
Integrated computational physics
and numerical optimization

Matthew J. Zahr
Luis W. Alvarez Postdoctoral Fellow
Mathematics Group
Computational Research Division
Lawrence Berkeley National Laboratory

University of Arizona, Program in Applied Mathematics Colloquium
University of Arizona, Tuscon, AZ
September 21, 2018

Collaborators: Daniel Huang, Per-Olof Persson, Johannes Töger, Jingyi Wang

Integrating computational physics and numerical optimization

Optimize physics

Optimize numerics

Integrating computational physics and numerical optimization

Optimize physics

Optimize numerics

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements
Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements

Unsteady PDE-constrained optimization formulation

Goal: Find the solution of the unsteady PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

U(x, t) PDE solution
µ design/control parameters

J (U ,µ) =

∫ Tf

T0

∫
Γ

j(U ,µ, t) dS dt objective function

C(U ,µ) =

∫ Tf

T0

∫
Γ

c(U ,µ, t) dS dt constraints

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

µ

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ) µ

U

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

dJ
dµ (U , µ)

Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map,
G(·,µ, t), from physical v(µ, t) to reference V

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0

Space discretization: discontinuous Galerkin

M
∂u

∂t
= r(u,µ, t)

Time discretization: diagonally implicit RK

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tnr (un,i, µ, tn,i)

Quantity of interest: solver-consistency

F (u0, . . . ,uNt ,k1,1, . . . ,kNt,s,µ)

X1

X2

NdA

V

x1

x2

nda

v
G, g, vX

Mapping-Based ALE

DG Discretization

c1 a11
c2 a21 a22
...

...
...

. . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Butcher Tableau for DIRK

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

Dissection of fully discrete adjoint equations

• Linear evolution equations solved backward in time

• Primal state/stage, un,i required at each state/stage of dual problem

• Heavily dependent on chosen ouput

λNt
=

∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂r

∂u
(un,i, µ, tn−1 + ci∆tn)

T
κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂r

∂u
(un,j , µ, tn−1 + cj∆tn)

T
κn,j

Gradient reconstruction via dual variables

DF =
∂F

∂µ
+ λ0

T ∂g

∂µ
(µ) +

Nt∑
n=1

∆tn

s∑
i=1

κn,i
T ∂r

∂µ
(un,i, µ, tn,i)

[Zahr and Persson, 2016]

Optimal rigid body motion (RBM), time-morph geometry (TMG)

Energy = 9.4096
Thrust = 0.1766

Energy = 4.9476
Thrust = 2.500

Energy = 4.6182
Thrust = 2.500

Initial Guess
Optimal RBM
Tx = 2.5

Optimal RBM/TMG
Tx = 2.5

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Energetically optimal flapping in three dimensions

Energy = 1.4459e-01
Thrust = -1.1192e-01

Energy = 3.1378e-01
Thrust = 0.0000e+00

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Super-resolution MR images through optimization

Experimental setup Noisy, low-resolution MRI data

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Idea: determine CFD parameters (material properties, boundary conditions) such
that the simulation matches MRI data using optimization

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

MRI optimization formulation that respects scanner physics

minimize
µ

nxyz∑
i=1

nt∑
n=1

αi,n
2

∣∣∣∣di,n(U(µ), µ)− d∗i,n
∣∣∣∣2

2

d∗i,n : MRI measurement taken in voxel i at the nth time sample

di,n(U , µ): computational representation of d∗i,n

di,n(U , µ) =

∫ T

0

∫
V

wi,n(x, t) ·U(x, t) dV dt

wi,n(x, t) = χs(x; xi, ∆x)χt(t; tn, ∆t)

χt(s; c, w) =
1

1 + e−(s−(c−0.5w))/σ
− 1

1 + e−(s−(c+0.5w))/σ

χs(x; c, w) = χt(x1; c1, w1)χt(x2; c2, w2)χt(x3; c3, w3)

xi center of ith MRI voxel, ∆x size of MRI voxel

tn time instance of nth MRI sample, ∆t sampling interval in time

MRI optimization formulation that respects scanner physics

minimize
µ

nxyz∑
i=1

nt∑
n=1

αi,n
2

∣∣∣∣di,n(U(µ), µ)− d∗i,n
∣∣∣∣2

2

d∗i,n : MRI measurement taken in voxel i at the nth time sample

di,n(U , µ): computational representation of d∗i,n

di,n(U , µ) =

∫ T

0

∫
V

wi,n(x, t) ·U(x, t) dV dt

wi,n(x, t) = χs(x; xi, ∆x)χt(t; tn, ∆t)

χt(s; c, w) =
1

1 + e−(s−(c−0.5w))/σ
− 1

1 + e−(s−(c+0.5w))/σ

χs(x; c, w) = χt(x1; c1, w1)χt(x2; c2, w2)χt(x3; c3, w3)

xi center of ith MRI voxel, ∆x size of MRI voxel

tn time instance of nth MRI sample, ∆t sampling interval in time

Model problem with synthetic data

3

14

2

6

Viscous wall (), parametrized inflow (), and outflow ().
MRI data collected in the red shaded region.

High-quality reconstruction from coarse MRI grid (space: 24 × 36,
time: 10) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

High-quality reconstruction from fine MRI grid (space: 40×60, time:
20) and high noise (10%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

High-quality reconstruction with experimental data: pulsatile flow

CFD-based reconstruction from quick, low-resolution scan matches laser PIV
measurements better than slow, high-resolution scan

MRI data Reconstructed flow

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton12'){ocgs[i].state=false;}}

Energetically optimal flapping vs. required thrust

Energy = 1.8445
Thrust = 0.06729

Energy = 0.21934
Thrust = 0.0000

Energy = 6.2869
Thrust = 2.5000

Initial Guess
Optimal
Tx = 0

Optimal
Tx = 2.5

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton13'){ocgs[i].state=false;}}

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

High-order method for general multiphysics problems with uncondi-
tional linear stability

Particle-laden flow

Fluid-structure interaction

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton14'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton15'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton16'){ocgs[i].state=false;}}

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

maximize
µ

1

T

∫ T

0

(cḣ2(us)−Mz(u
f)θ̇(µ, t)) dt

• Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
• Structure: Force balance in y-direction between foil and damper
• Motion driven by imposed θ(µ, t) = µ1 cos(2πft)

c

θ(µ, t)

h(us)

µ∗1 ≈ 45◦

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton17'){ocgs[i].state=false;}}

High-order methods for PDE-constrained optimization

• Developed fully discrete adjoint method for high-order numerical
discretizations of PDEs and QoIs

• Used to compute gradients of QoI for use in gradient-based numerical
optimization method

• Treatment of parametrized time domain (optimal frequency)

• Explicit enforcement of time-periodicity constraints

• Extension to multiphysics (fluid-structure interaction, particle-laden flow, ...)

• Applications: optimal flapping flight, energy harvesting, data assimilation

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton18'){ocgs[i].state=false;}}

Integrating computational physics and numerical optimization

Optimize physics

Optimize numerics

Discontinuities often arise in engineering systems, particularly in
those involving compressible flows: shock waves, contact lines

Supersnoic and transonic flow around commercial planes and fighter jets

Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

State-of-the-art numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Proposed solution: align features of solution basis with features in the solution
using optimization formulation and solver

Tracking method for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture
them and approximate smooth regions to high-order

Non-aligned Discontinuity-aligned

Ingredients

• Discontinuous Galerkin discretization: inter-element jumps, high-order
• Optimization formulation that penalizes local instabilities in the solution and

enforces the discrete PDE
• Full space solver that converges the solution and mesh simultaneously to

ensure solution of PDE never required on non-aligned mesh

Tracking method for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture
them and approximate smooth regions to high-order

Non-aligned Discontinuity-aligned

Ingredients

• Discontinuous Galerkin discretization: inter-element jumps, high-order
• Optimization formulation that penalizes local instabilities in the solution and

enforces the discrete PDE
• Full space solver that converges the solution and mesh simultaneously to

ensure solution of PDE never required on non-aligned mesh

Discontinuity-tracking as PDE-constrained optimization problem

minimize
u,x

f(u, x)

subject to r(u, x) = 0

Objective function
Must obtain minimum when mesh face aligned with shock and monotonically
decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Optimization approach
Cannot use nested approach where constraint r(u, x) = 0 is eliminated because
discrete PDE cannot be solved unless x = x∗ =⇒ full space approach required

Discontinuity-tracking as PDE-constrained optimization problem

minimize
u,x

f(u, x)

subject to r(u, x) = 0

Objective function
Must obtain minimum when mesh face aligned with shock and monotonically
decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Optimization approach
Cannot use nested approach where constraint r(u, x) = 0 is eliminated because
discrete PDE cannot be solved unless x = x∗ =⇒ full space approach required

Discontinuity-tracking as PDE-constrained optimization problem

minimize
u,x

f(u, x)

subject to r(u, x) = 0

Objective function
Must obtain minimum when mesh face aligned with shock and monotonically
decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Optimization approach
Cannot use nested approach where constraint r(u, x) = 0 is eliminated because
discrete PDE cannot be solved unless x = x∗ =⇒ full space approach required

Transformed conservation law from deformation of physical domain

Consider physical domain as the result of a µ-parametrized diffeomorphism applied
to some reference domain Ω0

Ω = G(Ω0, µ)

Re-write conservation law on reference domain

∇ · F(U) = 0 in G(Ω0, µ) =⇒ ∇X · F (u, µ) = 0 in Ω0,

u = gµU, F (u, µ) = gµF(g−1
µ u)G−Tµ , Gµ =

∂

∂X
G(X,µ), gµ = detGµ

X1

X2

N dA

Ω0

x1

x2

nda

Ω

x = G(X,µ)

Mapping between reference and physical domains

Discontinuous Galerkin discretization of conservation law

Element-wise weak form of transformed conservation law∫
∂K

ψ · F (u, µ)N dA−
∫
K

F (u, µ) : ∇Xψ dV = 0

Global weak form and introduction of numerical flux∑
K∈Eh,p

∫
∂K

ψ · F ∗(u, µ, N) dA−
∫

Ω0

F (u, µ) : ∇Xψ dV = 0

Strict requirements on numerical flux since inter-element jumps will not tend to
zero on shock surface

Fully discrete transformed conservation law in terms of the discrete state vector u
and coordinates of physical mesh x

r(u, x) = 0

Objective function: penalize oscillations and mesh distortion

Consider a discontinuity indicator that aims to penalize oscillations in
finite-dimensional solution

fshk(u, x) = h−2
0

∑
K∈Eh,p

∫
G(K,x)

∣∣∣∣uh,p − ūKh,p∣∣∣∣2W dV,

ūKh,p =
1

|G(K, x)|

∫
G(K,x)

uh,p dV, |G(K, x)| =
∫
G(K,x)

dV, h0 = |Ω0|1/d

Construct objective function as weighted combination between discontinuity
indicator and mesh distortion metric

f(u, x; α) = fshk(u, x) + αfmsh(x)

Objective function: penalize oscillations and mesh distortion

Consider a discontinuity indicator that aims to penalize oscillations in
finite-dimensional solution

fshk(u, x) = h−2
0

∑
K∈Eh,p

∫
G(K,x)

∣∣∣∣uh,p − ūKh,p∣∣∣∣2W dV,

ūKh,p =
1

|G(K, x)|

∫
G(K,x)

uh,p dV, |G(K, x)| =
∫
G(K,x)

dV, h0 = |Ω0|1/d

Construct objective function as weighted combination between discontinuity
indicator and mesh distortion metric

f(u, x; α) = fshk(u, x) + αfmsh(x)

One-dimensional mesh parametrization and objective function test

One-dimensional mesh parametrization and objective function test

One-dimensional mesh parametrization and objective function test

One-dimensional mesh parametrization and objective function test

One-dimensional mesh parametrization and objective function test

One-dimensional mesh parametrization and objective function test

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

1

2

3

φ (position of node closest to shock)

j α
(φ

),
α

=
0

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

1

2

3

φ (position of node closest to shock)

j α
(φ

),
α

=
1

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

1

2

3

4

φ (position of node closest to shock)

j α
(φ

),
α

=
10

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

2

4

6

φ (position of node closest to shock)

j α
(φ

),
α

=
20

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

2

4

6

8

φ (position of node closest to shock)

j α
(φ

),
α

=
40

jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Objective function monotonically approaches minimum as mesh aligns
with discontinuity, regardless of p, for a range of α

0.46 0.48 0.5 0.52 0.54
0

50

100

150

φ (position of node closest to shock)

j α
(φ

),
α

=
10

00
jα(φ) = fshk(u(x(φ)), x(φ)) + αfmsh(x(φ))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 (), p = 4 ().

Proposed discontinuity indicator is monotonic and attains minimum
at discontinuity, whereas other indicators are not monotonic

−0.06 −0.03 0 0.03 0.06
0

10

20

φ (position of node closest to shock)

f s
h
k
(u

(x
(φ

))
,x

(φ
))

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 ().

Proposed discontinuity indicator is monotonic and attains minimum
at discontinuity, whereas other indicators are not monotonic

−0.06 −0.03 0 0.03 0.06
0

20

40

60

80

φ (position of node closest to shock)

re
si
du

al
-b
as
ed

in
di
ca
to
r

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 ().

Proposed discontinuity indicator is monotonic and attains minimum
at discontinuity, whereas other indicators are not monotonic

−0.06 −0.03 0 0.03 0.06
0

2

4

6

φ (position of node closest to shock)

ph
ys
ic
s-
ba

se
d
in
di
ca
to
r

Objective function as an element face is smoothly swept across discontinuity ():
p = 1 (), p = 2 (), p = 3 ().

Cannot use nested approach to PDE optimization because it requires
solving r(u, x) = 0 for x 6= x∗ =⇒ crash

Full space approach: u→ u∗ and x→ x∗ simultaneously

Define Lagrangian
L(u, x, λ) = f(u; x)− λTr(u; x)

First-order optimality (KKT) conditions for full space optimization problem

∇uL(u∗, x∗, λ∗) = 0, ∇xL(u∗, x∗, λ∗) = 0, ∇λL(u∗, x∗, λ∗) = 0

Apply (quasi-)Newton method1 to solve nonlinear KKT system for u∗, x∗, λ∗

1usually requires globalization such as linesearch or trust-region

Cannot use nested approach to PDE optimization because it requires
solving r(u, x) = 0 for x 6= x∗ =⇒ crash

Full space approach: u→ u∗ and x→ x∗ simultaneously

Define Lagrangian
L(u, x, λ) = f(u; x)− λTr(u; x)

First-order optimality (KKT) conditions for full space optimization problem

∇uL(u∗, x∗, λ∗) = 0, ∇xL(u∗, x∗, λ∗) = 0, ∇λL(u∗, x∗, λ∗) = 0

Apply (quasi-)Newton method1 to solve nonlinear KKT system for u∗, x∗, λ∗

1usually requires globalization such as linesearch or trust-region

Implementation mostly requires standard terms in implicit code

Gradient-based optimizers for the tracking optimization problem will require

f(u, x),
∂f

∂u
(u, x),

∂f

∂x
(u, x),

r(u, x),
∂r

∂u
(u, x),

∂r

∂x
(u, x)

- r and ∂ur required by standard implicit solvers

- Same terms required for reduced space approach

L2 projection of discontinuous function on DG basis

η(x) =

{
2, x2 + y2 < r2

1, x2 + y2 > r2

Non-aligned (left) vs. discontinuity-aligned mesh with linear (middle) and cubic (right) elements

Resolution of modified Burgers’ equation with few elements

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

Exact solution (), tracking solution () and mesh () for p = 3

Resolution of modified Burgers’ equation with few elements

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

Exact solution (), tracking solution () and mesh () for p = 3

Resolution of modified Burgers’ equation with few elements

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

Exact solution (), tracking solution () and mesh () for p = 3

O(hp+1) convergence rates demonstrated for Burgers’ equation

100 101 102 103
10−8

10−6

10−4

10−2

100

Number of elements

L
1
er
ro
r

p = 1 (), p = 2 (), p = 3 (), p = 4 (), p = 5 (), p = 6 ()
The slopes of the best-fit lines to the data points in the asymptotic regime are:

∠− 2.0 (), ∠− 3.1 (), ∠− 3.9 (), ∠− 5.5 (), ∠− 4.4 (), ∠− 8.7 ()

Convergence: tracking vs. uniform/adaptive refinement

100 101 102 103
10−7

10−4

10−1
L

1
er
ro
r

100 101 102 103
10−7

10−4

10−1

number of elements

L
1
er
ro
r

100 101 102 103

number of elements

discontinuity-tracking p = 1 () p = 2 () p = 3 ()
uniform refinement p = 1 () p = 2 () p = 3 ()
adaptive refinement p = 1 () p = 2 () p = 3 ()

Nozzle flow: quasi-1d Euler equations

0.5 0.5

1

0.8

A(x)

Inviscid wall (), inflow (), outflow ()

Resolution of quasi-1d Euler equations with few elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

Exact solution (), tracking solution () and mesh () for p = 3

Resolution of quasi-1d Euler equations with few elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

Exact solution (), tracking solution () and mesh () for p = 3

Resolution of quasi-1d Euler equations with few elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

Exact solution (), tracking solution () and mesh () for p = 3

O(hp+1) convergence rates demonstrated for nozzle flow

100 101 102 103

10−5

10−4

10−3

10−2

10−1

100

Number of elements

L
1
er
ro
r

p = 1 (), p = 2 ()
Slope of best-fit line: ∠− 2.0 (), ∠− 2.7 ()

Reference second-order method (p = 1) with adaptive mesh refinement ()

Supersonic flow (M = 2) around cylinder: 2D Euler equations

3

8

1

Inviscid wall/symmetry condition () and farfield ()

Resolution of 2D supersonic flow with 48 elements

Density (ρ)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Resolution of 2D supersonic flow with 48 elements

Density (ρ)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Resolution of 2D supersonic flow with 48 elements

Shock tracking objective (fshk)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Resolution of 2D supersonic flow with 48 elements

Distortion metric (fmsh)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for
shock tracking method). Remaining: solution using shock tracking framework corresponding to

mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Convergence to optimal solution and mesh

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton19'){ocgs[i].state=false;}}

Discontinuity-tracking performance summary

Polynomial order (p) 1 2 3 4

Degrees of freedom (Nu) 576 1152 1920 2880

Enthalpy error (eH) 0.0106 0.000462 0.00151 0.000885

Stagnation pressure error (ep) 0.0711 0.00479 0.0112 0.000616

Supersonic flow (M = 4) around blunt body: 2D Euler equations

4

9

1

Inviscid wall/symmetry condition () and farfield ()

Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial
guess for shock tracking method). Middle/right: solution using shock tracking framework
corresponding to mesh with 102 linear (middle) and quadratic (right) elements.

Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial
guess for shock tracking method). Middle/right: solution using shock tracking framework
corresponding to mesh with 102 linear (middle) and quadratic (right) elements.

Convergence to optimal solution and mesh

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton20'){ocgs[i].state=false;}}

Solver simultaneously minimizes objective and solves PDE

0 50 100 150 200 250 300 350 400
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration

O
bj
ec
ti
ve

fu
nc
ti
on

(
)

10−10

10−8

10−6

10−4

10−2

100

102

R
es
id
ua

ln
or
m
,|
|r

(u
,
x

)||
∞

(
)

Convergence of residual and objective function

Conclusions and future work

• Introduced high-order shock tracking method based on DG discretization and
PDE-constrained optimization formulation

• Key innovations: objective function that monotonically approaches a minimum
as mesh face aligns with shock and full space solver

• Optimal convergence O(hp+1) rates obtained and used to resolve a number of
transonic and supersonic flows on very coarse meshes

• Future work
• numerical flux consistent with integral form (jumps do not tend to 0)
• solver that exploits problem structure and incorporates homotopy
• local topology changes to reduce iterations and improve mesh quality

Mach 2 flow around cylinder (left), Mach 4 flow around blunt body (middle), and L2 projection of
discontinuous function (right).

References I

Barter, G. E. (2008).

Shock capturing with PDE-based artificial viscosity for an adaptive,
higher-order discontinuous Galerkin finite element method.

PhD thesis, M.I.T.

Huang, D. Z., Persson, P.-O., and Zahr, M. J. (2018).

High-order, linearly stable, partitioned solvers for general
multiphysics problems based on implicit-explicit Runge-Kutta
schemes.

Computer Methods in Applied Mechanics and Engineering.

Wang, J., Zahr, M. J., and Persson, P.-O. (6/5/2017 – 6/9/2017).

Energetically optimal flapping flight based on a fully discrete adjoint
method with explicit treatment of flapping frequency.

In Proc. of the 23rd AIAA Computational Fluid Dynamics Conference,
Denver, Colorado. American Institute of Aeronautics and Astronautics.

References II

Zahr, M. J. and Persson, P.-O. (1/8/2018 – 1/12/2018b).

An optimization-based discontinuous Galerkin approach for
high-order accurate shock tracking.

In AIAA Science and Technology Forum and Exposition (SciTech2018),
Kissimmee, Florida. American Institute of Aeronautics and Astronautics.

Zahr, M. J. and Persson, P.-O. (2016).

An adjoint method for a high-order discretization of deforming
domain conservation laws for optimization of flow problems.

Journal of Computational Physics, 326(Supplement C):516 – 543.

Zahr, M. J. and Persson, P.-O. (2018a).

An optimization-based approach for high-order accurate
discretization of conservation laws with discontinuous solutions.

Journal of Computational Physics, 365:105 – 134.

References III

Zahr, M. J., Persson, P.-O., and Wilkening, J. (2016).

A fully discrete adjoint method for optimization of flow problems on
deforming domains with time-periodicity constraints.

Computers & Fluids, 139:130 – 147.

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility

High-order discretization of PDE-constrained optimization

• Continuous PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

• Fully discrete PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu ,

µ∈Rnµ

J(u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to C(u0, . . . , uNt , k1,1, . . . , kNt,s, µ) ≤ 0

u0 − g(µ) = 0

un − un−1 −
s∑
i=1

bikn,i = 0

Mkn,i −∆tnr (un,i, µ, tn,i) = 0

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ

=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1

∂F

∂u

∂r

∂µ

∂u

∂µ

λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ

λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Adjoint equation derivation: outline

• Define auxiliary PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu

F (u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to R0 = u0 − g(µ) = 0

Rn = un − un−1 −
s∑
i=1

bikn,i = 0

Rn,i = Mkn,i −∆tnr (un,i, µ, tn,i) = 0

• Define Lagrangian

L(un, kn,i, λn, κn,i) = F − λ0
TR0 −

Nt∑
n=1

λn
TRn −

Nt∑
n=1

s∑
i=1

κn,i
TRn,i

• The solution of the optimization problem is given by the
Karush-Kuhn-Tucker (KKT) sytem

∂L
∂un

= 0,
∂L
∂kn,i

= 0,
∂L
∂λn

= 0,
∂L
∂κn,i

= 0

High-quality reconstruction from coarse MRI grid (space: 24 × 36,
time: 20) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton21'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton22'){ocgs[i].state=false;}}

High-quality reconstruction from fine MRI grid (space: 40×60, time:
20) and low noise (3%)

Synthetic MRI data d∗i,n (top) and
computational representation of MRI

data di,n (bottom)

Reconstructed flow

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton23'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton24'){ocgs[i].state=false;}}

Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of cyclic problems requires finding time-periodic solution of PDE;
necessary for physical relevance and avoid transients that may lead to crash

minimize
U, µ

F(U ,µ)

subject to U(x, 0) = U(x, T)

∂U

∂t
+∇ · F (U ,∇U) = 0

λNt = λ0 +
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂rn,i
∂u

T

κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂rn,i
∂u

T

κn,j

0 2 4
−60

−40

−20

0

time

po
w
er

0 2 4

−4

−2

0

time

po
w
er

Time history of power on airfoil of flow initialized from steady-state () and
from a time-periodic solution ()

Energetically optimal flapping vs. required thrust: QoI

0 0.5 1 1.5 2 2.5
0

2

4

6

W
∗

0 0.5 1 1.5 2 2.5

0.1

0.15

0.2

0.25

f
∗

0 0.5 1 1.5 2 2.5

1.2

1.4

1.6

1.8

2

T̄x

y
∗ m

ax

0 0.5 1 1.5 2 2.5
20

40

60

T̄x
θ∗ m

ax

The optimal flapping energy (W ∗), frequency (f∗), maximum heaving amplitude (y∗max),
and maximum pitching amplitude (θ∗max) as a function of the thrust constraint T̄x.

Initial guess for optimization: u0, φ0

• Initial guess for u and φ critical given the non-convex nonlinear optimization
formulation of our shock tracking method

• Homotopy: define a sequence of shock tracking problems where the solution of
problem j is used to initialize problem j + 1

• Sequence of problems chosen using homotopy in polynomial order and Mach
number (for high Mach flows)

• For initial problem in homotopy sequence:
• φ0 chosen such that resulting mesh is identical to the reference mesh
• u0 chosen as the solution of the discrete conservation law with enough added

viscosity ν
rν(u, x(φ0)) = 0

Modified Burgers’ equation with discontinuous source term

Inviscid, modified one-dimensional Burgers’ equation with a discontinuous source
term from [Barter, 2008]

∂

∂x

(
1

2
u2

)
= βu+ f(x), for x ∈ Ω = (−2, 2),

where u(−2) = 2, u(2) = −2, β = −0.1 and

f(x) =

{
(2 + sin(πx2))(π2 cos(πx2)− β), x < 0

(2 + sin(πx2))(π2 cos(πx2) + β), x > 0

Analytical solution

u(x) =

{
2 + sin(πx2), x < 0

−2− sin(πx2), x > 0

High-order meshes and parametrization

Reference domain and mesh with 48 elements and polynomial orders p = 1 (left), p = 2 (middle
left), p = 3 (middle right), and p = 4 (right). The blue circles identify parametrized nodes.

	Optimize physics
	Optimize numerics

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:
	fd@rm@6:
	fd@rm@7:
	fd@rm@8:
	fd@rm@9:
	fd@rm@10:
	fd@rm@11:
	fd@rm@12:
	fd@rm@13:
	fd@rm@14:
	fd@rm@15:
	fd@rm@16:
	fd@rm@17:
	fd@rm@18:
	fd@rm@19:
	fd@rm@20:
	fd@rm@21:
	fd@rm@22:
	fd@rm@23:
	fd@rm@24:

