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PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

> .

Optimal flapping motion of micro aerial vehicle
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PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Wi

Metamaterial cloaking — electromagnetic invisibility
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PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Left: Material inversion: find defects from acoustic, structural measurements

Right: Source inversion: find source of airborne contaminant from measurements

initial model inverted result true model
— — - I —— e ——

— ——

Full waveform inversion: estimate subsurface from acoustic measurements



Deterministic' PDE-constrained optimization formulati

minimize  J(u, p)
LeR"H

subject to  7(u, pu) =0

r:R"™ x R" — R" discretized PDE

J :R™ xR"™ - R quantity of interest

u € R™ PDE state vector

n e R™ optimization parameters

I Extension to stochastic see MS280 on Thursday



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


Nested approach to PDE-constrained optimization
Virtually all expense emanates from primal/dual PDE solves

Dual PDE
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Efficient PDE-constrained optimization using managed inexactness

Application to Bayesian parameter estimation
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Efficient PDE-constrained optimization using

managed inexactness



Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

e Reduced-order models used for inexact PDE evaluations

e Partially converged solutions used for inexact PDFE evaluations

minimize F(p) — minimize m(p)
LR ER"H

2Must be computable and apply to general, nonlinear PDEs
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Relationship between the objective function and model

e First-order consistency [Alexandrov et al., 1998|

mi(pg) = Fpy) Vmy(py) = VF(py,)

e The Carter condition [Carter, 1989, Carter, 1991]

IV E () = Vg (p) || < [V (pi)l] n € (0, 1)

e Asymptotic gradient bound [Heinkenschloss and Vicente, 2002]

IVE () — V()| < €min{[[Vmi ()], A €>0

Asymptotic gradient bound permits the use of an error indicator: oy

IVE(p) = Vmy(p)|| < Spr(p)  £>0
(k) < ko min{|[Vmg(pg)[|, Ax}



region method with inexact gradients [Kouri et al., 2013]|

1: Model update: Choose model my, such that error indicator ¢y, satisfies

() < rp mind|[Vmg (py)[ A}

2: Step computation: Approximately solve the trust region subproblem

= argmin my(p) subject to || — pl| < Ag
LCR™ 5

3: Step acceptance: Compute actual-to-predicted reduction

if P> M then M1 = [y, else M1 = My, end if
4: Trust region update:
if o <m then Apy1 € (0,7, — p3] end if
it pr € (n1,m2) then Ay € [y[lay — il Axl end if
if Pr =12 then Agi1 € [Ak, Apax) end if
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() < rp mind|[Vmg (py)[ A}

: Step computation: Approximately solve the trust region subproblem

= argmin my(p) subject to ||p— pl| < A
LCR™ 5

3: Step acceptance: Compute actual-to-predicted reduction

F(uy) — F(iy)
i (hag) — ()
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Trust region ingredients for global convergence

Approximation model

my (1)

Error indicator

IVE(p) = Vi ()] < Eor(p),  £>0

Adaptivity
pr(py) < ko min{ [V (u)l . Ar}

Global convergence

liminf |[VF(u,)|| = 0
k—o0




Source of inexactness/efficiency: projection-based model reduction

e Model reduction ansatz: state vector lies in low-dimensional subspace

u ~ Pu,

e &= [¢1 d)k“} € R"w*Fu js the reduced (trial) basis (N > k)

e wu, € RF* are the reduced coordinates of u

e Substitute into r(u, p) = 0 and project onto columnspace of a test basis
® c R™=*ku to obtain a square system

Ty (®u,, p) =0



Connection to finite element method: hierarchical subspaces

e S - infinite-dimensional trial space
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Connection to finite element method: hierarchical subspaces

Sh

e S - infinite-dimensional trial space

e S; - (large) finite-dimensional trial space
e SF - (small) finite-dimensional trial space
e Sfcs,cCcS



Few global, data-driven basis functions v. many

e Instead of using traditional local
shape functions, use global shape
functions

e Instead of a-priori, analytical shape
functions, leverage data-rich
computing environment by using
data-driven modes

\ »
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Trust region method: ROM approximation model

Approximation models based on reduced-order models

mi(p) = J(Pru, (), 1)

Error indicators from residual-based error bounds

er(p) = [Ir(@ruc(p), plle + || (rur(p), Bedi(k), 1)|| o
Adaptivity to refine basis at trust region center

@k:{u(uk) A(py,) POD(Uy) PUD(Vk)}

Ui = {U(No) u’(/"k71>] Vi = [A(Ho) A(H’kfl)}

Interpolation property of minimum-residual reduced-order models —> ¢ () =0



Trust region method: ROM approximation model

Approximation models based on reduced-order models

mi(p) = J(Pru, (), 1)

Error indicators from residual-based error bounds

er(p) = [Ir(@ruc(p), plle + || (rur(p), Bedi(k), 1)|| o
Adaptivity to refine basis at trust region center

@k:{u(uk) A(py,) POD(Uy) PUD(Vk)}

Ui = {U(No) u’(/"k71>] Vi = [A(Ho) A(H’kfl)}

Interpolation property of minimum-residual reduced-order models —> ¢ () =0

likminf VT (w(py), py)l| =0
—00




Trust region framework for optimization with ROMs

Schematic °

p-space

—

Breakdown of Computational Effort
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t region framework for optimization with ROMs

Optimizer
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Breakdown of Computational Effort



Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

NACAQ012: Initial RAE2822: Target

Pressure field for airfoil configurations at M« = 0.5, o = 0.0°

17 /32



Proposed method: recovers target airfoil

I I 0.6
— Initial
— Target
- - - HDM-based optimization
ROM-based 0pt1m1/at1on

Distance Transverse to Centerline

| | |
0 01 02 03 04 05 06 07 08 09 1
Distance along airfoil



Proposed method: 4x fewer HDM queries

10!

10-3

1077 \

10711 L -
—@— HDM-based optimization
—@— ROM-based optimization

—15 | | | | |
10 0 5 10 15 20 25 30

Number of HDM queries

Objective Function
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Shape optimization of aircraft in turbulent flow

e Flow: M =0.85 a=2.32° Re=5x 106

Ini}}érﬂgze —L.(p)/La(p) e Equations: RANS with Spalart-Allmaras
subject to L, (p) = L. e Solver: Vertex-centered finite volume method

e Mesh: 11.5M nodes, 68M tetra, 69M DOF
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Shape optimization of aircraft in turbulent flow

e Flow: M =0.85 «a=232° Re=5x10°

mi:}ggze —L.(p)/La(p) e Equations: RANS with Spalart-Allmaras
subject to L, (p) = L. e Solver: Vertex-centered finite volume method

e Mesh: 11.5M nodes, 68M tetra, 69M DOF

Twist



Shape optimization of aircraft in turbulent flow

e Flow: M =0.85 a=2.32° Re=5x 106

Ini}}ér]gze —L.(p)/La(p) e Equations: RANS with Spalart-Allmaras
subject to L,(p) = L. e Solver: Vertex-centered finite volume method

e Mesh: 11.5M nodes, 68M tetra, 69M DOF

Localized dihedral



Optimized shape: reduction in 2.2 drag counts
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Baseline (gray) and optimized shape (red) — 2x magnification



Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape — colored by C,

Performance: ROM-TR method obtains same solution (to 4 digits of accuracy)
as HDM-only optimization and only requires about 60% of the computation time.

Conclusion: Very promising results considering ROMs have notoriously poor
prediction capabilities for problems with moving shocks/discontinuities.



Application to Bayesian parameter estimation



Enhance numerical simulation with noisy solution data

Let z denote noisy solution measurements that can be expressed as a function of

the simulation parameters g and noise term € (known distribution) as
z=h(p) +e

where h is a function that maps simulation parameters to solution observations.

Example: Magnetic resonance imaging

a) Phantom setup - 2D view b) Phantom setup: Laser PIV
— g Camera
it 25 % (/> ——
Vertical
laser sheet

d) Phantom flow field
4D flow MRI Laser PIV

Velocity
(mis)
Laser | 0 01 02 03 04

Experimental setup Noisy, low-resolution MRI data
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Bayesian setting for parameter estimation

We want to estimate the probability distribution over the parameter space, given
the data we have observed, i.e., the posterior p(u|z)

p(p|z) o p(p)p(z|p),

where p(p) is the prior distribution and the distribution p(z|p) can be inferred
directly from our ansatz regarding the nature of the data (z = h(u) + €).

Importance sampling: empirical estimate of p(u|z) (and related statistics) where

each sample assigned weights (uj, w;) to focus samples on important regions of

parameter space, e.g., the expectation is approximated via the M-sample estimate

M
Enlg(p)] = Z w;g(p;),

wi

where 0; = =52—.
IS



Parameter estimation via implicit sampling

Implicit sampling

Special case of importance sampling where samples computed by solving implicit

equation [Morzfeld et al., 2015]

1) Find maximum a posteriori (MAP) point, p*, by maximizing

F(p) = —log p(p)p(z|p)

— PDE-constrained optimization : p(z|u) requires solution of the PDE
2) Compute Hessian of F' at p*, denoted H

3) Implicit sampling in M random directions & g

Flu* +3¢;) — 0 = S€T HE,

Acceleration using reduced-order models

1) Accelerate optimization using trust-region framework and ROMs — pu*, ®
2) Approximate Hessian using ROM and finite differences
3) Use ROM for implicit sampling



Parameter estimation: elliptic PDE

Consider the elliptic PDE, often used to model subsurface flow,

-V (kVp)=g¢g inQ
p=~h on 0,
where p is the (partially observed) pressure field and « is the (unknown)

permeability. Pressure at 25% of FEM nodes is observed and the noise added is
N(0,0.3pmax)-

02 04 06 08 10 00 02 04 06 08 10

True permeability (left), true pressure (center), and observed pressure (right).

Goal: estimate the probability distribution of k given the observations of p

27
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Computation of MAP point: HDM-only vs. HDM-ROM

0.8

0.6

0.4

0.0 . 0.4 0.6 0.8 1.0

MAP point: only HDM evaluations (left) and the ROM trust region method (right).

Performance:

HDM-only ROM-TR

HDM primal 27 8
HDM sensitivity 27 8
ROM primal 0 30
ROM sensitivity 0 30
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Implicit sampling (500 samples): HDM-only vs. ROM-TR

0.8

0.6

0.0 02

04

02

0.4 0.6 0.8 1.0

Mean of posterior: only HDM evaluations (left) and the ROM trust region method (right).

Performance:

Hessian evaluation
HDM-only ROM-TR

Implicit sampling
HDM-only ROM-TR

HDM primal
HDM sensitivity
ROM primal
ROM sensitivity

12 0 1799 0
12 0 1799 0
0 12 0 1781
0 12 0 1781

29 /32



Leveraging inexactness to accelerate PDE-constrained optimization

Framework introduced to accelerate PDE-constrained optimization

e Adaptive model reduction

e Partially converged primal and adjoint solutions

Inexactness managed with flexible trust region method

Applied to variety of problems in computational mechanics and outperforms
standard methods
e 5x speedup: subsonic shape optimization of airfoil

e 1.6x speedup: transonic shape design of aircraft

Extended/applied to accelerate Bayesian parameter estimation
e Use ROM-TR method to find MAP point p*
e Use reduced basis built during optimization to approximate Hessian at pu*
e Re-cast sampling procedure as optimization problem and apply ROM-TR
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