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PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle
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PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements
Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements



Unsteady PDE-constrained optimization formulation

Goal: Find the solution of the unsteady PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

U(x, t) PDE solution
µ design/control parameters

J (U ,µ) =

∫ Tf

T0

∫
Γ

j(U ,µ, t) dS dt objective function

C(U ,µ) =

∫ Tf

T0

∫
Γ

c(U ,µ, t) dS dt constraints



Nested approach to PDE-constrained optimization
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Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

dJ
dµ (U , µ)



Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map,
G(·,µ, t), from physical v(µ, t) to reference V

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0

Space discretization: discontinuous Galerkin

M
∂u

∂t
= r(u,µ, t)

Time discretization: diagonally implicit RK

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tnr (un,i, µ, tn,i)

Quantity of interest: solver-consistency

F (u0, . . . ,uNt ,k1,1, . . . ,kNt,s,µ)

X1

X2

NdA

V

x1

x2

nda

v
G, g, vX

Mapping-Based ALE

DG Discretization

c1 a11
c2 a21 a22
...

...
...

. . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Butcher Tableau for DIRK



Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities
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Dissection of fully discrete adjoint equations

• Linear evolution equations solved backward in time

• Primal state/stage, un,i required at each state/stage of dual problem

• Heavily dependent on chosen ouput

λNt
=

∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂r

∂u
(un,i, µ, tn−1 + ci∆tn)

T
κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂r

∂u
(un,j , µ, tn−1 + cj∆tn)

T
κn,j

Gradient reconstruction via dual variables

DF =
∂F

∂µ
+ λ0

T ∂g

∂µ
(µ) +

Nt∑
n=1

∆tn

s∑
i=1

κn,i
T ∂r

∂µ
(un,i, µ, tn,i)

[Zahr and Persson, 2016]



Optimal rigid body motion (RBM), time-morph geometry (TMG)

Energy = 9.4096
Thrust = 0.1766

Energy = 4.9476
Thrust = 2.500

Energy = 4.6182
Thrust = 2.500

Initial Guess
Optimal RBM
Tx = 2.5

Optimal RBM/TMG
Tx = 2.5
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Energetically optimal flapping in three dimensions

Energy = 1.4459e-01
Thrust = -1.1192e-01

Energy = 3.1378e-01
Thrust = 0.0000e+00
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Super-resolution MR images through optimization

Experimental setup Noisy, low-resolution MRI data

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Idea: determine CFD parameters (material properties, boundary conditions) such
that the simulation matches MRI data using optimization
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MRI optimization formulation that respects scanner physics

minimize
µ

nxyz∑
i=1

nt∑
n=1

αi,n
2

∣∣∣∣di,n(U(µ), µ)− d∗i,n
∣∣∣∣2

2

d∗i,n : MRI measurement taken in voxel i at the nth time sample

di,n(U , µ): computational representation of d∗i,n

di,n(U , µ) =

∫ T

0

∫
V

wi,n(x, t) ·U(x, t) dV dt

wi,n(x, t) = χs(x; xi, ∆x)χt(t; tn, ∆t)

χt(s; c, w) =
1

1 + e−(s−(c−0.5w))/σ
− 1

1 + e−(s−(c+0.5w))/σ

χs(x; c, w) = χt(x1; c1, w1)χt(x2; c2, w2)χt(x3; c3, w3)

xi center of ith MRI voxel, ∆x size of MRI voxel

tn time instance of nth MRI sample, ∆t sampling interval in time
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Model problem with synthetic data

3

14

2

6

Viscous wall ( ), parametrized inflow ( ), and outflow ( ).
MRI data collected in the red shaded region.



High-quality reconstruction from coarse MRI grid (space: 24 × 36,
time: 10) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow
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High-quality reconstruction from fine MRI grid (space: 40×60, time:
20) and high noise (10%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow
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High-quality reconstruction with experimental data: pulsatile flow

CFD-based reconstruction from quick, low-resolution scan matches laser PIV
measurements better than slow, high-resolution scan

MRI data Reconstructed flow
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Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution
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Energetically optimal flapping vs. required thrust

Energy = 1.8445
Thrust = 0.06729

Energy = 0.21934
Thrust = 0.0000

Energy = 6.2869
Thrust = 2.5000

Initial Guess
Optimal
Tx = 0

Optimal
Tx = 2.5
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Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure
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High-order method for general multiphysics problems with uncondi-
tional linear stability

Particle-laden flow

Fluid-structure interaction
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Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

maximize
µ

1

T

∫ T

0

(cḣ2(us)−Mz(u
f )θ̇(µ, t)) dt

• Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
• Structure: Force balance in y-direction between foil and damper
• Motion driven by imposed θ(µ, t) = µ1 cos(2πft)

c

θ(µ, t)

h(us)

µ∗1 ≈ 45◦
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High-order methods for PDE-constrained optimization

• Developed fully discrete adjoint method for high-order numerical
discretizations of PDEs and QoIs

• Used to compute gradients of QoI for use in gradient-based numerical
optimization method

• Treatment of parametrized time domain (optimal frequency)

• Explicit enforcement of time-periodicity constraints

• Extension to multiphysics (fluid-structure interaction, particle-laden flow, ...)

• Applications: optimal flapping flight, energy harvesting, data assimilation
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Integrating computational physics and numerical optimization

Optimize physics

Optimize numerics



Discontinuities often arise in engineering systems, particularly in
those involving compressible flows: shock waves, contact lines

Supersnoic and transonic flow around commercial planes and fighter jets

Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces



State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver
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Exising solutions: limiting, artificial viscosity
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State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
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Drawbacks: order reduction, local refinement
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Tracking method for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture
them and approximate smooth regions to high-order

Non-aligned Discontinuity-aligned

Ingredients

• Discontinuous Galerkin discretization: inter-element jumps, high-order
• Optimization formulation that penalizes local instabilities in the solution and

enforces the discrete PDE
• Full space solver that converges the solution and mesh simultaneously to

ensure solution of PDE never required on non-aligned mesh
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Discontinuity-tracking as PDE-constrained optimization problem

minimize
u,x

f(u, x)

subject to r(u, x) = 0

Objective function
Must obtain minimum when mesh face aligned with shock and monotonically
decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Optimization approach
Cannot use nested approach where constraint r(u, x) = 0 is eliminated because
discrete PDE cannot be solved unless x = x∗ =⇒ full space approach required
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Transformed conservation law from deformation of physical domain

Consider physical domain as the result of a µ-parametrized diffeomorphism applied
to some reference domain Ω0

Ω = G(Ω0, µ)

Re-write conservation law on reference domain

∇ · F(U) = 0 in G(Ω0, µ) =⇒ ∇X · F (u, µ) = 0 in Ω0,

u = gµU, F (u, µ) = gµF(g−1
µ u)G−Tµ , Gµ =

∂

∂X
G(X,µ), gµ = detGµ

X1

X2

N dA

Ω0

x1

x2

nda

Ω

x = G(X,µ)

Mapping between reference and physical domains



Discontinuous Galerkin discretization of conservation law

Element-wise weak form of transformed conservation law∫
∂K

ψ · F (u, µ)N dA−
∫
K

F (u, µ) : ∇Xψ dV = 0

Global weak form and introduction of numerical flux∑
K∈Eh,p

∫
∂K

ψ · F ∗(u, µ, N) dA−
∫

Ω0

F (u, µ) : ∇Xψ dV = 0

Strict requirements on numerical flux since inter-element jumps will not tend to
zero on shock surface

Fully discrete transformed conservation law in terms of the discrete state vector u
and coordinates of physical mesh x

r(u, x) = 0



Objective function: penalize oscillations and mesh distortion

Consider a discontinuity indicator that aims to penalize oscillations in
finite-dimensional solution

fshk(u, x) = h−2
0

∑
K∈Eh,p

∫
G(K,x)

∣∣∣∣uh,p − ūKh,p∣∣∣∣2W dV,

ūKh,p =
1

|G(K, x)|

∫
G(K,x)

uh,p dV, |G(K, x)| =
∫
G(K,x)

dV, h0 = |Ω0|1/d

Construct objective function as weighted combination between discontinuity
indicator and mesh distortion metric

f(u, x; α) = fshk(u, x) + αfmsh(x)



Objective function: penalize oscillations and mesh distortion

Consider a discontinuity indicator that aims to penalize oscillations in
finite-dimensional solution

fshk(u, x) = h−2
0

∑
K∈Eh,p

∫
G(K,x)
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One-dimensional mesh parametrization and objective function test



Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

1

2

3

φ (position of node closest to shock)

j α
(φ

),
α

=
0

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ( ):
p = 1 ( ), p = 2 ( ), p = 3 ( ), p = 4 ( ).
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Proposed discontinuity indicator is monotonic and attains minimum
at discontinuity, whereas other indicators are not monotonic
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Cannot use nested approach to PDE optimization because it requires
solving r(u, x) = 0 for x 6= x∗ =⇒ crash

Full space approach: u→ u∗ and x→ x∗ simultaneously

Define Lagrangian
L(u, x, λ) = f(u; x)− λTr(u; x)

First-order optimality (KKT) conditions for full space optimization problem

∇uL(u∗, x∗, λ∗) = 0, ∇xL(u∗, x∗, λ∗) = 0, ∇λL(u∗, x∗, λ∗) = 0

Apply (quasi-)Newton method1 to solve nonlinear KKT system for u∗, x∗, λ∗

1usually requires globalization such as linesearch or trust-region
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Implementation mostly requires standard terms in implicit code

Gradient-based optimizers for the tracking optimization problem will require

f(u, x),
∂f

∂u
(u, x),

∂f

∂x
(u, x),

r(u, x),
∂r

∂u
(u, x),

∂r

∂x
(u, x)

- r and ∂ur required by standard implicit solvers

- Same terms required for reduced space approach



L2 projection of discontinuous function on DG basis

η(x) =

{
2, x2 + y2 < r2

1, x2 + y2 > r2

Non-aligned (left) vs. discontinuity-aligned mesh with linear (middle) and cubic (right) elements



Resolution of modified Burgers’ equation with few elements
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Resolution of modified Burgers’ equation with few elements
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O(hp+1) convergence rates demonstrated for Burgers’ equation

100 101 102 103
10−8

10−6

10−4

10−2

100

Number of elements

L
1
er
ro
r

p = 1 ( ), p = 2 ( ), p = 3 ( ), p = 4 ( ), p = 5 ( ), p = 6 ( )
The slopes of the best-fit lines to the data points in the asymptotic regime are:

∠− 2.0 ( ), ∠− 3.1 ( ), ∠− 3.9 ( ), ∠− 5.5 ( ), ∠− 4.4 ( ), ∠− 8.7 ( )



Convergence: tracking vs. uniform/adaptive refinement
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Nozzle flow: quasi-1d Euler equations
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Inviscid wall ( ), inflow ( ), outflow ( )



Resolution of quasi-1d Euler equations with few elements
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O(hp+1) convergence rates demonstrated for nozzle flow
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Supersonic flow (M = 2) around cylinder: 2D Euler equations

3

8

1

Inviscid wall/symmetry condition ( ) and farfield ( )



Resolution of 2D supersonic flow with 48 elements

Density (ρ)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.
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Resolution of 2D supersonic flow with 48 elements

Shock tracking objective (fshk)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.



Resolution of 2D supersonic flow with 48 elements

Distortion metric (fmsh)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.



Convergence to optimal solution and mesh
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Discontinuity-tracking performance summary

Polynomial order (p) 1 2 3 4

Degrees of freedom (Nu) 576 1152 1920 2880

Enthalpy error (eH) 0.0106 0.000462 0.00151 0.000885

Stagnation pressure error (ep) 0.0711 0.00479 0.0112 0.000616



Supersonic flow (M = 4) around blunt body: 2D Euler equations

4

9

1

Inviscid wall/symmetry condition ( ) and farfield ( )



Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial
guess for shock tracking method). Middle/right: solution using shock tracking framework
corresponding to mesh with 102 linear (middle) and quadratic (right) elements.



Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial
guess for shock tracking method). Middle/right: solution using shock tracking framework
corresponding to mesh with 102 linear (middle) and quadratic (right) elements.



Convergence to optimal solution and mesh
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Solver simultaneously minimizes objective and solves PDE
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Conclusions and future work

• Introduced high-order shock tracking method based on DG discretization and
PDE-constrained optimization formulation

• Key innovations: objective function that monotonically approaches a minimum
as mesh face aligns with shock and full space solver

• Optimal convergence O(hp+1) rates obtained and used to resolve a number of
transonic and supersonic flows on very coarse meshes

• Future work
• numerical flux consistent with integral form (jumps do not tend to 0)
• solver that exploits problem structure and incorporates homotopy
• local topology changes to reduce iterations and improve mesh quality

Mach 2 flow around cylinder (left), Mach 4 flow around blunt body (middle), and L2 projection of
discontinuous function (right).
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PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility



High-order discretization of PDE-constrained optimization

• Continuous PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

• Fully discrete PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu ,

µ∈Rnµ

J(u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to C(u0, . . . , uNt , k1,1, . . . , kNt,s, µ) ≤ 0

u0 − g(µ) = 0

un − un−1 −
s∑
i=1

bikn,i = 0

Mkn,i −∆tnr (un,i, µ, tn,i) = 0



Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
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− λT ∂r

∂µ

Algebraic equations leads to adjoint equations
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Sensitivity vs. adjoint method to compute gradient of F
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Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)
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Sensitivity vs. adjoint method to compute gradient of F
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Adjoint equation derivation: outline

• Define auxiliary PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu

F (u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to R0 = u0 − g(µ) = 0

Rn = un − un−1 −
s∑
i=1

bikn,i = 0

Rn,i = Mkn,i −∆tnr (un,i, µ, tn,i) = 0

• Define Lagrangian

L(un, kn,i, λn, κn,i) = F − λ0
TR0 −

Nt∑
n=1

λn
TRn −

Nt∑
n=1

s∑
i=1

κn,i
TRn,i

• The solution of the optimization problem is given by the
Karush-Kuhn-Tucker (KKT) sytem

∂L
∂un

= 0,
∂L
∂kn,i

= 0,
∂L
∂λn

= 0,
∂L
∂κn,i

= 0



High-quality reconstruction from coarse MRI grid (space: 24 × 36,
time: 20) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow
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High-quality reconstruction from fine MRI grid (space: 40×60, time:
20) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow
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Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of cyclic problems requires finding time-periodic solution of PDE;
necessary for physical relevance and avoid transients that may lead to crash

minimize
U, µ

F(U ,µ)

subject to U(x, 0) = U(x, T )

∂U

∂t
+∇ · F (U ,∇U) = 0

λNt = λ0 +
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂rn,i
∂u

T

κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂rn,i
∂u

T

κn,j
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Energetically optimal flapping vs. required thrust: QoI
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Initial guess for optimization: u0, φ0

• Initial guess for u and φ critical given the non-convex nonlinear optimization
formulation of our shock tracking method

• Homotopy: define a sequence of shock tracking problems where the solution of
problem j is used to initialize problem j + 1

• Sequence of problems chosen using homotopy in polynomial order and Mach
number (for high Mach flows)

• For initial problem in homotopy sequence:
• φ0 chosen such that resulting mesh is identical to the reference mesh
• u0 chosen as the solution of the discrete conservation law with enough added

viscosity ν
rν(u, x(φ0)) = 0



Modified Burgers’ equation with discontinuous source term

Inviscid, modified one-dimensional Burgers’ equation with a discontinuous source
term from [Barter, 2008]

∂

∂x

(
1

2
u2

)
= βu+ f(x), for x ∈ Ω = (−2, 2),

where u(−2) = 2, u(2) = −2, β = −0.1 and

f(x) =

{
(2 + sin(πx2 ))(π2 cos(πx2 )− β), x < 0

(2 + sin(πx2 ))(π2 cos(πx2 ) + β), x > 0

Analytical solution

u(x) =

{
2 + sin(πx2 ), x < 0

−2− sin(πx2 ), x > 0



High-order meshes and parametrization

Reference domain and mesh with 48 elements and polynomial orders p = 1 (left), p = 2 (middle
left), p = 3 (middle right), and p = 4 (right). The blue circles identify parametrized nodes.
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