Integrated computational physics and numerical optimization

Matthew J. Zahr Luis W. Alvarez Postdoctoral Fellow Mathematics Group Computational Research Division Lawrence Berkeley National Laboratory

UCB/LBNL Applied Mathematics Seminar University of California, Berkeley, CA September 6, 2018

Collaborators: Daniel Huang, Per-Olof Persson, Johannes Töger, Jingyi Wang

Optimize physics

Optimize numerics

Optimize physics

Optimize numerics

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements

Goal: Find the solution of the unsteady PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{U}, \ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \quad \text{in} \quad v(\boldsymbol{\mu}, t) \end{array}$$

PDE solution design/control parameters

 $\operatorname{constraints}$

$$\begin{split} & \boldsymbol{\mu} \\ & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} j(\boldsymbol{U},\boldsymbol{\mu},t) \, dS \, dt \\ & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} \mathbf{c}(\boldsymbol{U},\boldsymbol{\mu},t) \, dS \, dt \end{split}$$

 $\boldsymbol{U}(\boldsymbol{x},t)$

Optimizer

Primal PDE

Dual PDE

Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map, $\mathcal{G}(\cdot, \mu, t)$, from physical $v(\mu, t)$ to reference V

$$\left. \frac{\partial \boldsymbol{U}_{\boldsymbol{X}}}{\partial t} \right|_{\boldsymbol{X}} + \nabla_{\boldsymbol{X}} \cdot \boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{U}_{\boldsymbol{X}}, \ \nabla_{\boldsymbol{X}}\boldsymbol{U}_{\boldsymbol{X}}) = 0$$

Space discretization: discontinuous Galerkin

$$M \frac{\partial u}{\partial t} = r(u, \mu, t)$$

Time discretization: diagonally implicit RK

$$u_n = u_{n-1} + \sum_{i=1}^{s} b_i k_{n,i}$$
$$M k_{n,i} = \Delta t_n r (u_{n,i}, \mu, t_{n,i})$$

Quantity of interest: solver-consistency

$$F(\boldsymbol{u}_0,\ldots,\boldsymbol{u}_{N_t},\boldsymbol{k}_{1,1},\ldots,\boldsymbol{k}_{N_t,s},\boldsymbol{\mu})$$

Mapping-Based ALE

DG Discretization

Butcher Tableau for DIRK

Fully discrete output function i.e., either **objective** or a **constraint**

$$F(\boldsymbol{\mu}) = F(\boldsymbol{u}_0, \dots, \boldsymbol{u}_n, \boldsymbol{k}_{1,1}, \dots, \boldsymbol{k}_{N_t,s}, \boldsymbol{\mu})$$

Fully discrete output function i.e., either objective or a constraint

$$F(\boldsymbol{\mu}) = F(\boldsymbol{u}_0, \dots, \boldsymbol{u}_n, \boldsymbol{k}_{1,1}, \dots, \boldsymbol{k}_{N_t,s}, \boldsymbol{\mu})$$

Total derivative with respect to parameters μ

$$DF = \frac{\partial F}{\partial \boldsymbol{\mu}} + \sum_{n=0}^{N_t} \frac{\partial F}{\partial \boldsymbol{u}_n} \frac{\partial \boldsymbol{u}_n}{\partial \boldsymbol{\mu}} + \sum_{n=1}^{N_t} \sum_{i=1}^s \frac{\partial F}{\partial \boldsymbol{k}_{n,i}} \frac{\partial \boldsymbol{k}_{n,i}}{\partial \boldsymbol{\mu}}$$

However, the sensitivities, $\frac{\partial u_n}{\partial \mu}$ and $\frac{\partial k_{n,i}}{\partial \mu}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations

Fully discrete output function i.e., either objective or a constraint

$$F(\boldsymbol{\mu}) = F(\boldsymbol{u}_0, \dots, \boldsymbol{u}_n, \boldsymbol{k}_{1,1}, \dots, \boldsymbol{k}_{N_t,s}, \boldsymbol{\mu})$$

Total derivative with respect to parameters μ

$$DF = \frac{\partial F}{\partial \boldsymbol{\mu}} + \sum_{n=0}^{N_t} \frac{\partial F}{\partial \boldsymbol{u}_n} \frac{\partial \boldsymbol{u}_n}{\partial \boldsymbol{\mu}} + \sum_{n=1}^{N_t} \sum_{i=1}^s \frac{\partial F}{\partial \boldsymbol{k}_{n,i}} \frac{\partial \boldsymbol{k}_{n,i}}{\partial \boldsymbol{\mu}}$$

However, the sensitivities, $\frac{\partial u_n}{\partial \mu}$ and $\frac{\partial k_{n,i}}{\partial \mu}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations

Adjoint method

Alternative method for computing DF that does not require sensitivities

Dissection of fully discrete adjoint equations

- Linear evolution equations solved backward in time
- **Primal** state/stage, $u_{n,i}$ required at each state/stage of dual problem
- Heavily dependent on **chosen ouput**

$$\boldsymbol{\lambda}_{N_{t}} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{N_{t}}}^{T}$$
$$\boldsymbol{\lambda}_{n-1} = \boldsymbol{\lambda}_{n} + \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{n-1}}^{T} + \sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n-1} + c_{i} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n,i}$$
$$\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n,i} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{N_{t}}}^{T} + b_{i} \boldsymbol{\lambda}_{n} + \sum_{j=i}^{s} a_{ji} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_{n,j}, \ \boldsymbol{\mu}, \ t_{n-1} + c_{j} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n,j}$$

Gradient reconstruction via dual variables

$$DF = \frac{\partial F}{\partial \mu} + \lambda_0^T \frac{\partial g}{\partial \mu}(\mu) + \sum_{n=1}^{N_t} \Delta t_n \sum_{i=1}^s \kappa_{n,i}^T \frac{\partial r}{\partial \mu}(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n,i})$$

[Zahr and Persson, 2016]

Energy = 9.4096	Energy = 4.9476	Energy = 4.6182
Thrust = 0.1766	$\mathrm{Thrust}=2.500$	Thrust = 2.500

Initial Guess	Optimal RBM	Optimal $\operatorname{RBM}/\operatorname{TMG}$
	$T_x = 2.5$	$T_{x} = 2.5$

Energy = 1.4459e-01Thrust = -1.1192e-01

 $\begin{array}{l} {\rm Energy} = 3.1378 \text{e-}01 \\ {\rm Thrust} = 0.0000 \text{e+}00 \end{array}$

Experimental setup

Noisy, low-resolution MRI data

Goal: visualize *in vivo* flow with high-resolution and accurately compute clinically relevant quantities from quick scans

Idea: determine CFD parameters (material properties, boundary conditions) such that the simulation matches MRI data using optimization

$$\underset{\boldsymbol{\mu}}{\text{minimize}} \quad \sum_{i=1}^{n_{xyz}} \sum_{n=1}^{n_t} \frac{\alpha_{i,n}}{2} \left| \left| \boldsymbol{d}_{i,n}(\boldsymbol{U}(\boldsymbol{\mu}),\,\boldsymbol{\mu}) - \boldsymbol{d}_{i,n}^* \right| \right|_2^2 \right.$$

 $d^*_{i,n}$: MRI measurement taken in voxel *i* at the *n*th time sample $d_{i,n}(U, \mu)$: computational representation of $d^*_{i,n}$

$$\underset{\boldsymbol{\mu}}{\text{minimize}} \quad \sum_{i=1}^{n_{xyz}} \sum_{n=1}^{n_t} \frac{\alpha_{i,n}}{2} \left| \left| \boldsymbol{d}_{i,n}(\boldsymbol{U}(\boldsymbol{\mu}),\,\boldsymbol{\mu}) - \boldsymbol{d}_{i,n}^* \right| \right|_2^2 \right.$$

 $d^*_{i,n}$: MRI measurement taken in voxel *i* at the *n*th time sample $d_{i,n}(U, \mu)$: computational representation of $d^*_{i,n}$

$$\begin{aligned} \boldsymbol{d}_{i,n}(\boldsymbol{U},\,\boldsymbol{\mu}) &= \int_0^T \int_V w_{i,n}(\boldsymbol{x},\,t) \cdot \boldsymbol{U}(\boldsymbol{x},\,t) \, dV \, dt \\ w_{i,n}(\boldsymbol{x},\,t) &= \chi_s(\boldsymbol{x};\,\boldsymbol{x}_i,\,\Delta \boldsymbol{x}) \chi_t(t;\,t_n,\,\Delta t) \\ \chi_t(s;\,c,\,w) &= \frac{1}{1 + e^{-(s - (c - 0.5w))/\sigma}} - \frac{1}{1 + e^{-(s - (c + 0.5w))/\sigma}} \\ \chi_s(\boldsymbol{x};\,\boldsymbol{c},\,\boldsymbol{w}) &= \chi_t(x_1;\,c_1,\,w_1) \chi_t(x_2;\,c_2,\,w_2) \chi_t(x_3;\,c_3,\,w_3) \end{aligned}$$

 \boldsymbol{x}_i center of *i*th MRI voxel, $\Delta \boldsymbol{x}$ size of MRI voxel

 t_n time instance of nth MRI sample, Δt sampling interval in time

Viscous wall (—), parametrized inflow (—), and outflow (—). MRI data collected in the red shaded region.

High-quality reconstruction from coarse MRI grid (space: 24×36 , time: 10) and low noise (3%)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

High-quality reconstruction from fine MRI grid (space: 40×60 , time: 20) and high noise (10%)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom) CFD-based reconstruction from quick, low-resolution scan matches laser PIV measurements better than slow, high-resolution scan

MRI data

Reconstructed flow

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$T(\boldsymbol{\mu}) = N_t \Delta t \implies N_t = N_t(\boldsymbol{\mu}) \text{ or } \Delta t = \Delta t(\boldsymbol{\mu})$$

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$T(\boldsymbol{\mu}) = N_t \Delta t \implies N_t = N_t(\boldsymbol{\mu}) \text{ or } \Delta t = \Delta t(\boldsymbol{\mu})$$

Choose $\Delta t = \Delta t(\boldsymbol{\mu})$ to avoid discrete changes

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$T(\boldsymbol{\mu}) = N_t \Delta t \implies N_t = N_t(\boldsymbol{\mu}) \text{ or } \Delta t = \Delta t(\boldsymbol{\mu})$$

Choose $\Delta t = \Delta t(\boldsymbol{\mu})$ to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from adjoint solution

Energetically optimal flapping vs. required thrust

Energy	' =	1.8445
Thrust	= (0.06729

Energy = 0.21934Thrust = 0.0000

Energy = 6.2869Thrust = 2.5000

Initial Guess	Optimal	Optimal
	$T_x = 0$	$T_x = 2.5$

For problems that involve the interaction of multiple types of physical phenomena, *no changes required* if monolithic system considered

$$egin{aligned} m{M}_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0,\,m{c}_0(m{u}_0,\,m{u}_1)) \ m{M}_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1,\,m{c}_1(m{u}_0,\,m{u}_1)) \end{aligned}$$

For problems that involve the interaction of multiple types of physical phenomena, *no changes required* if monolithic system considered

$$egin{aligned} m{M}_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0,\,m{c}_0(m{u}_0,\,m{u}_1)) \ m{M}_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1,\,m{c}_1(m{u}_0,\,m{u}_1)) \end{aligned}$$

However, to solve in partitioned manner and achieve high-order, split as follows and apply implicit-explicit Runge-Kutta

 $egin{aligned} M_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0, m{c}_0(m{u}_0, m{u}_1)) \ M_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1, \, ilde{m{c}}_1) &+ (m{r}_1(m{u}_1, \, m{c}_1(m{u}_0, m{u}_1)) - m{r}_1(m{u}_1, \, ilde{m{c}}_1)) \end{aligned}$

For problems that involve the interaction of multiple types of physical phenomena, *no changes required* if monolithic system considered

$$egin{aligned} m{M}_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0,\,m{c}_0(m{u}_0,\,m{u}_1)) \ m{M}_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1,\,m{c}_1(m{u}_0,\,m{u}_1)) \end{aligned}$$

However, to solve in partitioned manner and achieve high-order, split as follows and apply implicit-explicit Runge-Kutta

$$egin{aligned} M_0 \dot{m{u}}_0 &= m{r}_0(m{u}_0,\,m{c}_0(m{u}_0,\,m{u}_1)) \ M_1 \dot{m{u}}_1 &= m{r}_1(m{u}_1,\, ilde{m{c}}_1) &+ (m{r}_1(m{u}_1,\,m{c}_1(m{u}_0,\,m{u}_1)) - m{r}_1(m{u}_1,\, ilde{m{c}}_1)) \end{aligned}$$

Adjoint equations inherit explicit-implicit structure

High-order method for general multiphysics problems with unconditional linear stability

Particle-laden flow

Fluid-structure interaction

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

$$\underset{\boldsymbol{\mu}}{\text{maximize}} \quad \frac{1}{T} \int_0^T (c\dot{h}^2(\boldsymbol{u}^s) - M_z(\boldsymbol{u}^f)\dot{\theta}(\boldsymbol{\mu}, t)) dt$$

- Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
- $\bullet\,$ Structure: Force balance in y-direction between foil and damper
- Motion driven by imposed $\theta(\mu, t) = \mu_1 \cos(2\pi f t)$

High-order methods for PDE-constrained optimization

- Developed **fully discrete adjoint method** for **high-order** numerical discretizations of PDEs and QoIs
- Used to compute **gradients** of QoI for use in gradient-based numerical optimization method
- Treatment of **parametrized time domain** (optimal frequency)
- Explicit enforcement of **time-periodicity constraints**
- Extension to **multiphysics** (fluid-structure interaction, particle-laden flow, ...)
- Applications: optimal flapping flight, energy harvesting, data assimilation

Optimize physics

Optimize numerics

Supersnoic and transonic flow around commercial planes and fighter jets Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis Existing solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

 $\underline{\text{Proposed solution:}} \text{ align features of solution basis with features in the solution using optimization formulation and solver}$

<u>Fundamental issue</u>: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

 $\underline{\text{Proposed solution:}} \text{ align features of solution basis with features in the solution using optimization formulation and solver}$

Tracking method for stable, high-order resolution of discontinuities

<u>Goal</u>: Align element faces with (unknown) discontinuities to perfectly capture them and approximate smooth regions to high-order

Non-aligned

Discontinuity-aligned

Tracking method for stable, high-order resolution of discontinuities

<u>Goal</u>: Align element faces with (unknown) discontinuities to perfectly capture them and approximate smooth regions to high-order

Ingredients

- Discontinuous Galerkin discretization: inter-element jumps, high-order
- Optimization formulation that penalizes local instabilities in the solution and enforces the discrete PDE
- Full space solver that converges the solution and mesh simultaneously to ensure solution of PDE never required on non-aligned mesh

 $\begin{array}{ll} \underset{\boldsymbol{u},\boldsymbol{x}}{\text{minimize}} & f(\boldsymbol{u},\,\boldsymbol{x}) \\ \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u},\,\boldsymbol{x}) = 0 \end{array}$

 $\begin{array}{ll} \underset{{\boldsymbol{u}},{\boldsymbol{x}}}{\operatorname{minimize}} & f({\boldsymbol{u}},{\boldsymbol{x}}) \\ \\ \text{subject to} & {\boldsymbol{r}}({\boldsymbol{u}},{\boldsymbol{x}}) = 0 \end{array}$

Objective function

Must obtain minimum when mesh face aligned with shock and monotonically decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Objective function

Must obtain minimum when mesh face aligned with shock and monotonically decreases to minimum in neighborhood of radius O(h/2) about discontinuity

Optimization approach

Cannot use **nested** approach where constraint r(u, x) = 0 is eliminated because discrete PDE cannot be solved unless $x = x^* \implies$ full space approach required

Transformed conservation law from deformation of physical domain

Consider physical domain as the result of a $\mu\text{-}\mathrm{parametrized}$ diffeomorphism applied to some reference domain Ω_0

$$\Omega = \mathcal{G}(\Omega_0, \mu)$$

Re-write conservation law on reference domain

$$\nabla \cdot \mathcal{F}(U) = 0 \quad \text{in } \mathcal{G}(\Omega_0, \mu) \implies \nabla_X \cdot F(u, \mu) = 0 \quad \text{in } \Omega_0,$$
$$u = g_\mu U, \quad F(u, \mu) = g_\mu \mathcal{F}(g_\mu^{-1} u) G_\mu^{-T}, \quad G_\mu = \frac{\partial}{\partial X} \mathcal{G}(X, \mu), \quad g_\mu = \det G_\mu$$

Mapping between reference and physical domains

Discontinuous Galerkin discretization of conservation law

Element-wise weak form of transformed conservation law

$$\int_{\partial K} \psi \cdot F(u, \mu) N \, dA - \int_K F(u, \mu) : \nabla_X \psi \, dV = 0$$

Global weak form and introduction of numerical flux

$$\sum_{K \in \mathcal{E}_{h,p}} \int_{\partial K} \psi \cdot F^*(u,\,\mu,\,N) \, dA - \int_{\Omega_0} F(u,\,\mu) : \nabla_X \psi \, dV = 0$$

Strict requirements on numerical flux since inter-element jumps will not tend to zero on shock surface

Fully discrete transformed conservation law in terms of the discrete state vector \boldsymbol{u} and coordinates of physical mesh \boldsymbol{x}

$$\boldsymbol{r}(\boldsymbol{u},\,\boldsymbol{x})=0$$

Consider a discontinuity indicator that aims to penalize oscillations in finite-dimensional solution

$$f_{shk}(\boldsymbol{u},\,\boldsymbol{x}) = h_0^{-2} \sum_{K \in \mathcal{E}_{h,p}} \int_{\mathcal{G}(K,\,\boldsymbol{x})} \left| \left| u_{h,p} - \bar{u}_{h,p}^K \right| \right|_{\boldsymbol{W}}^2 \, dV,$$

$$\bar{u}_{h,p}^{K} = \frac{1}{|\mathcal{G}(K, \boldsymbol{x})|} \int_{\mathcal{G}(K, \boldsymbol{x})} u_{h,p} \, dV, \qquad |\mathcal{G}(K, \boldsymbol{x})| = \int_{\mathcal{G}(K, \boldsymbol{x})} dV, \qquad h_0 = |\Omega_0|^{1/d}$$

Consider a discontinuity indicator that aims to penalize oscillations in finite-dimensional solution

$$f_{shk}(\boldsymbol{u},\,\boldsymbol{x}) = h_0^{-2} \sum_{K \in \mathcal{E}_{h,p}} \int_{\mathcal{G}(K,\,\boldsymbol{x})} \left| \left| u_{h,p} - \bar{u}_{h,p}^K \right| \right|_{\boldsymbol{W}}^2 \, dV,$$

$$\bar{u}_{h,p}^{K} = \frac{1}{|\mathcal{G}(K, \boldsymbol{x})|} \int_{\mathcal{G}(K, \boldsymbol{x})} u_{h,p} \, dV, \qquad |\mathcal{G}(K, \boldsymbol{x})| = \int_{\mathcal{G}(K, \boldsymbol{x})} dV, \qquad h_0 = |\Omega_0|^{1/d}$$

Construct objective function as weighted combination between discontinuity indicator and mesh distortion metric

$$f(\boldsymbol{u}, \boldsymbol{x}; \alpha) = f_{shk}(\boldsymbol{u}, \boldsymbol{x}) + \alpha f_{msh}(\boldsymbol{x})$$

$$j_{\alpha}(\boldsymbol{\phi}) = f_{shk}(\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\phi})), \, \boldsymbol{x}(\boldsymbol{\phi})) + \alpha f_{msh}(\boldsymbol{x}(\boldsymbol{\phi}))$$

Objective function as an element face is smoothly swept across discontinuity (---): p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).

$$j_{lpha}(oldsymbol{\phi}) = f_{shk}(oldsymbol{u}(oldsymbol{x}(oldsymbol{\phi})), oldsymbol{x}(oldsymbol{\phi})) + lpha f_{msh}(oldsymbol{x}(oldsymbol{\phi}))$$

Objective function as an element face is smoothly swept across discontinuity (--): p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).

$$j_{\alpha}(\boldsymbol{\phi}) = f_{shk}(\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\phi})), \, \boldsymbol{x}(\boldsymbol{\phi})) + \alpha f_{msh}(\boldsymbol{x}(\boldsymbol{\phi}))$$

Objective function as an element face is smoothly swept across discontinuity (--): p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).

$$j_{lpha}(oldsymbol{\phi}) = f_{shk}(oldsymbol{u}(oldsymbol{x}(oldsymbol{\phi})), oldsymbol{x}(oldsymbol{\phi})) + lpha f_{msh}(oldsymbol{x}(oldsymbol{\phi}))$$

Objective function as an element face is smoothly swept across discontinuity (--): p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).

$$j_{\alpha}(\boldsymbol{\phi}) = f_{shk}(\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\phi})), \, \boldsymbol{x}(\boldsymbol{\phi})) + \alpha f_{msh}(\boldsymbol{x}(\boldsymbol{\phi}))$$

Objective function as an element face is smoothly swept across discontinuity (---): p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).

Objective function as an element face is smoothly swept across discontinuity
$$(---)$$
:
 $p = 1 (--), p = 2 (--), p = 3 (--), p = 4 (--).$

Proposed discontinuity indicator is monotonic and attains minimum at discontinuity, whereas other indicators are not monotonic

Objective function as an element face is smoothly swept across discontinuity (- - -): p = 1 (---), p = 2 (---), p = 3 (---). Proposed discontinuity indicator is monotonic and attains minimum at discontinuity, whereas other indicators are not monotonic

Objective function as an element face is smoothly swept across discontinuity (---): p = 1 (--), p = 2 (--), p = 3 (--).

Proposed discontinuity indicator is monotonic and attains minimum at discontinuity, whereas other indicators are not monotonic

Objective function as an element face is smoothly swept across discontinuity (---): p = 1 (--), p = 2 (--), p = 3 (--).

Cannot use nested approach to PDE optimization because it requires solving r(u, x) = 0 for $x \neq x^* \implies$ crash

Full space approach: $u \to u^*$ and $x \to x^*$ simultaneously

¹usually requires globalization such as linesearch or trust-region

Cannot use nested approach to PDE optimization because it requires solving r(u, x) = 0 for $x \neq x^* \implies$ crash

Full space approach: $u \to u^*$ and $x \to x^*$ simultaneously Define Lagrangian

$$\mathcal{L}(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{u}; \boldsymbol{x}) - \boldsymbol{\lambda}^T \boldsymbol{r}(\boldsymbol{u}; \boldsymbol{x})$$

First-order optimality (KKT) conditions for full space optimization problem

$$abla_{oldsymbol{u}}\mathcal{L}(oldsymbol{u}^*,oldsymbol{x}^*,oldsymbol{\lambda}^*)=oldsymbol{0},\qquad
abla_{oldsymbol{\lambda}}\mathcal{L}(oldsymbol{u}^*,oldsymbol{x}^*,oldsymbol{\lambda}^*)=oldsymbol{0},\qquad
abla_{oldsymbol{\lambda}}\mathcal{L}(oldsymbol{u}^*,oldsymbol{x}^*,oldsymbol{\lambda}^*)=oldsymbol{0},$$

Apply (quasi-)Newton method¹ to solve nonlinear KKT system for $u^*, \, x^*, \, \lambda^*$

¹usually requires globalization such as linesearch or trust-region

Gradient-based optimizers for the tracking optimization problem will require

- r and $\partial_u r$ required by standard implicit solvers
- Same terms required for reduced space approach

L^2 projection of discontinuous function on DG basis

Non-aligned (left) vs. discontinuity-aligned mesh with linear (middle) and cubic (right) elements

Resolution of modified Burgers' equation with few elements

Convergence: tracking vs. uniform/adaptive refinement

Inviscid wall (---), inflow (---), outflow (---)

Resolution of quasi-1d Euler equations with few elements

Exact solution (-----), tracking solution (-----) and mesh (-----) for p = 3

Resolution of quasi-1d Euler equations with few elements

Exact solution (-----), tracking solution (-----) and mesh (-----) for p = 3

Resolution of quasi-1d Euler equations with few elements

Exact solution (-----), tracking solution (-----) and mesh (-----) for p = 3

p = 1 (•), p = 2 (•) Slope of best-fit line: $\angle -2.0$ (----), $\angle -2.7$ (----) Reference second-order method (p = 1) with adaptive mesh refinement (*)

Density (ρ)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for shock tracking method). Remaining: solution using shock tracking framework corresponding to mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Density (ρ)

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for shock tracking method). Remaining: solution using shock tracking framework corresponding to mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Shock tracking objective (f_{shk})

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for shock tracking method). *Remaining:* solution using shock tracking framework corresponding to mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Distortion metric (f_{msh})

Left: Solution on non-aligned mesh with 48 linear elements and added viscosity (initial guess for shock tracking method). *Remaining:* solution using shock tracking framework corresponding to mesh with 48 p = 1, p = 2, p = 3, p = 4 elements.

Polynomial order (p)	1	2	3	4
Degrees of freedom $(N_{\boldsymbol{u}})$	576	1152	1920	2880
Enthalpy error (e_H)	0.0106	0.000462	0.00151	0.000885
Stagnation pressure error (e_p)	0.0711	0.00479	0.0112	0.000616

Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial guess for shock tracking method). *Middle/right:* solution using shock tracking framework corresponding to mesh with 102 linear (*middle*) and quadratic (*right*) elements.

Resolution of 2D supersonic flow with 102 quadratic elements

Left: Solution (density) on non-aligned mesh with 102 linear elements and added viscosity (initial guess for shock tracking method). *Middle/right:* solution using shock tracking framework corresponding to mesh with 102 linear (*middle*) and quadratic (*right*) elements.

Convergence of residual and objective function

Conclusions and future work

- Introduced high-order shock tracking method based on DG discretization and PDE-constrained optimization formulation
- Key innovations: *objective function* that monotonically approaches a minimum as mesh face aligns with shock and *full space solver*
- Optimal convergence $\mathcal{O}(h^{p+1})$ rates obtained and used to resolve a number of transonic and supersonic flows on very coarse meshes
- Future work
 - numerical flux consistent with *integral form* (jumps do not tend to 0)
 - solver that exploits *problem structure* and incorporates *homotopy*
 - local topology changes to reduce iterations and improve mesh quality

Mach 2 flow around cylinder (*left*), Mach 4 flow around blunt body (*middle*), and L^2 projection of discontinuous function (*right*).

References I

Barter, G. E. (2008).

Shock capturing with PDE-based artificial viscosity for an adaptive, higher-order discontinuous Galerkin finite element method. PhD thesis, M.I.T.

Huang, D. Z., Persson, P.-O., and Zahr, M. J. (2018).

High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes.

Computer Methods in Applied Mechanics and Engineering.

Wang, J., Zahr, M. J., and Persson, P.-O. (6/5/2017 - 6/9/2017).
 Energetically optimal flapping flight based on a fully discrete adjoint method with explicit treatment of flapping frequency.

In Proc. of the 23rd AIAA Computational Fluid Dynamics Conference, Denver, Colorado. American Institute of Aeronautics and Astronautics.

References II

Zahr, M. J. and Persson, P.-O. (1/8/2018 - 1/12/2018b).

An optimization-based discontinuous Galerkin approach for high-order accurate shock tracking.

In AIAA Science and Technology Forum and Exposition (SciTech2018), Kissimmee, Florida. American Institute of Aeronautics and Astronautics.

Zahr, M. J. and Persson, P.-O. (2016).

An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems.

Journal of Computational Physics, 326(Supplement C):516 – 543.

Zahr, M. J. and Persson, P.-O. (2018a).

An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions. *Journal of Computational Physics*, 365:105 – 134.

Zahr, M. J., Persson, P.-O., and Wilkening, J. (2016).

A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints.

Computers & Fluids, 139:130 – 147.

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility

• Continuous PDE-constrained optimization problem

$$\begin{split} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U},\nabla \boldsymbol{U}) = 0 \ \text{ in } \ v(\boldsymbol{\mu},t) \end{split}$$

• Fully discrete PDE-constrained optimization problem

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

The total derivative of r leads to the sensitivity equations

$$Dr = \frac{\partial r}{\partial \mu} + \frac{\partial r}{\partial u} \frac{\partial u}{\partial \mu} = 0 \implies \frac{\partial u}{\partial \mu} = -\frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu}$$

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

The total derivative of r leads to the sensitivity equations

$$Dr = \frac{\partial r}{\partial \mu} + \frac{\partial r}{\partial u} \frac{\partial u}{\partial \mu} = 0 \implies \frac{\partial u}{\partial \mu} = -\frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu}$$

The total derivative of F

$$DF = \frac{\partial F}{\partial \mu} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial \mu}$$

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

The total derivative of r leads to the sensitivity equations

$$D\boldsymbol{r} = \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}} + \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}} = 0 \implies \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}} = -\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}$$

The total derivative of F

$$DF = \frac{\partial F}{\partial \mu} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial \mu} = \frac{\partial F}{\partial \mu} - \frac{\partial F}{\partial u} \frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu}$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

The total derivative of r leads to the sensitivity equations

$$Dr = \frac{\partial r}{\partial \mu} + \frac{\partial r}{\partial u} \frac{\partial u}{\partial \mu} = 0 \implies \frac{\partial u}{\partial \mu} = -\frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu}$$

The total derivative of F

$$DF = \frac{\partial F}{\partial \mu} + \frac{\partial F}{\partial u}\frac{\partial u}{\partial \mu} = \frac{\partial F}{\partial \mu} - \frac{\partial F}{\partial u}\frac{\partial r}{\partial u}^{-1}\frac{\partial r}{\partial \mu} = \frac{\partial F}{\partial \mu} - \lambda^{T}\frac{\partial r}{\partial \mu}$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $u(\mu)$ be the solution of $r(\cdot, \mu) = 0$

$$\boldsymbol{r}(\boldsymbol{\mu}) = \boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu}) = 0, \qquad F(\boldsymbol{\mu}) = F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})$$

The total derivative of r leads to the sensitivity equations

$$Dr = \frac{\partial r}{\partial \mu} + \frac{\partial r}{\partial u} \frac{\partial u}{\partial \mu} = 0 \implies \frac{\partial u}{\partial \mu} = -\frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu}$$

The total derivative of F

$$DF = \frac{\partial F}{\partial \mu} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial \mu} = \frac{\partial F}{\partial \mu} - \frac{\partial F}{\partial u} \frac{\partial r}{\partial u}^{-1} \frac{\partial r}{\partial \mu} = \frac{\partial F}{\partial \mu} - \lambda^T \frac{\partial r}{\partial \mu}$$

Algebraic equations leads to adjoint equations

$$\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{T} \boldsymbol{\lambda} = \frac{\partial F}{\partial \boldsymbol{u}}^{T}$$

$$\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}$$

Sensitivity method requires n_{μ} linear solves and $n_F n_{\mu}$ inner products (\mathbb{R}^{n_u})

$$\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}$$

Sensitivity method requires n_{μ} linear solves and $n_F n_{\mu}$ inner products (\mathbb{R}^{n_u})

$$\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}$$

Sensitivity method requires n_{μ} linear solves and $n_F n_{\mu}$ inner products (\mathbb{R}^{n_u}) Adjoint method requires n_F linear solves and $n_F n_{\mu}$ inner products (\mathbb{R}^{n_u})

Adjoint equation derivation: outline

• Define **auxiliary** PDE-constrained optimization problem

$$\begin{array}{l} \underset{u_{0}, \dots, u_{N_{t}} \in \mathbb{R}^{N_{u}}, \\ k_{1,1}, \dots, k_{N_{t},s} \in \mathbb{R}^{N_{u}} \end{array}}{\text{minimize}} \quad F(u_{0}, \dots, u_{N_{t}}, k_{1,1}, \dots, k_{N_{t},s}, \mu) \\ \text{subject to} \quad R_{0} = u_{0} - g(\mu) = 0 \\ R_{n} = u_{n} - u_{n-1} - \sum_{i=1}^{s} b_{i}k_{n,i} = 0 \\ R_{n,i} = Mk_{n,i} - \Delta t_{n}r(u_{n,i}, \mu, t_{n,i}) = 0 \end{array}$$

• Define Lagrangian

$$\mathcal{L}(\boldsymbol{u}_n, \boldsymbol{k}_{n,i}, \boldsymbol{\lambda}_n, \boldsymbol{\kappa}_{n,i}) = F - \boldsymbol{\lambda}_0^T \boldsymbol{R}_0 - \sum_{n=1}^{N_t} \boldsymbol{\lambda}_n^T \boldsymbol{R}_n - \sum_{n=1}^{N_t} \sum_{i=1}^s \boldsymbol{\kappa}_{n,i}^T \boldsymbol{R}_{n,i}$$

• The solution of the optimization problem is given by the Karush-Kuhn-Tucker (KKT) sytem

$$\frac{\partial \mathcal{L}}{\partial u_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial k_{n,i}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial \kappa_{n,i}} = 0$$

High-quality reconstruction from coarse MRI grid (space: 24×36 , time: 20) and low noise (3%)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

High-quality reconstruction from fine MRI grid (space: 40×60 , time: 20) and low noise (3%)

Reconstructed flow

Synthetic MRI data $d_{i,n}^*$ (top) and computational representation of MRI data $d_{i,n}$ (bottom)

Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of *cyclic* problems requires finding time-periodic solution of PDE; necessary for physical relevance and avoid transients that may lead to crash

Time history of power on airfoil of flow initialized from steady-state (--) and from a time-periodic solution (--)

Energetically optimal flapping vs. required thrust: QoI

The optimal flapping energy (W^*) , frequency (f^*) , maximum heaving amplitude (y^*_{\max}) , and maximum pitching amplitude (θ^*_{\max}) as a function of the thrust constraint \bar{T}_x .

- Initial guess for u and ϕ critical given the non-convex nonlinear optimization formulation of our shock tracking method
- Homotopy: define a sequence of shock tracking problems where the solution of problem j is used to initialize problem j + 1
- Sequence of problems chosen using homotopy in *polynomial order* and Mach number (for high Mach flows)
- For initial problem in homotopy sequence:
 - ϕ_0 chosen such that resulting mesh is identical to the reference mesh
 - u_0 chosen as the solution of the discrete conservation law with enough added viscosity ν

$$\boldsymbol{r}_{\nu}(\boldsymbol{u},\,\boldsymbol{x}(\boldsymbol{\phi}_{0}))=0$$

Inviscid, modified one-dimensional Burgers' equation with a discontinuous source term from [Barter, 2008]

$$\frac{\partial}{\partial x}\left(\frac{1}{2}u^2\right) = \beta u + f(x), \quad \text{for } x \in \Omega = (-2, 2),$$

where u(-2) = 2, u(2) = -2, $\beta = -0.1$ and

$$f(x) = \begin{cases} (2 + \sin(\frac{\pi x}{2}))(\frac{\pi}{2}\cos(\frac{\pi x}{2}) - \beta), & x < 0\\ (2 + \sin(\frac{\pi x}{2}))(\frac{\pi}{2}\cos(\frac{\pi x}{2}) + \beta), & x > 0 \end{cases}$$

Analytical solution

$$u(x) = \begin{cases} 2 + \sin(\frac{\pi x}{2}), & x < 0\\ -2 - \sin(\frac{\pi x}{2}), & x > 0 \end{cases}$$

Reference domain and mesh with 48 elements and polynomial orders p = 1 (*left*), p = 2 (*middle left*), p = 3 (*middle right*), and p = 4 (*right*). The blue circles identify parametrized nodes.