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Introduction

Multiphysics Optimization Key Player in Next-Gen Problems

Current interest in computational physics reaches far beyond analysis of a single
configuration of a physical system into design (shape and topology'), control,
and uncertainty quantification
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5% IEmergence of additive manufacturing technologies has made topology optimizatimﬂ
increasingly relevant, particularly in DOE.
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Introduction

Topology Optimization and Additive Manufacturing?

o Emergence of AM has made TO an
increasingly relevant topic

o AM+TO lead to highly efficient designs
that could not be realized previously

o Challenges: smooth topologies require
very fine meshes and modeling of
complex manufacturing process

oé
2MIT Technology Review, Top 10 Technological Breakthrough 2013
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

PDE-Constrained Optimization I

Goal: Rapidly solve PDE-constrained optimization problem of the form
iz, T ()
subject to r(u, p) =0

where
o 7 :R™ x R™ — R™ is the discretized partial differential equation
o J :R"™ x R™ — R is the objective function
o u € R™ is the PDE state vector

o p € R™ is the vector of parameters

red indicates a large-scale quantity, O(mesh)
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Model Order Reduction
Non-Quadrs st-R n Solver
Shape Optimization: A 1 Design

Optimization via Adaptive Model Reduction

Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

[ Dual PDE
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Model Order Reduction
Non-Quadratic Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Optimizer
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Projection-Based Model Reduction to Reduce PDE Size

e Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

ou ou,
u~Pd,u — =P
where
o &, = [d)i e cl)ﬁ"] € R™**u js the reduced basis
o u, € R* are the reduced coordinates of u
0 Ny > ku

o Substitute assumption into High-Dimensional Model (HDM), r(u, p) =0,
and project onto test subspace ¥,, € R™=*ku

U, Tr(®,u,, p)=0

A CSGF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

o § - infinite-dimensional trial space

CSGF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

S

o § - infinite-dimensional trial space

o Sj - (large) finite-dimensional trial space
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Connection to Finite Element Method: Hierarchical Subspaces

Sh
S

o § - infinite-dimensional trial space

o Sj - (large) finite-dimensional trial space

7 SK - (small) finite-dimensional trial space —_—
[% e SfcS,cS ODOE
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Few Global, Data-Driven Basis Functions v. Many Local Ones

o Instead of using traditional local
shape functions (e.g., FEM), use
global shape functions

o Instead of a-priori, analytical
shape functions, leverage data-rich

computing environment by using
\ ) data-driven modes
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Definition of ®,,: Data-Driven Reduction

State-Sensitivity Proper Orthogonal Decomposition (POD)

o Collect state and sensitivity snapshots by sampling HDM

X = [u(p) w(p2) - ulpn)]
Y= [52m) 5(ma) - Ge(ma)]

o Use Proper Orthogonal Decomposition to generate reduced basis for each
individually
P x = POD(X)
®y =POD(Y)

o Concatenate and orthogonalize to get reduced-order basis

@, = QR ([u(p) Gw) ®x @v])
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Definition of ¥,,: Minimum-Residual ROM

Optimization via Adaptive Model Reduction

Least-Squares Petrov-Galerkin (LSPG)? projection

Minimum-Residual Property

A ROM possesses the minimum-residual property if W,,7(®,u,, p) =0 is
equivalent to the optimality condition of (© > 0)

minimize ||[r(®,u,, p)llo
u,ERFu
o Implications
o Recover exact solution when basis not truncated (consistent?)
o Monotonic improvement of solution as basis size increases
o Ensures sensitivity information in ®., cannot degrade state approximation*

o LSPG possesses minimum-residual property

CSGr
3[Bui-Thanh et al., 2008] X
4[Fahl, 2001]
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Shape Optin

Optimization via Adaptive Model Reduction

Offline-Online Approach to Optimization

Schematic °
p-space
Breakdown of Computational Effort 0‘ \DOE
CSGF
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Offline-Online Approach to Optimization
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Model Order Reduction
Non-Quadrati rust-R
Shape Optimi

Optimization via Adaptive Model Reduction

Offline-Online Approach to Optimization
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Model Order Reduction
Non-Quadrati rust-R
Shape Optimi

Optimization via Adaptive Model Reduction

Offline-Online Approach to Optimization
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Model Order Reduction
Non-Quadratic
Shape Optimiza

Optimization via Adaptive Model Reduction

Numerical Demonstration: Offline-Online Breakdown

e Parameter reduction (®,,) 25

o apriori spatial clustering

o k. =200
o Greedy Training

e 5000 candidate points (LHS)

o 50 snapshots

o Error indicator: ||r(®uur, ®pprll
e State reduction (®,,)

o POD

o ky =25

o Polynomialization acceleration

40

Stiffness maximization, volume constraint

CSGF

Parametrization with k,, = 200
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Numerical Demonstration: Offline-Online Breakdown

Optimal Solution (ROM) Optimal Solution (HDM)
HDM Solution | ROB Construction | Greedy Algorithm | ROM Optimization
2.84 x 10% s 5.48 x 107 s 1.67 x 10° s 30 s
1.26% 24.36% 74.37% 0.01%
DM Optimization: 1.97 x 10* s o
DOE
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Schematic

p-space

Breakdown of Computational Effort OggéF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Compress

Schematic
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HDM ROB
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Breakdown of Computational Effort egg(E;F
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Based Trust-Region Framework for Optimization

Optimizer

Compress

ROM

Schematic
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build ®,, from sparse training

N
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build ®,, from sparse training
2: Step computation: Approximately solve the reduced optimization problem
with non-quadratic trust-region for a candidate, fiy

minimize J(®,u,, @) subject to  WIyr(®,u,, p) =0
w,.ERFu  peR™m

I (Puur, p)ll < Ak

[
0 DOE
CSGF
N
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build ®,, from sparse training
2: Step computation: Approximately solve the reduced optimization problem
with non-quadratic trust-region for a candidate, fiy

minimize J(®,u,, @) subject to  WIyr(®,u,, p) =0
w,.ERFu  peR™m

I (Puur, p)ll < Ak

3: Step acceptance: Compute

o = T (w(per), ) — T (wlfor), fur)
T (@ (pr), i) — T (@owr (fur), fir)

it  pr>mn then  pp1=pr  else  ppp=pp  end if

[
0 DOE
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N
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. . . : Model Order Reduction
Optimization via Adaptive Model Reduction Non-Quadratic Trust.Region Solver
Shape Optimization: Airfoil Design

Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build ®,, from sparse training

2: Step computation: Approximately solve the reduced optimization problem
with non-quadratic trust-region for a candidate, fiy

minimize J(®,u,, @) subject to  WIyr(®,u,, p) =0
w,.ERFu  peR™m

I (Puwr, p)|l < A
3: Step acceptance: Compute

T (w(pr), ) — T (w(for), fur)
T (Puur(pr), pr) — T (Pour(fir), fir)

it  pr>mn then  pp1=pr  else  ppp=pp  end if
4: Trust-region update:

Pk =

if  pp<m then Apt1 € (0,9]|r(®uur(fr), fr)]]] end if
i pee(mm)  then Ay € plIF(@yun(i), )l A end if

@%x i puzm then  Axy1 € [Ag, Apax] end if
3 0 DOE
C CSGF

N
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. . . : Model Order Reduction
Optimization via Adaptive Model Reduction Non-Quadratic Trust.Region Solver
Shape Optimization: Airfoil Design

Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build ®,, from sparse training

2: Step computation: Approximately solve the reduced optimization problem
with non-quadratic trust-region for a candidate, fiy

minimize J(®,u,, @) subject to  WIyr(®,u,, p) =0
w,.ERFu  peR™m

I (Puwr, p)|l < A
3: Step acceptance: Compute

T (w(pr), ) — T (w(for), fur)
T (Puur(pr), pr) — T (Pour(fir), fir)

it  pr>mn then  pp1=pr  else  ppp=pp  end if
4: Trust-region update:

Pk =

if  pp<m then Apt1 € (0,9]|r(®uur(fr), fr)]]] end if

it pee(mom)  then A € bllr(®uu (). @)l Ax] end if

@%‘j if Pk = 12 then Ak—l—l S [AkaAmax] f%d if
) ) . ou . ODOE

@5: Model update: Enrich ®,, with w(fy) and %(uk) csef
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Residual-Based Trust-Region Interpretation

Let (1) = r(Luur(p), p) and Ay = 70 ()" 50 (i) = QrAZQr -

Then, to first order®,

) or
rellz = 5 (ee) (i = )llz = [l = allan < A

[tﬁ ~
: Annotated schematic of trust-region: q; = Qre; and \; = eZTAkei ODOE

CSGF
N/

Sassuming 7(py) = 0, i.e., ROM exact at trust-region center
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Convergence to Critical Point of Unreduced Problem

Lim-Inf Convergence to Critical Point of Unreduced Optimization Problem

Let {pr} be a sequence of iterations produced by the Algorithm and suppose

o J(u(pr), pr) = T (Puur(pr), pk)
o There exists £ > 0 such that

IVT (wlar), i) = VI (Ruer (pr), )] < EIVI (Purer(pr), )|
o There exists ¢ > 0 such that for all g € {p | ||7(Prur(p), p)|| < Ag}

1T (u(p), ) = T (Ruur(p), p)| < (|7 (Ruur(p), wll-

liminf ||V.T (w(per), px)l| =0
k—o0
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

Assumptions of Convergence Theory Hold

If py is a training point, then

e Minimum-residual formulation for the
primal reduced-order model implies

T (u(pr), pr) = T (Purr(pk), px)

o Minimum-residual formulation for the
reduced-order model sensitivity implies

VI (u(pr), ) = VI (Puur (pk), pk)

o Standard residual-based error estimation
implies, for some ¢ > 0, M-space

T (w(p), 1) = T (Putar(p), )| < (|7 (Purar(p), )|

CSGF
N/
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Optimization via Adaptive Model Reduction

Shape Optimization: Airfoil Design

Compressible, Inviscid Airfoil Inverse Design

Pressure discrepancy minimization (Euler equations)

NACAO0012: Initial RAE2822: Target

Pressure field for airfoil configurations at Mo = 0.5, a = 0.0°
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Model Order Reducti
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

ROM-Constrained Optimization Solver Recovers Target

\ \ 0.6
— Initial
—_— Target
- - - HDM-based optimization
ROM-based optimization [ 0.4

Distance Transverse to Centerline

| |
0 01 02 03 04 05 06 07 08 09 1

(%‘j Distance along airfoil [~
3 0 DOE
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- . . . . Model Order Reducti
Optimization via Adaptive Model Reduction N (e (@) etk 10 i

egion Solver
Shape Optimization: Airfoil Design

ROM Solver Requires 4x Fewer HDM Queries

10!
- 1073 -
g
B3
E
=
g 07 . ]
+~
3
=
o 10—11 - -
—@— HDM-based optimization
—@— ROM-based optimization
-1
10 0 5 10 15 20 25 30
(%‘j Number of HDM queries fa\ o
DOE
Ug CSGF
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Model Order Reduction
Non-Quadratic Trust-Region Solver
Shape Optimization: Airfoil Design

Optimization via Adaptive Model Reduction

At the Cost of ROM Queries

| | T ‘I T | T | T I‘ ‘I ‘I
1\ ﬁ 1 1 1 1 1
102 S : : {60
g Lo ! ! ! | ! !
g 1076 | i i i i . i i o
o : : : : : : : 1140 3
v : : : : . : : : =
-E 10,1() [ 1 1 1 1 | 1 1 (@)
g | | | i : : : : e
5 P ' : : : 20
10714 ¢ : : : : : \ :
i |--- HDM sample \ : : : '
10—18 1 — T | 1 | 1 | 1l N Il 0
0 20 40 60 80 100 120 140 160

Reduced optimization iterations
—~
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Optimization via Adaptive Model Reduction

HDM solution (Drag = 142.336kN) ROM solution (Drag = 142.304kN)
e HDM: 70 x 10° DOF, 2hr on 1024 Intel Xeon E5-2698 v3 cores (2.3GHz)
e ROM: 170s on 2 Intel i7 cores (1.8GHz)

o Relative error in drag 0.022%

CPU-time speedup greater than 2.15 x 10*

% o Wall-time speedup greater than 42 GDOE

o Washabaugh, Zahr, Farhat (AIAA, 2016) QGJF
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Reduction of -Dimensional Parameter Space
Elast Nonlin

Large-Scale, Constrained Optimization ey Ottt S5 Gttt

PDE-Constrained Optimization II

Goal: Rapidly solve PDE-constrained optimization problem of the form
iz, T 1)
subject to r(u, p) =0
c(u, p) >0

where
o 7 :R™ x R™ — R™ is the discretized partial differential equation
o J :R"™ x R™ — R is the objective function
o c:R"™ x R™ — R" are the side constraints
o u € R™ is the PDE state vector
o 1 € R™ is the vector of parameters

CSGF
N/
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nal Parameter Space

: roduct 5
Large-Scale, Constrained Optimization e e oot ikerese

Problem Setup

@ 16000 8-node brick elements, 77760 dofs
e Total Lagrangian form, finite strain, StVKS
o St. Venant-Kirchhoff material
8 o Sparse Cholesky linear solver (CHOLMOD?)
o Newton-Raphson nonlinear solver
40 o Minimum compliance optimization problem
minimize foxt Lu
wER™w, peR™H
1
subject to Vip) < 5V0
r(u, p)=0

o Gradient computations: Adjoint method
Optimizer: SNOPT [Gill et al., 2002]

DOE
6[Bonet and Wood, 1997, Belytschko et al., 2000] QC\SGF
7[Chen et al., 2008]
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Reduction of High-Dimensional Parameter Space
Elast onlines > raints

Large-Scale, Constrained Optimization oDlCantioer

Restrict Parameter Space to Low-Dimensional Subspace

o Restrict parameter to a low-dimensional subspace

APy

o B, = [¢L .. qbﬁ“] € R™#**u is the reduced basis

o pr € RF* are the reduced coordinates of p
o ny >k

@ Substitute restriction into reduced-order model to obtain

o, r(®,u., ®op)=0

o Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
~

DOE
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Reduction al Parameter Space
Elastic Non

Large-Scale, Constrained Optimization Topelony O NP

Restrict Parameter Space to Low-Dimensional Subspace

e T % % i T
e
.
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Reduction of High-Dimensional Parameter Space

Large-Scale, Constrained Optimization XSG (SC

Restrict Parameter Space to Low-Dimensional Subspace

p-space Macroelements

DOE
OCSGF
N/
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Reduction of Hi imensional Parameter Space
Elas Nonline straints

Large-Scale, Constrained Optimization ey Ottt S5 Gttt

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

o Selection of ®,, amounts to a
restriction of the parameter space

[
0 DOE
CSGF
N
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Reduction of Hi imensional Parameter Space
Elastic Nonlinea > traints

Large-Scale, Constrained Optimization ey Ottt S5 Gttt

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

o Selection of ®,, amounts to a
restriction of the parameter space
o Adaptation of @, should attempt .
to include the optimal solution in
the restricted parameter space,
ie. p* €col(®,)
o Adaptation based on first-order
optimality conditions of HDM
optimization problem .

[
0 DOE
CSGF
A/
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization e e Ot et o s Cantilayer

Optimality Conditions to Adapt Reduced-Order Basis, ®,,

Lagrangian

Karush-Kuhn Tucker (KKT) Conditions®

~
DOE

OCSGF
N
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8[Nocedal and Wright, 2006]




Reduction of High-Dimensional Parameter Space
raints
Topo =ylOptimization i2DiCantilevar

Large-Scale, Constrained Optimization

Lagrangian Gradient Refinement Indicator

o From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:
VuL(p, X)=0

o Use |V, L(p, A)| as indicator for refinement of discretization of p-space

IVuL(p, Al o
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO e e D Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]

minimize J(®@yur, ®up,)
urERFu, l-"reRk‘L

subject to c(Puu,, Pup,) >0
v, Tr(®,u,, ®,pu)=0
||”'(¢uuru q)uﬂr)H <A

CSGF
N
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO e e D Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]

minimize J(®@yur, ®up,)
urERFu, l-"reRk‘L

subject to c(Puu,, Pup,) >0
v, Tr(®,u,, ®,pu)=0
||”'(¢uuru q)uﬂr)H <A
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Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints

Large-Scale, Constrained Optimization eSO e e D Cantilayer

Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]

minimize J(®@yur, ®up,)
urERFu, l-"reRk‘L

subject to c(Puu,, Pup,) >0
v, Tr(®,u,, ®,pu)=0
||”'(¢uuru q)uﬂr)H <A

—
DOE

OCSGF
N
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Reduction of High-Dimensional Parameter Space
Large-Scale, Constrained Optimization Dkt Nem/fineey> Otermebreiinin
’ s Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR (CNQTR-MOR)

minimize T (@, ®,p,) —1tT1
urERFu |y, ERFL | tERNe
subject to c(®u,, Sup,) >t
v, Tr(®,u,, ®,p)=0
I [P (Puter, ®up)ll <A
t<0

)
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Reduction of nal Parameter Space
Lve Lo et Elastic Nonlin s
Large-Scale, Constrained Optimization D Cantilever

Compliance Minimization: 2D Cantilever

@ 16000 8-node brick elements, 77760 dofs

e Total Lagrangian form, finite strain, StVK®
e St. Venant-Kirchhoff material
e Sparse Cholesky linear solver (CHOLMOD!?)
o Newton-Raphson nonlinear solver
o Minimum compliance optimization problem
e T
25 Lobinimize, Sext™ u
1
subject to Vip) < §V0
40
r(u, p) =0

o Gradient computations: Adjoint method
o Optimizer: SNOPT [Gill et al., 2002]

(%‘j e Maximum ROM size: k, <5 >
: Oooe

) CSGF
[ 9[Bonet and Wood, 1997, Belytschko et al., 2000] S
10[Chen et al., 2008]
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Reduction of ional Parameter Space
Elastic Nonlin aints

Large-Scale, Constrained Optimization ety Grefibratby o -

Order of Magnitude Speedup to Suboptimal Solution

HDM CNQTR-MOR + @, adaptivity
HDM Solution | HDM Gradient | HDM Optimization
7458s (450) 4018s (411) 8284s
HDM

Elapsed time = 19761s

HDM Solution | HDM Gradient | ROB Construction | ROM Optimization

w109 69 835 (9) 7275 (56) 30s (3676)
[( 3 CNQTR-MOR + &, adaptivity 0
iy Elapsed time = 2197s, Speedup ~ 9x
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N/

Zahr PDE-Constrained Optimization with Adaptive ROMs



Reduction of nal Parameter Space
Elastic Nonlin s

Large-Scale, Constrained Optimization Topology Opti o e -

Better Solution after 64 HDM Evaluations

CNQTR-MOR + @,, adaptivity

o CNQTR-MOR + @, adaptivity: superior approximation to optimal
solution than HDM approach after fixed number of HDM solves (64)

@ Reasonable option to warm-start HDM topology optimization

e
0 DOE
CSGF
N/
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Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilover

Macro-element Evolution

Iteration 0 (1000)

Zahr PDE-Constrained Optimization with Adaptive ROMs



Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilover

Macro-element Evolution

Iteration 1 (977)
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Reduction of Hi i onal Parameter Space
Elastic O i Cc straints

Large-Scale, Constrained Optimization Topology Optimization: 2D Cantilever

CNQTR-MOR + adaptivity
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Conclusion

Conclusion

An Adaptive Reduction Framework for Optimization under Uncertainty

e Highly volatile systems tend to be plagued
by uncertainties, which must be quantified
for meaningful problem formulation

o Optimize moments of quantities of interest
of stochastic partial differential equation

minimize /EJ(U, w; &) dg

uER?w | peR™H
subject to r(u, p; €) =0 EecE

e Combine adaptive model reduction
framework with dimension-adaptive sparse
grids to enable stochastic optimization

EM Launcher GDOE
ollaborators: Drew Kouri (Sandia NM), Kevin Carlberg (Sandia CA) <eF
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Conclusion
Conclusion

High-Order Methods for Optimization of Conservation Laws

@ Derived, implemented fully discrete adjoint method for globally high-order
discretization of conservation laws on deforming domains

o Incorporation of time-periodicity constraints

Energy = 9.4096e+00  Energy = 4.9476e+00  Energy = 4.6110e+4-00
Thrust = 1.7660e-01 Thrust = 2.5000e+00  Thrust = 2.5000e+00

>

J0) o . Optimal
@ Initial Optimal Control Shape/Control fa\o o
[U; CSGF

Collaborators: Per-Olof Persson (UCB, LBNL), Jon Wilkening (UCB, LBNL)
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Conclusion

Approaching Many-Query, Extreme-Scale Computational Physics

Leveraging Inexactness For Acceleration of Many-Query Multiphysics Problems

o Framework introduced for accelerating PDE-constrained
optimization problems with side constraints and
large-dimensional parameter space

o Adaptive reduction of state and parameter spaces
o Applied to aerodynamic design and topology optimization

e Order of magnitude speedup speedup observed
o Competitive warm-start method

B

E
q ' CSGF
N/
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Faster Computational Physics: Adaptive Data-Driven Discretization

(a) Vorticity around heaving airfoil  (b) Potential Q!, Q9 decomposition (c) Idealized sparsity structure

@ Methods to transform features in global basis functions - minimize reliance
on local shape functions

o Linear algebra for sparse operators with a few dense rows and columns

o Elements of: high-order methods, adaptive mesh refinement, ~_
numerical linear algebra gggF
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Conclusion

Fewer Queries: Second-Order Methods for Accelerated Convergence

Hessian information highly desired in optimization and UQ, but expensive due to
O(N,,) required linear system solves

Sensitivity /Adjoint Method for Computing Hessian

2y 9:g 92J Ou N ouT 927  ouT 82 du
dpjdp,  OpjOpy,  OpjOu Ouy — Opy Oudpy  Opj  Oudu Opy
g Or —t &%r 8%r Ou 8%r Ou o%r . ou ou

ou Ou OOy + OpjOu Opy, + Opp0u Opj + udu Opj — Opg
where

Ou _ or=t or
Ouj  Ou  Op,

o Fast, multiple right-hand side linear solver by building data-driven subspace

25 ) ) or 1 or T ~
@ for image of 9u ' 9a ODOE

. . . CSGF
@ MOR concepts in context of numerical linear algebra N
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Conclusion

Conclusion

Approaching Many-Query, Extreme-Scale Computational Physics

Leveraging Inexactness For Acceleration of Many-Query Multiphysics Problems

o Framework introduced for accelerating PDE-constrained
optimization problems with side constraints and
large-dimensional parameter space

o Adaptive reduction of state and parameter spaces

o Applied to aerodynamic design and topology optimization

e Order of magnitude speedup speedup observed
o Competitive warm-start method

o Future work: combine advantages of MOR/AMR for

drastic computational savings with in-situ training;
second-order methods for rapidly converging many-query

algorithms; new (multiphysics) applications . 3
-
[( 4
3 q’\.aGF
~ w
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Standard Difficulty: Binary Solutions

(a) Without penalization

) s
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize fextTu
wER?w , peR™H

1
subject to Viw) < §V0
r(u, p?) =0
p € [0,1]%

(a) Without penalization

4

Effect of Penalization

K « (p°)"K*

o K¢ : eth element stiffness matrix |

% 9z
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize fextTu
wER?w , peR™H

1
subject to Viw) < §V0
r(u, p?) =0

(a) Without penalization
p € [0,1]%

Vo N

@ o K¢ : eth element stiffness matrix | é ~

Z DOE

Cé; (b) With penalization GCSGF
~

4

Effect of Penalization

K « (p°)"K*
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Standard Difficulty: Binary Solutions

Implication for ROM

o From parameter restriction, p? = (®,p,)?
o Precomputation relies on separability of ®,, and .
o Separability maintained if (®,,u, )P = @, pu?

o Sufficient condition: columns of ®,, have non-overlapping non-zeros
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Efficient Evaluation of Nonlinear Terms

@ Due to the mixing of high-dimensional and low-dimensional terms in the
ROM expression, only limited speedups available

1'7-(’11;7«, ,Ll;,) = ‘buTr((I)uura q);tl'l’r) =0

e To enable pre-computation of all large-dimensional quantities into
low-dimensional ones, leverage Taylor series expansion

[rr(wr, pr)]; = D?m(ﬂr)m + Dzljm(uT’ X ) jm + D?jkm(ur X Uy X ) jkm

3
+ D3t (Wr X W X Uy X ) i = 0

where

83rt

D? —_—
Ou,0ug0us

ijklm —

(a, ¢Zl)(¢i¢ X ¢‘L X ¢Z X ¢L)tpqs
o Related work: [Rewienski, 2003, Barrault et al., 2004,

%j Barbi¢ and James, 2007, Nguyen and Peraire, 2008, ’O\DOE

Chaturantabut and Sorensen, 2010, Carlberg et al., 2011] ({GJF
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Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

Ongoing Research Projects

Conclusion

A

A

T Ty

c(u, p) >0

c(®yu,, ®,u) >0 | Au>b | Arp, > b,

Goal: Given u,, ., 7 >0, A, > 0, estimate 7 > 0, A >0 to compute

VL( @, A, T) =

oJ
op

Jdc
7(¢)uura (I);uu'r) - %

(Byuty, Bp)TA—ATF

Lagrange Multiplier Estimates

T = arg min
>0

ATT—<

oJ

o

Oc =
(Putr, Ppupr) — 2—(Puur, q’pﬂr)T)‘> H

op

Zahr
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Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyiy

o Gradient Filtering'!

0T _ Zuies Hushisin (a) Without projection/filteri
- a mnou rojection erin.
Opu, Bk D jes, Hij proJ &

@ Nodal Projection

Zjesk T;H;

He =
Yjes, Hi

DOE
OCSGF
N/

M Hys = Tin — dist(k, 1)
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Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyiy

o Gradient Filtering'!

0T _ Zuies Hushisin (a) Without projection/filteri
- a mnou rojection erin.
Oy Bk D jes, Hij bre) &

@ Nodal Projection @

> jes, Tit;

e e NG

(%j (b) With projection 0 DOE

A CSGF
() N/

M Hys = Tin — dist(k, 1)
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Standard Difficulty: Checkerboarding
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Standard Difficulty: Checkerboarding
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Standard Difficulty: Checkerboarding

Implication for ROM

o Nonlocality introduced through projection/filtering

o . influences volume fraction of all elements within 7,;, of element/node e
o Clashes with requirement on ®,, of columns with non-overlapping non-zeros
°

Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of ryiy

Next: Helmholtz filtering

ég Gradient of Lagrangian
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Standard Difficulty: Checkerboarding

Implication for ROM

o Nonlocality introduced through projection/filtering
o 1. influences volume fraction of all elements within 7y, of element/node e
o Clashes with requirement on ®,, of columns with non-overlapping non-zeros

o Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of ryin

o Next: Helmholtz filtering

g e . 4
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