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Thought Experiment: Which motion ...

o Has time-averaged z-force identically equal to 07

o Requires least energy to perform?
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Thought Experiment: Which motion ...

o Has time-averaged z-force identically equal to 07

o Requires least energy to perform?

Energy = 9.4096 Energy = 0.45695 Energy = 4.9475
x-force = -0.8830 x-force = 0.000 x-force = -12.50
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Real-World Application: Micro Aerial Vehicles (MAV)

Unmanned flying vehicle
o usually flapping propulsion system
o wingspan between 7.4cm and 15cm
o speed between < 15m/s

o Military applications
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e surveillance, reconnaissance
o quiet, resemble small bird from distance

Civilian applications
o Crowd monitoring, survivor search,
pipeline inspection
Difficulties
o Thrust and lift requirements
e Structural constraints
o Stability and control considerations
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Time-Dependent PDE-Constrained Optimization

o Optimization of systems that are inherently
dynamic or without a steady-state solution

o Introduction of fully discrete adjoint
method emanating from high-order
discretization of governing equations

@ Coupled with numerical optimization

o Time-periodicity constraints

e )
Vertical Windmill
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Abstract Formulation of Problem of Interest

Goal: Find the solution of the unsteady PDE-constrained optimization problem

minimize  J(U, p)
U, p
subject to C(U,u) <0
oU
il .F
5 +V
where
o U(x,t)
°p
Ty
° J(U,u)=/ /J’(U7u,t)d5dt
To r

o C(U,p) = / v / (U, 1) dS dt

Zahr, Persson, Wilkening

(U,VU) =0 in v(p,t)

PDE solution

design/control parameters
objective function

constraints
N
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Adjoint Method for PDE-Constrained Optimization

High-Order Discretization of PDE-Constrained Optimization

o Continuous PDE-constrained optimization problem

minimize  J(U, p)

U, p
subject to C(U,pu) <0
oUu
a0 +V-FU,VU)=0 in v(u,t)
o Fully discrete PDE-constrained optimization problem
. (0) (Ne) (1) (Ny)
u(0)7I_Tl_l,n1ig}%%2RN”, W AC TR TR SR S N 1))
k:§1), - kiNt)ERN'“',
MER"#
subject to C(u(o)7 ey uNY), k§1), A k:gNt), p) <0

ul® — uo(p) =0

ul® —um=D £ 3 kM =
=1 o~

6 -
) MK — Atyr (w1, €07 =0 Fones
A/
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Adjoint Method for PDE-Constrained Optimization

Highlights of Globally High-Order Discretization

e Arbitrary Lagrangian-Eulerian Formulation: . )
Map, G(-, p,t), from physical v(u,t) to reference V' %4’
oU. X, .
—>| +Vx - Fx(Ux, VxUx) =0 =
ot | x X
o Space Discretization: Discontinuous Galerkin Mapping-Based ALE
0
M = r(u, mt)

o Time Discretization: Diagonally Implicit RK

S
u(”) = u(nfl) + Z bik;gn) DG Discretization
=1
C1 all
ng") = At,r (ugn), o, tEn_l)) c2 | az1 a2
o Quantity of Interest: Solver-consistent .Cs as1 Gsa - Gss
" o1 b2 - bs
0 N, N,
F(u( )a s au( f)v kl IR kg f)) Butcher Tableau for DIRK
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Adjoint Method for PDE-Constrained Optimization

Generalized Reduced-Gradient Approach - Schematic

Optimizer drives, Primal returns Qol values, Dual returns Qol gradients

PRIMAL PDE

MESH MOTION

e
DUAL PDE DOE
CSGF
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Adjoint Method for PDE-Constrained Optimization

Generalized Reduced-Gradient Approach - Schematic

Optimizer drives, Primal returns Qol values, Dual returns Qol gradients

PRIMAL PDE

m
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Adjoint Method for PDE-Constrained Optimization

Generalized Reduced-Gradient Approach - Schematic

Optimizer drives, Primal returns Qol values, Dual returns Qol gradients

PRIMAL PDE

| MESH MOTION
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Adjoint Method for PDE-Constrained Optimization

Generalized Reduced-Gradient Approach - Schematic

Optimizer drives, Primal returns Qol values, Dual returns Qol gradients

PRIMAL PDE

| MESH MOTION

DUAL PDE DOE
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Adjoint Method for PDE-Constrained Optimization

Generalized Reduced-Gradient Approach - Schematic

Optimizer drives, Primal returns Qol values, Dual returns Qol gradients

PRIMAL PDE

MESH MOTION

DUAL PDE DOE
CSGF
N/

Persson, Wilkening High-Order, Time-Dependent Aerodynamic Optimization



Adjoint Method for PDE-Constrained Optimization

Adjoint Method to Compute Qol Gradients

Consider the fully discrete output functional F(u(”), k:g"), n)

o
o Represents either the objective function or a constraint
o The total derivative with respect to the parameters u, required in the
context of gradient-based optimization, takes the form
Ny (n) s (n
N n= aU(n) 0“ n=11i= 1 k(n) Ou
ou™ ok
o The sensitivities, 3 and (,)7' , are expensive to compute, requiring the
7z e
solution of n, linear evolution equations
dF
o Adjoint method: alternative method for computing 1 that require one
n

linear evolution evoluation equation for each quantity of interest, F'

CSGF
N/
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Adjoint Method for PDE-Constrained Optimization

Fully Discrete Adjoint Equations: Dissection

@ Linear evolution equations solved backward in time

o Primal state/stage, u§"> required at each state/stage of dual problem

o Heavily dependent on chosen ouput

AV — or T
Ou(Nt)

ar T & or -
(n—1) _ y(n) _or or 4 -
A = + 8u("_1) + Z Atn ou (U,/ , M, tn—l + CzAtn> o

7

MT k(™ = or T—l—b')\(" Za At — ( o tn1+ c;At )Tn(n)
i - 8u(Nt) 7 j s My Up—1 J n 5

o Gradient reconstruction via dual variables

3 ~

2 dF OF TBuo (mT or . () (n) 0
— = — 4+ + At u, °, 5 ti DoE
&3} o Z Z ul ) esss
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Adjoint Method for PDE-Constrained Optimization

Energetically Optimal Flapping under z-Impulse Constraint

3T
minimize  — / / f-axdSdt
H 27 Jr

3T
subject to / / f-e1dSdt=q
27 Jr

U(x,0) =Ul(x)
%JJFV-F(U,VU) =0

(j Airfoil schematic, kinematic description

Zahr, Persson, Wilkening

o Isentropic, compressible,
Navier-Stokes

o Re = 1000, M = 0.2

e y(t), O(t), c(t) parametrized via
periodic cubic splines
e Black-box optimizer: SNOPT
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Adjoint Method for PDE-Constrained Optimization

Optimal Control - Fixed Shape

Fized Shape, Optimal Rigid Body Motion (RBM), Varied xz-Impulse

Energy = 9.4096 Energy = 0.45695
z-impulse = -0.1766 z-impulse = 0.000

>

Optimal RBM

[%;] Initial Guess J. = 0.0

Energy = 4.9475
z-impulse = -2.500

Optimal RBM

Jr=-2.5
DOE
CSGF
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Zahr, Persson, Wilkening High-Order, Time-Dependent Aerodynamic Optimization



Adjoint Method for PDE-Constrained Optimization

Optimal Control, Time-Morphed Geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed Geometry (TMG),
Varied x-Impulse

Energy = 9.4096 Energy = 0.45027 Energy = 4.6182
z-impulse = -0.1766 z-impulse = 0.000 z-impulse = -2.500

Optimal RBM/TMG Optimal RBM/TMG

25 ) Initial Guess ~_
% Jr =0.0 Jr = —-2.5 ODOE
3 CSGF
A/
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Adjoint Method for PDE-Constrained Optimization

Optimal Control, Time-Morphed Geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed Geometry (TMG),
x-Impulse = —2.5

Energy = 9.4096 Energy = 4.9476 Energy = 4.6182
z-impulse = -0.1766 z-impulse = -2.500 z-impulse = -2.500

>

Optimal RBM Optimal RBM/TMG

£3 ) Initial Guess _ — I~y
%ﬁ Jy = —2.5 Jp = —2.5 agg&
s N~/
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Adjoint Method with Periodicity Constraint

Time-Periodic Solutions Desired when Optimizing Cyclic Motion

o To properly optimize a cyclic, or periodic problem, need to simulate a
representative period

o Necessary to avoid transients that will impact quantity of interest and may
cause simulation to crash

o Task: Find initial condition, ug, such that flow is periodic, i.e. uNt) = u

DOE
OCSGF
N/

Zahr, Persson, Wilkening High-Order, Time-Dependent Aerodynamic Optimization



Adjoint Method with Periodicity Constraint

Time-Periodic Solutions Desired when Optimizing Cyclic Motion
o) J

o

Vorticity around airfoil with flow initialized from steady-state (left) and
time-periodic flow (right)

0 I 0 -
- .
% —20 - = % —9l |
2 40 1A
40 4l |
—60 ! ! ! ! !
0 2 4 0 2 4

~

time time Q DOE
Time history of power on airfoil of flow initialized from steady-state (—e—) CSGF
from a time-periodic solution (——)

Zahr, Persson, Wilkening High-Order, Time-Dependent Aerodynamic Optimization



Adjoint Method with Periodicity Constraint

Definition of Time-Periodic Solution of Fully Discrete PDE

o Recall fully discrete conservation law

w® = wo(p)

O C Z bikE")
i=1

ugn) e Zaijk§n)
j=1

Me™ = At,r (ug”), fy tao1 + ciAtn)
o Discrete time-periodicity is defined as

u(N‘)(uo) = ug

& ez,
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Adjoint Method with Periodicity Constraint

Time-Periodicity Constraints in PDE-Constrained Optimization

Recall fully discrete PDE-constrained optimization problem

. N 1 N
u(O),r.I.l.Tn;I(IJ\lfggRNu7 J(u(O)v T u’( t)v kg )7 RS kg t)> “)
kY, L kN eRNw

HER™H
subject to C(u(o), e, utV), kgl), ol ngt), un) <0

u® — uo(w) = 0

) — w4 3™ =0

i=1
ngn) — At,r (uz(-n), o, t§n71)> =0

DOE
GCSGF
N/
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Adjoint Method with Periodicity Constraint

Time-Periodicity Constraints in PDE-Constrained Optimization

Slight modification leads to fully discrete periodic PDE-constrained optimization

inimi Jw®, a0 g
u(o),r_r.ljn;glvggwu’ (W™, o w Nk, kY, )
k(ll)’ e ngt)GRNu’

ueR"”
subject to C(u(o), e, utV), kgl), ol ngt), un) <0

2@ _ (V) —

) — w4 3™ =0

=1

ngn) — At,r (u(-n), I, t(n71)> =0

[ 7
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Adjoint Method with Periodicity Constraint

Adjoint Method for Periodic PDE-Constrained Optimization

o Following identical procedure as for non-periodic case, the adjoint equations
corresponding to the periodic conservation law are

orF T
(Ne) — y(0)
A =2 +8u(Nt)
o T C or T
" = A (n) _ (n)
AT =20 4 5 e +ZAfn67(ui By b AL )R
=1
T
T = _OF n or () (n)
M K’i - 8U(N’) +bA( +Za]1At a ( -, ll’7 n— 1+C]At > K'/]

Jj=i
@ Dual problem is also periodic

@ Solve linear, periodic problem using Krylov shooting method

~~

DOE
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Adjoint Method with Periodicity Constraint

Generalized Reduced-Gradient Approach - Periodic Case

PRIMAL PERIODIC PDE

MESH MOTION

DUAL PERIODIC PDE

DOE
GCSGF
N/
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Adjoint Method with Periodicity Constraint

Energetically Optimal Flapping: x-Impulse, Time-Periodicity Constraint

T
minimize  — / / f-xdSdt o Isentropic, compressible,
H TO r Navier-Stokes
subject to / / f-e1rdSdt=q ® Re = 1000, M = 0.2
0 JIr e y(t), O(t), c(t) parametrized via
U(z,0) =U(z,T) periodic cubic splines
88% +V.F(U,VU) =0 e Black-box optimizer: SNOPT

DOE
Airfoil schematic, kinematic description QCSGF

Zahr, Persson, Wilkening High-Order, Time-Dependent Aerodynamic Optimization



Adjoint Method with Periodicity Constraint

Solution of Time-Periodic, Energetically Optimal Flapping

Energy = 9.4096 Energy = 0.45695
z-impulse = -0.1766 z-impulse = 0.000

CSGF
N/
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Sensitivity Method for Time-Periodic Solutions

Newton-Krylov Shooting Method for Time-Periodic Solutions

o Apply Newton’s method to solve nonlinear system of equations
R(ug) = u™) (ug) —ug =0
o Nonlinear iteration defined as
ug < ug — J(ug) " R(ug)

ouNt)
8U0

where J(ug) =

ouNt)
8UQ

e Krylov method to solve J(ug) ' R(ug) only requires matrix-vector products

is a large, dense matrix and expensive to construct

ouNt)
8u0

J(ug)v =
~_

DOE
GCSGF
N/
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Sensitivity Method for Time-Periodic Solutions

ouN?)
A

Fully Discrete Sensitivity Method to Compute D

o Linear evolution equations solved forward in time

e Primal state/stage, ul(»") required at each state/stage of sensitivity problem

o Heavily dependent on chosen vector

au(())
V=7
Uo
ou™ du=1) . oK™
= bl ?

811,0 v 6UQ ’U-l-; 8’lL0 v

8kz(n) or (n) (n—1) 81.1,("_1) : 6’{7](”)
MG = Btuge (' m, 777) TLO”*;“”T

& ez,
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Sensitivity Method for Time-Periodic Solutions

Newton-GMRES Converges Faster Than Fixed Point Iteration

[JuV) — ug]|

10%

10t

107t

1073

10°

10-7

10~9

—o—  Fixed Point Iteration

—o— Newton-GMRES: € = 102
—— Newton-GMRES: ¢ = 1073
—— Newton-GMRES: € = 104

109

10 10 0005
iterations (primal solves) ({Gj
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Sensitivity Method for Time-Periodic Solutions

High-Order Methods To Go Beyond Multiple Choice

Energy = 9.4096 Energy = 0.45695 Energy = 4.9475
z-impulse = -0.1766 z-impulse = 0.000 z-impulse = -2.500

>

o Fully discrete adjoint method for e Framework, solver, and
globally high-order adjoint-based gradient computation
(‘ discretization of conservation laws introduced for incorporating F~_
7 ; on deforming domains tirr?e-.per.iodicity constrainte ggé':
\ optimization ~
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Domain Deformation

o Require mapping = G(X, u,t) to obtain derivatives Vx G, %Q
o Shape deformation, via Radial Basis Functions (RBFs), applied to reference

domain
X' =X+ wd(|X —cf))

VAVAD,
AVAVAY
BRI

VAYAV,)
Wi
NRORK]

s
SR

A

1A,

INAR
N

Undeformed Mesh
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Shape Deformation

P YAYAN A%y
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configuration

e Rigid body translation, v, and rotation, @, applied to deformed
X//
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Domain Deformation

@ Spatial blending between deformation with and without rigid body motion
to avoid large velocities at far-field

@ =bX)X'+(1-bX))X"

o b:R"s¢ — R is a function that smoothly transitions from 0 inside a circle of
radius R; to 1 outside circle of radius R>

0 DOE
Blended Mesh CSGF
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Arbitrary Lagrangian-Eulerian Description of Conservation Law

o Introduce map from fixed reference domain V' to physical domain v(pu, t)
o A point X € V is mapped to x(p,t) = G(X, p,t) € v(p,t)

o Introduce transformation

nda

Ux =gU
Fx =gG™'F - UxG 'vx N %,__.

where
G=VxG, g=detG, vx = 89‘ x, J_,

%
X1

9%

_ . -1
;i Vx - (9G 've)
o Transformed conservation law?
ouUu
£ | T Fx(Ux, VxUx) <0 ~
b x FoRss
(™ N

LGeometric Conservation Law (GCL) satisfied by introduction of g
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Spatial Discretization: Discontinuous Galerkin

@ Re-write conservation law as @ Roe’s method for inviscid flux
first-order system e Compact DG (CDG) for
i flux
U viscous
“ar +Vx - Fx(Ux, Qx)=0 o Semi-discrete equations
X
Qx —VxUx =0 ou
ME =r(u,p,t)

o Discretize using DG u(0) = uo(p)

(Aq —~
3 2: @ and m ODOE
- Stencil for CDG, LDG, and BR2 fluxes CSGF
N
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Temporal Discretization: Diagonally Implicit Runge-Kutta

o Diagonally Implicit RK (DIRK) are implicit Runge-Kutta schemes defined
by lower triangular Butcher tableau — decoupled implicit stages

@ Overcomes issues with high-order BDF and IRK

o Limited accuracy of A-stable BDF schemes (2nd order)
o High cost of general implicit RK schemes (coupled stages)

0) —
u = Up
(n) S e | au
_ C a a
w® = =D ¢ Z bikzg”) 2 | G21  G22
=1
‘ C Gs1 Q52 o Ass
n) —1 (n) s s
u = w4 Tag k] b b - b,
—1
J Butcher Tableau for DIRK scheme

High-Order, Time-Dependent Aerodynamic Optimization
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Globally High-Order Discretization

o Fully Discrete Conservation Law
u® = ug(p)

u™ = - 4 Z bikE")

=1
ugn) =D 4 Z aijkﬁ»")
j=1
ngn) = At,r (ugn), w, th_q + ciAtn>

o Fully Discrete Output Functional

F(u(o),...,u(N‘)7k:§1),...,ng‘)7u)

CSGF
N/
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Consistent Discretization of Output Quantities

o Consider any quantity of interest of the form

T
}'(U,u):/Tf/rf(U,u,t)det

o Define fj, as the high-order approximation of the spatial integral via the DG
shape functions

fh(u(t)au7t): Z Z wif(uei(t)au'vt)z/rf(Ua/J'at)dS

Te€Tr i€QT,

@ Then, the quantity of interest becomes

Ty
]:(Ual'l’) ~ ]:h(ual'l') = . fh(u(t)’y"t) dt
' o~
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Consistent Discretization of Output Quantities

o Semi-discretized output
functional

i
Fn(u, p,t) = . fh(u(t),u,t) dt

o Differentiation w.r.t. time leads
to the

j:h(u’“’t) = fh(u(t)7l'l'at)

o Write semi-discretized output
functional and conservation law
as monolithic system

m [0 1) )= )

o Apply DIRK scheme to obtain

w™ = (=1 4 Zbikl(n)

i=1

R =FY +Zb fu (uf™, o t"7Y)

ul(n) N Zaiikj('n)
j=1
Mk(n) At r( (n), n, t (n 1))
where tgn_l) =t,_1+ AL,
@ Only interested in final time
n n AR

Fu™ k™M, p) = 7N ODOE

CSGF

N

Zahr, Persson, Wilkening
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Adjoint Equation Derivation - Outline

o Define auxiliary PDE-constrained optimization problem

inimi (0) (N) (1) (M) 7
u(0>,TTn;%1%2RNu7 Fa'™, ..., «\) k77, .0, kY, @)
B k(N eRNu
subject to 7O =4 — (@) =0

1=1
RO 1k — Atyr (u”, i, £770) =0

o Define Lagrangian

L™, k" A gM) = F-XO) f“”—ZA(”)T*”) ZZKW R™

CSGF
N/
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Adjoint Equation Derivation - Outline

@ The solution of the optimization problem is given by the
Karush-Kuhn-Tucker (KKT) sytem

oL oL oL oL
Gum = S =0 w0 w70
ok; oK,
.. . 3£ 8
o The derivatives w.r.t. the state variables, ——— =0 and —— =0, yield
7
the fully discrete adjoint equations
T
AN — oF
OuNe)

T
A=) — \() | ﬁ +2At —( u; ", b 1+CiAtn) K"

T
T (n_ OF y(n) Ay O ) , T
@ Mk, = ) + b A +ZaﬂAtnau (uj My tpo1 +chtn) K
J Fones
(™ N
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Gradient on Manifold of PDE Solutions via Dual Variables

o Equipped with the solution to the primal problem, (™ and kE"), and dual
problem, A(™ and nf.”), the output gradient is reconstructed as

N,
dr 8F TO0u
an o A O+ZAt Z"”" M £n>7 o 1))
du™ k™
o Independent of sensitivities, and —*
op ow
0
o Dependent on initial condition sensitivity, %
I
e Compute )\(O)T% directly if uo is solution of steady-state equation
R(ug,pu) =0 .
_\©@©TOuo _ {%_TA(0>] oR
(‘ ow ou ou
o]
E,; s
N
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Isentropic, Compressible Navier-Stokes Equations

o Applications in this work focused on compressible Navier-Stokes equations

Op 0
ot T o, ) =0
8 8 - Grij -
g(puz) + a—xi(puiuj +p) =+ 9r, fori=1,2,3
0 0 T
at(pE)—i_aixl(u](pE—i_p)) axj +a ](U’]Tl])

o Isentropic assumption (entropy constant) made to reduce dimension of PDE

system from ngq + 2 to ngg + 1

Time-Dependent Aerodynamic Optimization
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Trajectories of y(t), 6(t), and c(t)

Initial guess ( ), optimal control/fixed shape (¢ = 0.0: ——, ¢ = 1.0: —8—, ¢ = 2.5:

@—k), and optimal control and time-morphed geometry (¢ = 0.0: - ®-, ¢ = 1.0: - .F'\
(j:z& -4, ODOE
(74

CSGF
N/
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Instantaneous Power (P") and z-Force (F!) Exerted on Airfoil

time time

Initial guess (——), optimal control/fixed shape (¢ = 0.0: —8—, ¢ = 1.0: —8—, ¢ = 2.5:
——), and optimal control and time-morphed geometry (¢ = 0.0: - @-, ¢ = 1.0: - B~

q=205: -4A-).
£
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Convergence of Total Work (W) and z-Impulse (J,) Exerted on Airfoil

Optimization convergence history
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At the Cost of Linearized Solves
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Stability of Periodic Orbits of Fully Discrete PDE

o Let uf(p) be a fully discrete time-periodic solution of the PDE

o Define the operator
u N (ug; p) = N (5 p) 00w (ug; p)
o A Taylor expansion of u¥*) about the periodic solution leads to

HuV)

e () )+ Au - O(||Aul?)

w™ (u(p); ) = ui(p) +
where time-periodicity of uj(p) was used

o Repeated application of leads to

au(Nt)

w N (uh () + Auy p) = uf(p) + a

(i (10); u>] Aut O] Al

. 0 DOE
less than unity chF

HuVt)
[%‘] o Periodic orbit is stable if eigenvalues of ST(uS (n); p) have magnitude.
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Conclusion

@ Derived adjoint equations for DG-DIRK discretization of general
conservation laws on deforming domain

o Introduced fully discrete adjoint method for computing gradients of
quantities of interest

e Framework demonstrated on the computation of energetically optimal
motions of a 2D airfoil in a flow field with constraints

o Introduced fully discrete sensitivity equations and used Newton-Krylov
shooting method to compute time-periodic flows

e Framework and solver introduced for incorporating time-periodicity
constraints in optimization problem

o Next steps: 3D, multiphysics, model reduction
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