4.6110004198e+-00
Thrust = Thrust = Thrust =
1.76604514000e-01 2.50000000000e+-00 2.50000000000e-+00
i . Optimal
Initial Optimal Control Shape /Control

DOE
CSGF
N/

(%‘j Collaborators: Per-Olof Persson (UCB, LBNL), Jon Wilkening (UCB, LBl\ﬁ
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Faster Computational Physics: Adaptive Data-Driven Discretization

(a) Vorticity around heaving airfoil ~ (b) Potential Q!, Q9 decomposition (c) Idealized sparsity structure

@ Methods to transform features in global basis functions - minimize reliance
on local shape functions

o Linear algebra for sparse operators with a few dense rows and columns

o Integration mesh to mitigate “variational crimes” O\D OF

CSGF
N
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Faster Solvers: Adaptive Reduction of High-Dimensional Optimization

minimize  f(u) minimize  f(®,p,)
17 Y
subject to ¢(p) =0 subject to (@, pu,) =0

s

(a) Sub-optimal sol'n (b) [V L(Ppptr, A (c) Optimal solution

o Prove global convergence and develop into general, constrained optimizer
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Fewer Queries: Second-Order Methods for Accelerated Convergence

Hessian information highly desired in optimization and UQ, but expensive due to
O(N,,) required linear system solves

Sensitivity /Adjoint Method for Computing Hessian

2y 9:g 92J Ou N douT 927  ouT 82 du
dpjdp,  OpjOpy,  OpjOu Ouy  Opy Oudpy  Opj  Oudu Opy
g Or —t o%r 8%r Au 8%r Ou 8%r . ou ou

ou Ou OOy + OpjO0u Opy, + OpkOu O + udu Opj — Oug
where

Ou _or=t or
Ouj  Ou  Op,

o Fast, multiple right-hand side linear solver by building data-driven subspace

25 ) ) or 1 or T ~
@ for image of 9u ' 9a ODOE

CSGF
o Similar to Krylov methods that use a-priori, analytical subspace N
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Approaching Many-Query, Extreme-Scale Computational Physics

o Framework introduced for accelerating PDE-constrained
optimization problem with side constraints and
large-dimensional parameter space

@ Speedup attained via adaptive reduction of state space
and parameter space

o Concepts borrowed from constrained optimization theory

o Applied to aerodynamic design and topology optimization

e Order of magnitude speedup speedup observed
o Competitive warm-start method

A =
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Standard Difficulty: Binary Solutions

(a) Without penalization

) s
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize fextTu
wERw , peR™H

1
subject to Viw) < §V0
r(u, p?) =0
p € [0,1]%

(a) Without penalization

4

Effect of Penalization

K « (p°)"K*

o K¢ : eth element stiffness matrix |

% 9z
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize fextTu
wERw , peR™H

1
subject to Viw) < §V0
r(u, pf) =0

(a) Without penalization
p € [0,1]%

s

@ o K¢ : eth element stiffness matrix | é ~

z DOE

Cé; (b) With penalization GCSGF
~

4

Effect of Penalization

K « (p°)"K*
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Standard Difficulty: Binary Solutions

Implication for ROM

o From parameter restriction, p? = (®,p,)?
o Precomputation relies on separability of ®,, and .
o Separability maintained if (®,,u, )P = @, pu?

o Sufficient condition: columns of ®,, have non-overlapping non-zeros
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Efficient Evaluation of Nonlinear Terms

@ Due to the mixing of high-dimensional and low-dimensional terms in the
ROM expression, only limited speedups available

1'7-(’11;7«, ,Ll;,) = ‘buTr((I)uura q);tl'l’r) =0

o To enable pre-computation of all large-dimensional quantities into
low-dimensional ones, leverage Taylor series expansion

[rr(wr, pr)]; = D?m(ﬂr)m + Dzljm(uT’ X ) jm + D?jkm(ur X Uy X ) jkm

3
+ D3t (Wr X wr X Uy X ) i = 0

where

83rt

D? —_—
Ou,0ug0us

ijklm —

(a, ¢Zl)(¢i¢ X ¢‘L X ¢Z X ¢L)tpqs
o Related work: [Rewienski, 2003, Barrault et al., 2004,

%j Barbi¢ and James, 2007, Nguyen and Peraire, 2008, ’O\DOE

Chaturantabut and Sorensen, 2010, Carlberg et al., 2011] ({GJF
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Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

Ongoing Research Projects
Future Research

A

A

T Tr

c(u, p) >0

c(®yu,, ®,pu) >0 | Au>b | Arp, > b,

Goal: Given u,, ., 7 >0, A, > 0, estimate 7 > 0, A >0 to compute

VL( @, A, T) =

oJ
op

Jdc
7(¢)uura (I);uu'r) - %

(Byuy, ®,p)TA—ATF

Lagrange Multiplier Estimates

T = arg min
72>0

ATT—<

oJ

o

oc =
(Putr, Ppupr) — 2—(Puur, q’pﬂr)T)‘> H

op

Zahr

—OE
CSGF
N
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Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyiy

o Gradient Filtering 19

0T _ Zuies Hushisin (a) Without projection/filteri
- a mnou rojection €erin.
Opu, Bk D jes, Hij proJ &

@ Nodal Projection

Zjesk T;H;

He =
Yjes, Hi

[
0 DOE
CSGF
N

Zahr PDE-Constrained Optimization with Adaptive ROMs

O H: = rmin — dist(k, 1)




Ongoing Research Projects
Future Research

Conclusion

Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyiy

o Gradient Filtering 19

0T _ Zuies Hushisin (a) Without projection/filteri
- a mnou rojection €erin.
Ok Bk D jes, Hij bre) &

@ Nodal Projection @

> jes, Tit;

Sy NG

(%j (b) With projection 0 DOE

CSGF
N/

O H: = rmin — dist(k, 1)
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Standard Difficulty: Checkerboarding

CSGF
N/
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Standard Difficulty: Checkerboarding

,..__.\

.

.

.

.

.

.

.

.

.

.

.

.

.

.
——
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Standard Difficulty: Checkerboarding

Implication for ROM

o Nonlocality introduced through projection/filtering

o . influences volume fraction of all elements within 7,;, of element/node e
o Clashes with requirement on ®,, of columns with non-overlapping non-zeros
°

Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of ryin

Next: Helmholtz filtering

: DOE
ég Gradient of Lagrangian Updated Macroelements C\SG,F
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