A Nonlinear Trust Region Framework for PDE-Constrained Optimization Using Progressively-Constructed Reduced-Order Models

Matthew J. Zahr and Charbel Farhat

Institute for Computational and Mathematical Engineering Farhat Research Group Stanford University

SIAM Conference on Computational Science and Engineering MS4: Adaptive Model Order Reduction Salt Lake City, UT March 14, 2015

4 **A b b b b**

1 Motivation

2 PDE-Constrained Optimization

3 ROM-Constrained Optimization

4 Numerical Experiments

- Airfoil Design
- Rocket Nozzle Design

5 Conclusion

Motivation

PDE-Constrained Optimization ROM-Constrained Optimization Numerical Experiments Conclusion References

Reduced-Order Models (ROMs)

ROMs as Enabling Technology

- Many-query analyses
 - Optimization: design, control
 - Single objective, single-point
 - Multiobjective, multi-point
 - Uncertainty Quantification
 - Optimization under uncertainty
- Real-time analysis
 - Model Predictive Control (MPC)

Figure: Flapping Wing (Persson et al., 2012)

Application I: Compressible, Turbulent Flow over Vehicle

- Benchmark in automotive industry
- Mesh
 - 2.890,434 vertices
 - 17,017,090 tetra
 - 17.342.604 DOF
- CFD
 - Compressible Navier-Stokes
 - DES + Wall func
- Single forward simulation
 - ≈ 0.5 day on 512 cores
- Desired: shape optimization
 - unsteady effects
 - minimize average drag

(a) Ahmed Body: Geometry (Ahmed et al, 1984)

(b) Ahmed Body: Mesh (Carlberg et al, 2011

Motivation PDE-Constrained Optimization

ROM-Constrained Optimization Numerical Experiments Conclusion References

Application II: Turbulent Flow over Flapping Wing

- Biologically-inspired flight
 - Micro aerial vehicles
- Mesh
 - 43,000 vertices
 - 231,000 tetra (p = 3)
 - 2,310,000 DOF

• CFD

- Compressible Navier-Stokes
- Discontinuous Galerkin
- Desired: shape optimization + control
 - unsteady effects
 - maximize thrust

Figure: Flapping Wing (Persson et al., 2012)

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

 $\begin{array}{ll} \underset{\mathbf{w} \in \mathbb{R}^{N}, \ \boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & f(\mathbf{w}, \boldsymbol{\mu}) \\ \text{subject to} & \mathbf{R}(\mathbf{w}, \boldsymbol{\mu}) = 0 \end{array}$ Discretize-then-optimize

where $\mathbf{R} : \mathbb{R}^N \times \mathbb{R}^p \to \mathbb{R}^N$ is the discretized (steady, nonlinear) PDE, **w** is the PDE state vector, $\boldsymbol{\mu}$ is the vector of parameters, and N is **assumed to be very large**.

Definition of Φ : Proper Orthogonal Decomposition

• MOR assumption

$$\mathbf{w} - ar{\mathbf{w}} pprox \mathbf{\Phi} \mathbf{y} \qquad \Longrightarrow \qquad rac{\partial \mathbf{w}}{\partial \mu} pprox \mathbf{\Phi} rac{\partial \mathbf{y}}{\partial \mu}$$

State-Sensitivity¹ POD

• Collect state and sensitivity snapshots by sampling HDM

$$\mathbf{X} = \begin{bmatrix} \mathbf{w}(\boldsymbol{\mu}_1) - \bar{\mathbf{w}} & \mathbf{w}(\boldsymbol{\mu}_2) - \bar{\mathbf{w}} & \cdots & \mathbf{w}(\boldsymbol{\mu}_n) - \bar{\mathbf{w}} \end{bmatrix}$$
$$\mathbf{Y} = \begin{bmatrix} \frac{\partial \mathbf{w}}{\partial \boldsymbol{\mu}}(\boldsymbol{\mu}_1) & \frac{\partial \mathbf{w}}{\partial \boldsymbol{\mu}}(\boldsymbol{\mu}_2) & \cdots & \frac{\partial \mathbf{w}}{\partial \boldsymbol{\mu}}(\boldsymbol{\mu}_n) \end{bmatrix}$$

• Use Proper Orthogonal Decomposition to generate reduced bases from each *individually*

$$\Phi_{\mathbf{X}} = \text{POD}(\mathbf{X})$$
$$\Phi_{\mathbf{Y}} = \text{POD}(\mathbf{Y})$$

• Concatenate to get ROB

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_{\mathbf{X}} & \mathbf{\Phi}_{\mathbf{Y}} \end{bmatrix}$$

¹(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014)

E GF

æ

ROM-Constrained Optimization

ROM-constrained optimization:

$$\begin{array}{ll} \underset{\mathbf{y}\in\mathbb{R}^{n},\ \boldsymbol{\mu}\in\mathbb{R}^{p}}{\text{minimize}} & f(\bar{\mathbf{w}}+\boldsymbol{\Phi}\mathbf{y},\boldsymbol{\mu})\\ \text{subject to} & \boldsymbol{\Psi}^{T}\mathbf{R}(\bar{\mathbf{w}}+\boldsymbol{\Phi}\mathbf{y},\boldsymbol{\mu})=0 \end{array}$$

where

$$\mathbf{R}_r(\mathbf{y}, \boldsymbol{\mu}) = \boldsymbol{\Psi}^T \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi} \mathbf{y}, \boldsymbol{\mu}) = 0$$

is the reduced-order model

Progressive/Adaptive Approach

Progressive Approach to ROM-Constrained Optimization

- $\bullet\,$ Collect snapshots from HDM at $sparse\,\, sampling$ of the parameter space
 - Initial condition for optimization problem
- ${\scriptstyle \bullet}\,$ Build ROB ${\scriptstyle \Phi}\,$ from sparse training
- Solve optimization problem

$$\begin{array}{ll} \underset{\mathbf{y} \in \mathbb{R}^{n}, \ \boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & f(\bar{\mathbf{w}} + \mathbf{\Phi}\mathbf{y}, \boldsymbol{\mu}) \\ \text{subject to} & \Psi^{T} \mathbf{R}(\bar{\mathbf{w}} + \mathbf{\Phi}\mathbf{y}, \boldsymbol{\mu}) = 0 \\ & \frac{1}{2} ||\mathbf{R}(\bar{\mathbf{w}} + \mathbf{\Phi}\mathbf{y}, \boldsymbol{\mu})||_{2}^{2} \leq \epsilon \end{array}$$

• Use solution of above problem to enrich training and repeat until convergence

Progressive Approach

Figure: Schematic of Algorithm

Zahr and Farhat Progressive ROM-Constrained Optimization

Progressive Approach

(a) Idealized Optimization Trajectory: Parameter Space

Zahr and Farhat Progressive ROM-Constrained Optimization

Progressive Approach

Ingredients of Proposed Approach (Zahr and Farhat, 2014)

• Minimum-residual ROM (LSPG) and minimum-error sensitivities

•
$$f_r(\mu) = f(\mu), \ \frac{\mathrm{d}f_r}{\mathrm{d}\mu}(\mu) = \frac{\mathrm{d}f}{\mathrm{d}\mu}(\mu)$$
 for training parameters μ

• Reduced optimization (sub)problem

$$\begin{array}{l} \underset{\mathbf{y} \in \mathbb{R}^{n}, \ \boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} \quad f(\bar{\mathbf{w}} + \boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\mu}) \\ \text{subject to} \quad \boldsymbol{\Psi}^{T} \mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\mu}) = 0 \\ \quad \frac{1}{2} ||\mathbf{R}(\bar{\mathbf{w}} + \boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\mu})||_{2}^{2} \leq \epsilon \end{array}$$

- Efficiently update ROB with additional snapshots or new translation vector
 - Without re-computing SVD of entire snapshot matrix
- $\bullet\,$ Adaptive selection of $\epsilon \to {\rm trust-region}$ approach

Adaptive Selection of Trust-Region Radius

Let

 $\mu_{-1}^* = \mu_0^{(0)} =$ initial condition for PDE-constrained optimization $\mu_j^* =$ solution of *j*th reduced optimization problem

Define

$$\rho_j = \frac{f(\mathbf{w}(\boldsymbol{\mu}_j^*), \boldsymbol{\mu}_j^*) - f(\mathbf{w}(\boldsymbol{\mu}_{j-1}^*), \boldsymbol{\mu}_{j-1}^*)}{f(\mathbf{w}_r(\boldsymbol{\mu}_j^*), \boldsymbol{\mu}_j^*) - f(\mathbf{w}_r(\boldsymbol{\mu}_{j-1}^*), \boldsymbol{\mu}_{j-1}^*)}$$

Trust-Region Radius

$$\epsilon' = \begin{cases} \frac{1}{\tau} \epsilon & \rho_k \in [0.5, 2] \\ \epsilon & \rho_k \in [0.25, 0.5) \cup (2, 4] \\ \tau \epsilon & \text{otherwise} \end{cases}$$

SG

- 4 同 ト - 4 目 ト - 4 目

Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)

• Additional snapshots to be incorporated

$$\mathbf{\Phi}' = \operatorname{POD}(\begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix})$$
 given $\mathbf{\Phi} = \operatorname{POD}(\mathbf{X})$

• Offset vector modified

$$\mathbf{\Phi}' = \operatorname{POD}(\mathbf{X} - \tilde{\mathbf{w}}\mathbf{1}^T) \qquad \text{given} \qquad \mathbf{\Phi} = \operatorname{POD}(\mathbf{X} - \bar{\mathbf{w}}\mathbf{1}^T)$$

Compute new basis using singular factors of existing basis complete without complete recomputation

Fast, Low-Rank Updates to ROB

Compute (Brand, 2006)

$$\mathbf{\Phi}' = \text{POD}(\mathbf{X} + \mathbf{A}\mathbf{B}^T) \qquad \text{given} \qquad \mathbf{\Phi} = \text{POD}(\mathbf{X})$$

- Large-scale SVD $(N \times n_{\text{snap}})$ replaced by small SVD (independent of N)
- Error incurred by using truncated basis $\propto \sigma_{n+1}$
 - Usually small in MOR applications

E GF

Airfoil Design Rocket Nozzle Design

Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field (b) RAE2822: Pressure field ($M_{\infty} = 0.5$, $(M_{\infty} = 0.5, \alpha = 0.0^{\circ})$ • Pressure discrepancy minimization (Euler equations)

• Target Configuration: RAE2822

Zahr and Farhat

Progressive ROM-Constrained Optimization

Airfoil Design Rocket Nozzle Design

Initial/Target Airfoils: Scaled

DOE CSGF

Airfoil Design Rocket Nozzle Design

Shape Parametrization

Figure: Shape parametrization of a NACA0012 airfoil using a *cubic* design element

DOE CSGF

< (1) × (1)

< 3

Airfoil Design Rocket Nozzle Design

Shape Parametrization

Figure: Shape parametrization of a NACA0012 airfoil using a *cubic* design element

・ロト ・ 同ト ・ ヨト ・ ヨ

DOE

Airfoil Design Rocket Nozzle Desigr

Optimization Results

Zahr and Farhat Progressive ROM-Constrained Optimization

Airfoil Design Rocket Nozzle Design

Optimization Results

DOE CSGF

Airfoil Design Rocket Nozzle Design

Optimization Results

Airfoil Design Rocket Nozzle Design

Optimization Results

Airfoil Design Rocket Nozzle Design

Optimization Results

	HDM-based optimization	ROM-based optimization
# of HDM Evaluations	29	7
# of ROM Evaluations	-	346
$rac{ oldsymbol{\mu}^*-oldsymbol{\mu}^{RAE2822} }{ oldsymbol{\mu}^{RAE2822} }$	$2.28\times 10^{-3}\%$	$4.17\times 10^{-6}\%$

Table: Performance of the HDM- and ROM-based optimization methods

Airfoil Design Rocket Nozzle Design

Quasi-1D Euler Flow

Quasi-1D Euler equations:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{1}{A} \frac{\partial (A\mathbf{F})}{\partial x} = \mathbf{Q}$$

where

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho u \\ e \end{bmatrix}, \qquad \mathbf{F} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ (e+p)u \end{bmatrix}, \qquad \mathbf{Q} = \begin{bmatrix} 0 \\ \frac{p}{A} \frac{\partial A}{\partial x} \\ 0 \end{bmatrix}$$

- Semi-discretization
 - Finite Volume Method: constant reconstruction, 500 cells
 - Roe flux and entropy correction
- Full discretization
 - Backward Euler
 - Pseudo-transient integration to steady state

4 A 1

Airfoil Design Rocket Nozzle Design

Nozzle Parametrization

Nozzle parametrized with $cubic\ splines\ using\ 13\ control\ points\ and\ constraints\ requiring$

- convexity
- bounds on A(x)
- bounds on A'(x) at inlet/outlet

$$A''(x) \ge 0$$
$$A_l(x) \le A(x) \le A_u(x)$$
$$A'(x_l) \le 0, A'(x_r) \ge 0$$

Zahr and Farhat Progressive ROM-Constrained Optimization

Airfoil Design Rocket Nozzle Design

Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter μ^* such that the flow achieves some optimal or desired state w^*

$$\begin{array}{ll} \underset{\mathbf{w} \in \mathbb{R}^{N}, \ \boldsymbol{\mu} \in \mathbb{R}^{p}}{\text{minimize}} & ||\mathbf{w}(\boldsymbol{\mu}) - \mathbf{w}^{*}|| \\ \text{subject to} & \mathbf{R}(\mathbf{w}, \boldsymbol{\mu}) = 0 \\ & \mathbf{c}(\mathbf{w}, \boldsymbol{\mu}) < 0 \end{array}$$

where ${\bf c}$ are the nozzle constraints.

Airfoil Design Rocket Nozzle Design

Objective Function Convergence

(b) Convergence (CPU Time)

Airfoil Design Rocket Nozzle Design

Hyper-Reduced Optimization Progression

Figure: Parameter (μ) Progression

DOE CSGF

Ξ

Airfoil Design Rocket Nozzle Design

Optimization Summary

	HDM-Based Opt	HROM-Based Opt
Rel. Error in μ^* (%)	1.82	5.26
Rel. Error in w^* (%)	0.11	0.12
# HDM Evals	27	8
# HROM Evals	0	161
CPU Time (s)	3361.51	2001.74

Summary

Summary

- Introduced progressive, nonlinear trust region framework for reduced optimization
- Demonstrated approach on canonical problem from aerodynamic shape optimization
 - Factor of 4 fewer queries to HDM than standard PDE-constrained optimization approaches
- Preliminary results on toy problem regarding extension of framework to hyperreduction

< 🗇 🕨 🔺 🚍 🕨

References I

Afanasiev, K. and Hinze, M. (2001).

Adaptive control of a wake flow using proper orthogonal decomposition. Lecture Notes in Pure and Applied Mathematics, pages 317–332.

Amsallem, D., Zahr, M. J., and Farhat, C. (2012).

Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering.

Arian, E., Fahl, M., and Sachs, E. W. (2000).

Trust-region proper orthogonal decomposition for flow control. Technical report, DTIC Document.

Brand, M. (2006), Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, 415(1):20-30.

Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008).

Model reduction for large-scale systems with high-dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270-3288.

Carlberg, K. (2014).

Adaptive *h*-refinement for reduced-order models. *arXiv preprint arXiv:1404.0442*.

Carlberg, K., Bou-Mosleh, C., and Farhat, C. (2011).

Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations.

International Journal for Numerical Methods in Engineering, 86(2):155-181.

Carlberg, K. and Farhat, C. (2008).

A compact proper orthogonal decomposition basis for optimization-oriented reduced-order models. AIAA Paper, 5964:10-12.

イロト イポト イヨト

References II

Carlberg, K. and Farhat, C. (2011).

A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. International Journal for Numerical Methods in Engineering, 86(3):381-402.

Carlberg, K., Ray, J., and Waanders, B. v. B. (2012).

Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting,

Dihlmann, M., Drohmann, M., and Haasdonk, B. (2011).

Model reduction of parametrized evolution problems using the reduced basis method with adaptive time partitioning.

Drohmann, M. and Carlberg, K. (2014).

The romes method for statistical modeling of reduced-order-model error.

Fahl, M. (2001).

Trust-region methods for flow control based on reduced order modelling. PhD thesis, Universitätsbibliothek.

Golub, G. H. and Van Loan, C. F. (2012).

Matrix computations, volume 3.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011).

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 53(2):217-288.

A., Borggaard, J. T., and Pelletier, D. (2009).

Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decompose Journal of Fluid Mechanics, 629:41-72.

References III

Hinze, M. and Matthes, U. (2013).

Model order reduction for networks of ode and pde systems. In System Modeling and Optimization, pages 92-101. Springer.

Kunisch, K. and Volkwein, S. (2008).

Proper orthogonal decomposition for optimality systems. ESAIM: Mathematical Modelling and Numerical Analysis, 42(1):1.

Lassila, T. and Rozza, G. (2010).

Parametric free-form shape design with pde models and reduced basis method. Computer Methods in Applied Mechanics and Engineering, 199(23):1583-1592.

LeGresley, P. A. and Alonso, J. J. (2000).

Airfoil design optimization using reduced order models based on proper orthogonal decomposition. In Fluids 2000 conference and exhibit, Denver, CO.

Manzoni, A. (2012).

Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. PhD thesis, EPFL.

Manzoni, A., Quarteroni, A., and Rozza, G. (2012).

Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids, 70(5):646-670.

Persson, P.-O., Willis, D., and Peraire, J. (2012).

Numerical simulation of flapping wings using a panel method and a high-order navier-stokes solver. International Journal for Numerical Methods in Engineering, 89(10):1296-1316.

Rozza, G. and Manzoni, A. (2010).

Model order reduction by geometrical parametrization for shape optimization in computational fluid dynamics. In *Proceedings of ECCOMAS CFD*.

References IV

Sirovich, L. (1987).

Turbulence and the dynamics of coherent structures. i-coherent structures. ii-symmetries and transformations. iii-dynamics and scaling.

Quarterly of applied mathematics, 45:561-571

Washabaugh, K. and Farhat, C. (2013).

A family of approaches for the reduction of discrete steady nonlinear aerodynamic models. Technical report, Stanford University.

Yue, Y. and Meerbergen, K. (2013).

Accelerating optimization of parametric linear systems by model order reduction. SIAM Journal on Optimization, 23(2):1344-1370.

Zahr, M. J. and Farhat, C. (2014).

Progressive construction of a parametric reduced-order model for pde-constrained optimization. International Journal for Numerical Methods in Engineering, Special Issue on Model Reduction(http://arxiv.org/abs/1407.7618).

Zahr, M. J., Washabaugh, K., and Farhat, C. (2014). Basis updating in model reduction. International Journal for Numerical Methods in Engineerin.

