Optimization-based computational physics and high-order methods: from optimized analysis to design and data assimilation

Matthew J. Zahr[†] and Per-Olof Persson CRD Postdoc Seminar Series Lawrence Berkeley National Laboratory, Berkeley, CA September 18, 2017

[†]Luis W. Alvarez Postdoctoral Fellow Department of Mathematics Lawrence Berkeley National Laboratory

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

Control: Drive system to a desired state

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Left: Material inversion – find inclusions from acoustic, structural measurements *Right*: Source inversion – find source of airborne contaminant from downstream measurements

Full waveform inversion – estimate subsurface of Earth's crust from acoustic measurements

Goal: Find the solution of the unsteady PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U},\nabla \boldsymbol{U}) = 0 \ \text{ in } \ v(\boldsymbol{\mu},t) \end{array}$$

where

• $\boldsymbol{U}(\boldsymbol{x},t)$ PDE solution • μ

•
$$\mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} j(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt$$

• $\boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} \mathbf{c}(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt$

design/control parameters

objective function

constraints

Optimizer

Primal PDE

Dual PDE

Highlights of globally high-order discretization

• Arbitrary Lagrangian-Eulerian formulation: Map, $\mathcal{G}(\cdot, \boldsymbol{\mu}, t)$, from physical $v(\boldsymbol{\mu}, t)$ to reference V

$$\left. \frac{\partial \boldsymbol{U}_{\boldsymbol{X}}}{\partial t} \right|_{\boldsymbol{X}} + \nabla_{\boldsymbol{X}} \cdot \boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{U}_{\boldsymbol{X}}, \ \nabla_{\boldsymbol{X}} \boldsymbol{U}_{\boldsymbol{X}}) = 0$$

• Space discretization: discontinuous Galerkin

$$M \frac{\partial u}{\partial t} = r(u, \mu, t)$$

• Time discretization: diagonally implicit RK

$$oldsymbol{u}_n = oldsymbol{u}_{n-1} + \sum_{i=1}^s b_i oldsymbol{k}_{n,i}$$
 $oldsymbol{M} oldsymbol{k}_{n,i} = \Delta t_n oldsymbol{r} \left(oldsymbol{u}_{n,i}, \ oldsymbol{\mu}, \ t_{n,i}
ight)$

• Quantity of interest: solver-consistency

$$F(\boldsymbol{u}_0,\ldots,\boldsymbol{u}_{N_t},\boldsymbol{k}_{1,1},\ldots,\boldsymbol{k}_{N_t,s})$$

Mapping-Based ALE

DG Discretization

Butcher Tableau for DIRK

- Consider the *fully discrete* output functional $F(u_n, k_{n,i}, \mu)$
 - Represents either the **objective** function or a **constraint**
- The *total derivative* with respect to the parameters μ , required in the context of gradient-based optimization, takes the form

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} + \sum_{n=0}^{N_t} \frac{\partial F}{\partial u_n} \frac{\partial u_n}{\partial \mu} + \sum_{n=1}^{N_t} \sum_{i=1}^s \frac{\partial F}{\partial k_{n,i}} \frac{\partial k_{n,i}}{\partial \mu}$$

- The sensitivities, $\frac{\partial u_n}{\partial \mu}$ and $\frac{\partial k_{n,i}}{\partial \mu}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations
- Adjoint method: alternative method for computing $\frac{\mathrm{d}F}{\mathrm{d}\mu}$ that require one linear evolution equation for each quantity of interest, F

Dissection of fully discrete adjoint equations

- Linear evolution equations solved backward in time
- **Primal** state/stage, $u_{n,i}$ required at each state/stage of dual problem
- Heavily dependent on **chosen ouput**

$$\boldsymbol{\lambda}_{N_{t}} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{N_{t}}}^{T}$$
$$\boldsymbol{\lambda}_{n-1} = \boldsymbol{\lambda}_{n} + \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{n-1}}^{T} + \sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} (\boldsymbol{u}_{n,i}, \boldsymbol{\mu}, t_{n-1} + c_{i} \Delta t_{n})^{T} \boldsymbol{\kappa}_{n,i}$$
$$\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n,i} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{N_{t}}}^{T} + b_{i} \boldsymbol{\lambda}_{n} + \sum_{j=i}^{s} a_{ji} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} (\boldsymbol{u}_{n,j}, \boldsymbol{\mu}, t_{n-1} + c_{j} \Delta t_{n})^{T} \boldsymbol{\kappa}_{n,j}$$

• Gradient reconstruction via dual variables

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} + \lambda_0^T \frac{\partial g}{\partial \mu}(\mu) + \sum_{n=1}^{N_t} \Delta t_n \sum_{i=1}^s \kappa_{n,i}^T \frac{\partial r}{\partial \mu}(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n,i})$$

[Zahr and Persson, 2016]

Optimal control, time-morphed geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed Geometry (TMG), thrust = 2.5

Energy = 9.4096	Energy = 4.9476	Energy = 4.6182
Thrust = 0.1766	$\mathrm{Thrust}=2.500$	Thrust = 2.500

Initial Gu	uess
------------	------

Optimal RBM $T_r = 2.5$

Optimal RBM/TMG $T_x = 2.5$

BERKELEY LAB 9 / 63
$$\label{eq:Energy} \begin{split} Energy &= 1.4459 e\text{-}01 \\ Thrust &= -1.1192 e\text{-}01 \end{split}$$

 $\begin{array}{l} {\rm Energy}=3.1378\text{e-}01\\ {\rm Thrust}=0.0000\text{e+}00 \end{array}$

• Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$T(\boldsymbol{\mu}) = N_t \Delta t \implies N_t = N_t(\boldsymbol{\mu}) \text{ or } \Delta t = \Delta t(\boldsymbol{\mu})$$

- Choose $\Delta t = \Delta t(\mu)$ to avoid discrete changes
- Does not change adjoint equations themselves, only reconstruction of gradient from adjoint solution

Energetically optimal flapping vs. required thrust

Energy = 1.8445Thrust = 0.06729

Energy = 0.21934Thrust = 0.0000

Energy = 6.2869Thrust = 2.5000

Initial Guess	Optimal	Optimal
	$T_x = 0$	$T_x = 2.5$

Super-resolution MR images through optimization

Space-time MRI data: noisy, low-resolution

- In collaboration with research team at Lund University, working to use our high-order optimization framework to generate "super-resolved" MR images
- *Idea*: Match CFD parameters (material properties, boundary conditions) to MRI data using optimization
- **Goal**: visualize high-resolution flow and accurately compute quantities of interest, i.e., wall shear stress

Geometry and boundary conditions for synthetic MRI data assimilation setting. Boundary conditions: viscous wall (____), parametrized inflow (____), and outflow (____). MRI data collected in the red shaded region.

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

Stochastic PDE-constrained optimization formulation

 $\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u},\,\boldsymbol{\mu},\,\cdot\,)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu},\,\boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$

•
$$r: \mathbb{R}^{n_u} imes \mathbb{R}^{n_\mu} imes \mathbb{R}^{n_\xi} o \mathbb{R}^{n_u}$$

- $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \times \mathbb{R}^{n_\xi} \to \mathbb{R}$
- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$
- $\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}$
- $\mathbb{E}[\mathcal{F}] \equiv \int_{\Xi} \mathcal{F}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$

discretized stochastic PDE quantity of interest PDE state vector (deterministic) optimization parameters stochastic parameters

Optimizer

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m(\boldsymbol{\mu})$$

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m(\boldsymbol{\mu})$$

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m(\boldsymbol{\mu})$$

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m(\boldsymbol{\mu})$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \longrightarrow \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} m(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- **Error indicators**¹ to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\begin{array}{ll} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad F(\boldsymbol{\mu}) & \longrightarrow & \begin{array}{ll} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_{k}(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu}-\boldsymbol{\mu}_{k}|| \leq \Delta_{k} \end{array}$$

 $^1\mathrm{Must}$ be *computable* and apply to general, nonlinear PDEs

Stochastic collocation using anisotropic sparse grid nodes to approximate integral with summation

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(u, \ \mu, \ \cdot)] \\ \text{subject to} & r(u, \ \mu, \ \xi) = 0 \quad \forall \xi \in \Xi \end{array}$$

\downarrow

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$$

[Kouri et al., 2013, Kouri et al., 2014]

Source of inexactness: anisotropic sparse grids

Source of inexactness: anisotropic sparse grids

Second source of inexactness: reduced-order models

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(u, \ \mu, \ \cdot)] \\ \text{subject to} & r(u, \ \mu, \ \xi) = 0 \quad \forall \xi \in \Xi_{\mathcal{I}} \end{array}$$

 \downarrow

 $\begin{array}{l} \underset{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} \quad \boldsymbol{\Phi}^T \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$

• Model reduction ansatz: state vector lies in low-dimensional subspace

 $m{u}pprox \Phim{u}_r$

- Φ = [φ¹ ··· φ^{k_u}] ∈ ℝ<sup>n_u×k_u is the reduced (trial) basis (n_u ≫ k_u)
 u_r ∈ ℝ^{k_u} are the reduced coordinates of u
 </sup>
- Substitute into $\boldsymbol{r}(\boldsymbol{u},\,\boldsymbol{\mu})=0$ and perform Galerkin projection

 $\boldsymbol{\Phi}^T \boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{u}_r,\,\boldsymbol{\mu}) = 0$

- Instead of using traditional *local* shape functions (e.g., FEM), use *global* shape functions
- Instead of a-priori, analytical shape functions, leverage data-rich computing environment by using *data-driven* modes

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\mu}}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \longrightarrow \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\mu}}}{\operatorname{minimize}} m(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators² to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\begin{array}{ll} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad F(\boldsymbol{\mu}) & \longrightarrow & \begin{array}{ll} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_{k}(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu}-\boldsymbol{\mu}_{k}|| \leq \Delta_{k} \end{array}$$

 $^2\mathrm{Must}$ be computable and apply to general, nonlinear PDEs

Approximation models

 $m_k(\boldsymbol{\mu})$

Error indicators

$$||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| \le \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0$$

Adaptivity

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Global convergence

 $\liminf_{k\to\infty} ||\nabla F(\boldsymbol{\mu}_k)|| = 0$

Approximation models built on two sources of inexactness

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu},\,\cdot\,),\,\boldsymbol{\mu},\,\cdot\,)
ight]$$

 $\underline{\mathbf{Error\ indicators}}$ that account for both sources of error

 $\varphi_k(\boldsymbol{\mu}) = \alpha_1 \mathcal{E}_1(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \mathcal{E}_2(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \mathcal{E}_4(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k)$

Reduced-order model errors

$$\begin{split} \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) &= \mathbb{E}_{\boldsymbol{\mathcal{I}} \cup \mathcal{N}(\boldsymbol{\mathcal{I}})} \left[|| \boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot)|| \right] \\ \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) &= \mathbb{E}_{\boldsymbol{\mathcal{I}} \cup \mathcal{N}(\boldsymbol{\mathcal{I}})} \left[\left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\Phi} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right| \right| \right] \end{split}$$

Sparse grid truncation errors

 $\mathcal{E}_4(oldsymbol{\mu}; \mathcal{I}, \, oldsymbol{\Phi}) = \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[||
abla \mathcal{J}(oldsymbol{\Phi} oldsymbol{u}_r(oldsymbol{\mu}, \, \cdot \,), \, oldsymbol{\mu}, \, \cdot \,) ||
ight]$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$egin{aligned} \mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} & ext{ where } & \mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}}\left[||
abla \mathcal{J}(\mathbf{\Phi} m{u}_r(m{\mu},\,\cdot\,),\,m{\mu},\,\cdot\,)||
ight] \end{aligned}$$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\} \operatorname{do}$$

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} \quad \text{ where } \quad \mathbf{j}^* = \operatorname*{arg\,max}_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[|| \nabla \mathcal{J}(\mathbf{\Phi} \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||
ight]$$

 $\begin{array}{ll} \label{eq:reduced-order basis} \textbf{Refine reduced-order basis} \textbf{:} \mbox{ Greedy sampling} \\ \textbf{while} \ \ \mathcal{E}_1(\Phi, \, \mathcal{I}, \, \pmb{\mu}_k) > \frac{\kappa_\varphi}{3\alpha_1} \min\{||\nabla m_k(\pmb{\mu}_k)|| \, , \, \Delta_k\} \ \textbf{do} \end{array}$

$$\begin{split} \boldsymbol{\Phi}_k &\leftarrow \begin{bmatrix} \boldsymbol{\Phi}_k & \boldsymbol{u}(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}^*) & \boldsymbol{\lambda}(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}^*) \end{bmatrix} \\ \boldsymbol{\xi}^* &= \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}),\,\boldsymbol{\mu}_k,\,\boldsymbol{\xi}) \right| \end{split}$$

end while

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\}$$
 where $\mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[|| \nabla \mathcal{J}(\mathbf{\Phi} \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||
ight]$

 $\begin{array}{ll} \label{eq:reduced-order basis} \textbf{Refine reduced-order basis} \textbf{:} \mbox{ Greedy sampling} \\ \textbf{while} \ \ \mathcal{E}_1(\Phi, \, \mathcal{I}, \, \pmb{\mu}_k) > \frac{\kappa_\varphi}{3\alpha_1} \min\{||\nabla m_k(\pmb{\mu}_k)|| \, , \, \Delta_k\} \ \textbf{do} \end{array}$

$$\begin{split} \boldsymbol{\Phi}_k &\leftarrow \begin{bmatrix} \boldsymbol{\Phi}_k & \boldsymbol{u}(\boldsymbol{\mu}_k, \boldsymbol{\xi}^*) & \boldsymbol{\lambda}(\boldsymbol{\mu}_k, \boldsymbol{\xi}^*) \end{bmatrix} \\ \boldsymbol{\xi}^* &= \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k, \boldsymbol{\xi}), \, \boldsymbol{\mu}_k, \, \boldsymbol{\xi}) \right| \right| \end{split}$$

end while

while
$$\mathcal{E}_{2}(\Phi, \mathcal{I}, \mu_{k}) > \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\mu_{k})||, \Delta_{k}\} \operatorname{do}$$

$$egin{aligned} \Phi_k &\leftarrow iggl[\Phi_k \quad oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) \quad oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\in \Xi_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left| \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, \Phi_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k,oldsymbol{\xi})
ight|
ight| \ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\in \Xi_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left| \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, \Phi_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k,oldsymbol{\xi})
ight|
ight| \ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\in \Xi_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left| \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, \Phi_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k,oldsymbol{\xi})
ight|
ight| \ oldsymbol{\lambda}^* = rgmax_{oldsymbol{\mu}_k} \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, \Phi_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \ oldsymbol{k}^* = rgmax_{oldsymbol{\mu}_k} \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \ oldsymbol{k}^* = lpha_k \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, \Phi_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), \, oldsymbol{\mu}_k, oldsymbol{\xi})
ight| \ oldsymbol{k}^* = \left| oldsymbol{k}^* \left| oldsy$$

30 / 63

end while

• Optimization problem:

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \int_{\boldsymbol{\Xi}} \rho(\boldsymbol{\xi}) \left[\int_{0}^{1} \frac{1}{2} (u(\boldsymbol{\mu}, \boldsymbol{\xi}, x) - \bar{u}(x))^{2} \, dx + \frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, x)^{2} \, dx \right] d\boldsymbol{\xi}$$

where $u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)$ solves

$$\begin{aligned} -\nu(\boldsymbol{\xi})\partial_{xx}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) + u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x)\partial_{x}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) &= z(\boldsymbol{\mu},\,x) \quad x \in (0,\,1), \quad \boldsymbol{\xi} \in \boldsymbol{\Xi} \\ u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,0) &= d_0(\boldsymbol{\xi}) \qquad u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,1) = d_1(\boldsymbol{\xi}) \end{aligned}$$

- Target state: $\bar{u}(x) \equiv 1$
- Stochastic Space: $\boldsymbol{\Xi} = [-1, 1]^3, \, \rho(\boldsymbol{\xi}) d\boldsymbol{\xi} = 2^{-3} d\boldsymbol{\xi}$

$$\nu(\boldsymbol{\xi}) = 10^{\boldsymbol{\xi}_1 - 2} \qquad d_0(\boldsymbol{\xi}) = 1 + \frac{\boldsymbol{\xi}_2}{1000} \qquad d_1(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}_3}{1000}$$

• **Parametrization**: $z(\mu, x)$ – cubic splines with 51 knots, $n_{\mu} = 53$

Optimal control and statistics

Optimal control and corresponding mean state (---) \pm one (---) and two (----) standard deviations

$F(\boldsymbol{\mu}_k)$	$m_k({oldsymbol \mu}_k)$	$F(\hat{\boldsymbol{\mu}}_k)$	$m_k(\hat{oldsymbol{\mu}}_k)$	$ \nabla F(\boldsymbol{\mu}_k) $	$ ho_k$	Success?
6.6506e-02	7.2694e-02	5.3655e-02	5.9922e-02	2.2959e-02	$1.0257 e{+}00$	1.0000e + 00
5.3655e-02	5.9593e-02	5.0783e-02	5.7152 e- 02	2.3424e-03	9.7512e-01	$1.0000e{+}00$
5.0783e-02	5.0670e-02	5.0412 e- 02	5.0292e-02	1.9724e-03	9.8351e-01	$1.0000e{+}00$
5.0412e-02	5.0292e-02	5.0405e-02	5.0284 e-02	9.2654e-05	8.7479e-01	$1.0000e{+}00$
5.0405e-02	5.0404 e-02	5.0403e-02	5.0401e-02	8.3139e-05	9.9946e-01	$1.0000e{+}00$
5.0403 e-02	5.0401e-02	-	-	2.2846e-06	-	-

Convergence history of trust region method built on two-level approximation

 $\mathrm{Cost} = \mathrm{nHdmPrim} + 0.5 \times \mathrm{nHdmAdj} + \tau^{-1} \times (\mathrm{nRomPrim} + 0.5 \times \mathrm{nRomAdj})$

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (), and proposed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ ()

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (––), and proposed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ ()

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (-----)

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, **adaptive refinement**, artificial viscosity

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, **adaptive refinement**, artificial viscosity

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, adaptive refinement, **artificial viscosity**

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, adaptive refinement, **artificial viscosity**

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, adaptive refinement, artificial viscosity

usually result in order reduction or very fine discretizations

Proposed solution

align features of solution basis with features in the solution using optimization formulation and solver

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, adaptive refinement, artificial viscosity

usually result in order reduction or very fine discretizations

Proposed solution

align features of solution basis with features in the solution using optimization formulation and solver

<u>Fundamental issue</u>: interpolate discontinuity with polynomial basis Exising solutions: limiting, adaptive refinement, artificial viscosity

usually result in order reduction or very fine discretizations

Proposed solution

align features of solution basis with features in the solution using optimization formulation and solver

Shock tracking optimization formulation

• Consider the spatial discretization of the conservation law

$$abla_{oldsymbol{X}}\cdotoldsymbol{F}(oldsymbol{U};\,oldsymbol{X})=oldsymbol{0}\qquad
ightarrowoldsymbol{r}(oldsymbol{u};\,oldsymbol{x})=oldsymbol{0}$$

- $\boldsymbol{U}, \boldsymbol{X}$ are the continuous state vector and coordinate
- \boldsymbol{x} contains the coordinates of the mesh nodes
- u contains the discrete state vector corresponding to U at the mesh nodes
- Shock tracking formulation

<u>Key assumption</u>: Solution basis supports discontinuties along element **edges**, i.e., discontinuous Galerkin, finite volume

Shock tracking objective function

Requirements on objective function obtains minimum when mesh edge aligned with shock and monotonically decreases to minimum in (large) neighborhood

$$f(\boldsymbol{u}; \boldsymbol{x}) = f_{shk}(\boldsymbol{u}; \boldsymbol{x}) + \alpha f_{msh}(\boldsymbol{x})$$
$$f_{shk}(\boldsymbol{u}, \boldsymbol{x}) = \sum_{e=1}^{n_e} \int_{\Omega_e(\boldsymbol{x})} |\boldsymbol{u} - \bar{\boldsymbol{u}}|^2 \ dV$$
$$f_{msh}(\boldsymbol{x}) = \sum_{e=1}^{n_e} \sum_{k=1}^{n_q^e} \left| \frac{\operatorname{tr} \boldsymbol{G}^T \boldsymbol{G}}{\det \boldsymbol{G}} \right|$$

Objective function as an element edge is smoothly swept across shock location for: $f_{shk}(\boldsymbol{u}, \boldsymbol{x})$ (\longrightarrow), residual-based objective (\rightarrow), and Rankine-Hugniot-based objective (\rightarrow).

Cannot use **nested approach** to PDE optimization because it requires solving r(u; x) = 0 for $x \neq x^* \implies crash$

- Full space approach: $u \to u^*$ and $x \to x^*$ simultaneously
- Define Lagrangian

$$\mathcal{L}(\boldsymbol{u},\,\boldsymbol{x},\,\boldsymbol{\lambda}) = f(\boldsymbol{u};\,\boldsymbol{x}) - \boldsymbol{\lambda}^T \boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{x})$$

• First-order optimality (KKT) conditions for full space optimization problem

 $abla_{oldsymbol{u}}\mathcal{L}(oldsymbol{u}^*,\,oldsymbol{x}^*,\,oldsymbol{\lambda}^*)=oldsymbol{0},\qquad
abla_{oldsymbol{x}}\mathcal{L}(oldsymbol{u}^*,\,oldsymbol{x}^*,\,oldsymbol{\lambda}^*)=oldsymbol{0},\qquad
abla_{oldsymbol{\lambda}}\mathcal{L}(oldsymbol{u}^*,\,oldsymbol{x}^*,\,oldsymbol{\lambda}^*)=oldsymbol{0},$

• Apply (quasi-)Newton method 3 to solve nonlinear KKT system for $u^*,\,x^*,\,\lambda^*$

 $^{^{3}\}ensuremath{\mathsf{usually}}\xspace$ requires globalization such as lines earch or trust-region

Geometry and boundary conditions for nozzle flow. Boundary conditions: inviscid wall (-----), inflow (-----), outflow (-----).

The solution of the quasi-1d Euler equations using: 300 linear elements (——) and 4 quartic elements (——) on a mesh not aligned (*left*) and aligned (*right*) with the shock.

Geometry and boundary conditions for supersonic flow around cylinder. Boundary conditions: inviscid wall/symmetry condition (----) and farfield (----).

The solution of the 2d Euler equations using: 67 quadratic elements on a mesh not aligned with the shock (*left*), 67 linear elements on a mesh aligned with the shock (*middle*), 67 quadratic elements on a mesh aligned with the shock (*right*).

PDE-constrained optimization for design/control and beyond

- Globally high-order numerical method and adjoint-based gradient computations for efficient design and data assimilation
 - energetically optimal flapping, energy harvesting mechanisms, super-resolution MRI
- Globally convergent multifidelity framework for PDE-constrained **optimization under uncertainty**
 - risk-averse flow control
- Optimization-based **shock tracking framework** for highly resolved supersonic flows on extremely coarse meshes

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2013).

A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty.

SIAM Journal on Scientific Computing, 35(4):A1847–A1879.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2014).

Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.

SIAM Journal on Scientific Computing, 36(6):A3011–A3029.

Wang, J., Zahr, M. J., and Persson, P.-O. (6/5/2017 - 6/9/2017).

Energetically optimal flapping flight based on a fully discrete adjoint method with explicit treatment of flapping frequency.

In Proc. of the 23rd AIAA Computational Fluid Dynamics Conference, Denver, Colorado. American Institute of Aeronautics and Astronautics.

References II

- Zahr, M. J., Huang, Z., and Persson, P.-O. (1/8/2018 1/12/2018).
 Adjoint-based optimization of time-dependent fluid-structure systems using a high-order discontinuous Galerkin discretization. In AIAA Science and Technology Forum and Exposition (SciTech2018), Kissimmee, Florida. American Institute of Aeronautics and Astronautics.
 - Zahr, M. J. and Persson, P.-O. (2016).
 - An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems.

Journal of Computational Physics.

Zahr, M. J., Persson, P.-O., and Wilkening, J. (2016).

A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints.

Computers & Fluids.

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility

• Continuous PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U},\nabla \boldsymbol{U}) = 0 \ \text{ in } \ v(\boldsymbol{\mu},t) \end{array}$$

• Fully discrete PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}} \end{array} \hspace{1cm} J(\boldsymbol{u}_{0}, \ \ldots, \ \boldsymbol{u}_{N_{t}}, \ \boldsymbol{k}_{1,1}, \ \ldots, \ \boldsymbol{k}_{N_{t},s}, \ \boldsymbol{\mu}) \\ \text{subject to} \\ \boldsymbol{u}_{0} - \boldsymbol{g}(\boldsymbol{\mu}) = 0 \\ \boldsymbol{u}_{n} - \boldsymbol{u}_{n-1} - \sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n,i} = 0 \\ \boldsymbol{M} \boldsymbol{k}_{n,i} - \Delta t_{n} \boldsymbol{r}(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n,i}) = 0 \end{array}$$

Adjoint equation derivation: outline

• Define **auxiliary** PDE-constrained optimization problem

$$\begin{array}{l} \underset{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s} \in \mathbb{R}^{N_{\boldsymbol{u}}} \end{array} }{\text{F}(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s}, \boldsymbol{\mu}) \\ \text{subject to} \qquad \boldsymbol{R}_{0} = \boldsymbol{u}_{0} - \boldsymbol{g}(\boldsymbol{\mu}) = 0 \\ \boldsymbol{R}_{n} = \boldsymbol{u}_{n} - \boldsymbol{u}_{n-1} - \sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n,i} = 0 \\ \boldsymbol{R}_{n,i} = \boldsymbol{M} \boldsymbol{k}_{n,i} - \Delta t_{n} \boldsymbol{r} \left(\boldsymbol{u}_{n,i}, \boldsymbol{\mu}, t_{n,i} \right) = 0 \end{array}$$

• Define Lagrangian

$$\mathcal{L}(\boldsymbol{u}_n, \boldsymbol{k}_{n,i}, \boldsymbol{\lambda}_n, \boldsymbol{\kappa}_{n,i}) = F - \boldsymbol{\lambda}_0^T \boldsymbol{R}_0 - \sum_{n=1}^{N_t} \boldsymbol{\lambda}_n^T \boldsymbol{R}_n - \sum_{n=1}^{N_t} \sum_{i=1}^s \boldsymbol{\kappa}_{n,i}^T \boldsymbol{R}_{n,i}$$

• The solution of the optimization problem is given by the Karush-Kuhn-Tucker (KKT) sytem

$$\frac{\partial \mathcal{L}}{\partial u_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial k_{n,i}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial \kappa_{n,i}} = 0$$

Extension: constraint requiring time-periodicity [Zahr et al., 2016]

- Optimization of *cyclic* problems requires finding time-periodic solution of PDE
- Necessary for physical relevance and avoid transients that may lead to crash

from a time-periodic solution (---)

Energetically optimal flapping vs. required thrust: QoI

The optimal flapping energy (W^*) , frequency (f^*) , maximum heaving amplitude (y^*_{\max}) , and maximum pitching amplitude (θ^*_{\max}) as a function of the thrust constraint \bar{T}_x .

Extension: Multiphysics problems [Zahr et al., 2018]

• For problems that involve the interaction of multiple types of physical phenomena, *no changes required* if monolithic system considered

$$egin{aligned} M_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0,\,m{c}_0(m{u}_0,\,m{u}_1)) \ M_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1,\,m{c}_1(m{u}_0,\,m{u}_1)) \end{aligned}$$

• However, to solve in partitioned manner and achieve high-order, split as follows and apply implicit-explicit Runge-Kutta

 $M_0 \dot{u}_0 = r_0(u_0, c_0(u_0, u_1))$

 $M_1 \dot{u}_1 = r_1(u_1, \, \tilde{c}_1) + (r_1(u_1, \, c_1(u_0, \, u_1)) - r_1(u_1, \, \tilde{c}_1))$

• Adjoint equations inherit explicit-implicit structure

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

$$\underset{\boldsymbol{\mu}}{\text{maximize}} \quad \frac{1}{T} \int_0^T (c\dot{h}^2(\boldsymbol{u}^s) - M_z(\boldsymbol{u}^f)\dot{\theta}(\boldsymbol{\mu}, t)) dt$$

- Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
- $\bullet\,$ Structure: Force balance in y-direction between foil and damper
- Motion driven by imposed $\theta(\mu, t) = \mu_1 \cos(2\pi f t)$

 $\mu_1^*\approx 45^\circ$

MRI data assimilation formulation

- $d_{i,n}^*$: MRI measurement taken in voxel *i* at the *n*th time sample
- $d_{i,n}(U, \mu)$: computational representation of $d_{i,n}^*$

$$\begin{aligned} \boldsymbol{d}_{i,n}(\boldsymbol{U},\,\boldsymbol{\mu}) &= \int_0^T \int_V w_{i,n}(\boldsymbol{x},\,t) \cdot \boldsymbol{U}(\boldsymbol{x},\,t) \, dV \, dt \\ w_{i,n}(\boldsymbol{x},\,t) &= \chi_s(\boldsymbol{x};\,\boldsymbol{x}_i,\,\Delta \boldsymbol{x}) \chi_t(t;\,t_n,\,\Delta t) \\ \chi_t(s;\,c,\,w) &= \frac{1}{1 + e^{-(s - (c - 0.5w))/\sigma}} - \frac{1}{1 + e^{-(s - (c + 0.5w))/\sigma}} \\ \chi_s(\boldsymbol{x};\,\boldsymbol{c},\,\boldsymbol{w}) &= \chi_t(x_1;\,c_1,\,w_1) \chi_t(x_2;\,c_2,\,w_2) \chi_t(x_3;\,c_3,\,w_3) \end{aligned}$$

- x_i center of *i*th MRI voxel
- t_n time instance of n MRI sample
- Δx size of MRI voxel in each dimension
- Δt sampling interval in time

$$\boxed{ \substack{ \text{minimize} \\ \boldsymbol{U}, \boldsymbol{\mu} }} \quad \sum_{i=1}^{n_{xyz}} \sum_{n=1}^{n_t} \frac{\alpha_{i,n}}{2} \left| \left| \boldsymbol{d}_{i,n}(\boldsymbol{U}, \boldsymbol{\mu}) - \boldsymbol{d}_{i,n}^* \right| \right|_2^2 \right|}$$

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

 μ -space

 μ -space

Trust region ingredients for global convergence

$$\begin{array}{ll} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & F(\mu) & \longrightarrow & \begin{array}{c} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & m_{k}(\mu) \\ \text{subject to} & ||\mu - \mu_{k}|| \leq \Delta_{k} \end{array}$$

Approximation models

 $m_k(\boldsymbol{\mu}), \psi_k(\boldsymbol{\mu})$

Error indicators

$$\begin{aligned} ||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| &\leq \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0\\ |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| &\leq \sigma \theta_k(\boldsymbol{\mu}) \qquad \sigma > 0 \end{aligned}$$

Adaptivity

$$\begin{aligned} \varphi_k(\boldsymbol{\mu}_k) &\leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \end{aligned}$$

Trust region method with inexact gradients and objective

1: Model update: Choose model m_k and error indicator φ_k

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

2: Step computation: Approximately solve the trust region subproblem

$$\hat{\boldsymbol{\mu}}_k = rgmin_{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}} m_k(\boldsymbol{\mu}) ext{ subject to } ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k$$

3: Step acceptance: Compute approximation of actual-to-predicted reduction

$$p_k = rac{\psi_k(\boldsymbol{\mu}_k) - \psi_k(\hat{\boldsymbol{\mu}}_k)}{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k)}$$

 $\begin{array}{lll} \text{if} & \rho_k \geq \eta_1 & \text{then} & \boldsymbol{\mu}_{k+1} = \hat{\boldsymbol{\mu}}_k & \text{else} & \boldsymbol{\mu}_{k+1} = \boldsymbol{\mu}_k & \text{end if} \\ \text{4: Trust region update:} \end{array}$

$$\begin{array}{lll} \mathbf{if} & \rho_k \in (\eta_1, \eta_2) & \mathbf{then} & \Delta_{k+1} \in [\gamma \, || \hat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k || \,, \Delta_k] & \mathbf{end} \ \mathbf{if} & \rho_k \geq \eta_2 & \mathbf{then} & \Delta_{k+1} \in [\Delta_k, \Delta_{\max}] & \mathbf{end} \end{array}$$

Final requirement for convergence: Adaptivity

With the approximation model, $m_k(\mu)$, and gradient error indicator, $\varphi_k(\mu)$

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot) \right]$$

$$\varphi_k(\boldsymbol{\mu}) = \alpha_1 \frac{\boldsymbol{\mathcal{E}}_1}{\boldsymbol{\mathcal{E}}_1}(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \frac{\boldsymbol{\mathcal{E}}_2}{\boldsymbol{\mathcal{E}}_2}(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \boldsymbol{\mathcal{E}}_4(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k)$$

the sparse grid \mathcal{I}_k and reduced-order basis Φ_k must be constructed such that the gradient condition holds

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Define dimension-adaptive greedy method to target each source of error such that the stronger conditions hold

$$\begin{split} & \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{1}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{4}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{3}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \end{split}$$

Geometry and boundary conditions for backward facing step. Boundary conditions: viscous wall (—), parametrized $inflow(\mu)$ (—), stochastic $inflow(\boldsymbol{\xi})$ (—), outflow (—). Vorticity magnitude minimized in red shaded region.

Mean vorticity corresponding to no inflow (left) and optimal inflow (right) along parametrized boundary.

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (), and proposed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ ()

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (––), and proposed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ ()

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (-----)

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

5-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (-----)