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Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to
p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D
supersonic flow with 48 elements; the error in the stagnation enthalpy is O(10−4)

for p = 2 (1152 DoF).
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Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking
Aims to overcome the difficulty of explicitly meshing the unknown shock surface,
e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]
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Implicit tracking for stable, high-order resolution of discontinuities

Goal: Align element faces
with (unknown) discontinuit-
ies to perfectly capture them
and approximate smooth re-
gions to high-order

Non-aligned Discontinuity-aligned

High-order implicit shock tracking (HOIST)1

• Discontinuous Galerkin discretization: inter-element jumps, high-order

• Discontinuity-aligned mesh: solution of optimization problem constrained by
the discrete PDE =⇒ implicit tracking

• Full space solver that converges the solution and mesh simultaneously to
ensure solution of PDE never required on non-aligned mesh

1[Zahr, Persson; 2018], [Zahr, Shi, Persson; 2020]
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Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:
∇ · F (U) = 0 in Ω

Element-wise finite-dimensional weak form of conservation law:

rKh,p′(Uh,p) :=

∫
∂K

ψ+
h,p′ · H(U+

h,p, U
−
h,p, n) dS −

∫
K

F (Uh,p) : ∇ψh,p′ dV,

where Vh,p′ is the test space, Vh,p is the trial space, H is the numerical flux
function, h is element size, and p/p′ is the polynomial degree.

Introduce basis for polynomial spaces to obtain discrete residuals

r(u,x) (p′ = p), R(u,x) (p′ = p+ 1),

where u is the discrete state vector and x are the coordinates of the mesh nodes.
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Implicit shock tracking: constrained optimization formulation

We formulate the problem of tracking discontinuities with the mesh as the solution
of an optimization problem constrained by the discrete PDE (DG discretization)

minimize
u,x

f(u,x) :=
1

2
‖F (u,x)‖22

subject to r(u,x) = 0.

The objective function balances tracking and mesh quality

F (u,x) =

[
R(u,x)

κRmsh(x)

]

r(u,x) = 0 (DG equation), u (discrete state vector), x (coordinates of mesh nodes)

R (tracking term): penalizes the DG residual in the enriched test space

Rmsh (mesh term): accounts for the distortion of each high-order element

κ: mesh distortion penalization parameter
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Implicit shock tracking: sequential quadratic programming solver

Define z = (u,x) and use interchangeably. To solve the optimization problem, we
define a sequence {zk} updated as

zk+1 = zk + αk∆zk.

The step direction ∆zk is defined as the solution of the quadratic program (QP)
approximation of the tracking problem centered at zk

minimize
∆z∈RNz

gz(zk)T∆z +
1

2
∆zTBz(zk, λ̂(zk))∆z

subject to r(zk) + Jz(zk)∆z = 0,

where

gz(z) =
∂f

∂z
(z)T , Jz(z) =

∂r

∂z
(z), Bz(z,λ) ≈ ∂2L

∂z∂z
(z,λ),

L(z,λ) = f(z)− λTr(z) (Lagrangian)

λ̂(z) =
∂r

∂u
(z)−T

∂f

∂u
(z)T (Lagrange mulitplier estimate)
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Implicit shock tracking: sequential quadratic programming solver

The solution of the quadratic program leads to the following linear system Buu(zk, λ̂(zk)) Bux(zk, λ̂(zk)) Ju(zk)T

Bux(zk, λ̂(zk))T Bxx(zk, λ̂(zk)) Jx(zk)T

Ju(zk) Jx(zk) 0


∆uk

∆xk
ηk

 = −

gu(zk)

gx(zk)

r(zk)

 ,
where

gu(z) =
∂f

∂u
(z)T , Ju(z) =

∂r

∂u
(z), gx(z) =

∂f

∂x
(z)T , Jx(z) =

∂r

∂x
(z),

the approximate Hessian of the Lagrangian is taken as

Buu(z,λ) =
∂F

∂u
(z)T

∂F

∂u
(z), Bux(z,λ) =

∂F

∂u
(z)T

∂F

∂x
(z),

Bxx(z,λ) =
∂F

∂x
(z)T

∂F

∂x
(z) + γD,

and ηk are the Lagrange multipliers of the QP and D is a mesh regularization
matrix (linear elasticity stiffness).
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Linear advection (2D), straight shock

p = 0 space for solution, q = 1 space for mesh
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Newton-like convergence when solution lies in DG subspace

Linear advection with straight shock
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Linear advection (2D), trigonometic shock

p = 0 space for solution, q = 2 space for mesh
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Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh
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Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh
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Inviscid flow through area variation: HOIST vs capturing (p = 4)
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Inviscid flow through area variation: h-convergence
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Shock capturing: p = 4 ( ); HOIST: p = 1 ( ), p = 2 ( ), p = 3 ( ),
p = 4 ( ), p = 5 ( ); dashed line indicates optimal convergence rate (O(hp+1))

Observation: Shock capturing limited to first-order convergence rate; HOIST
achieves optimal convergence rates (O(hp+1)) and high accuracy per DoF
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Construction of admissible mesh motion

Cannot directly optimize nodal coordinates (x) without changing the domain;
instead, construct mapping that guarantees mesh conforms to the domain
boundaries from a collection of unconstrained degrees of freedom (y) and directly
optimize y

x = φ(y) =⇒
minimize

u,y
f(u,φ(y))

subject to r(u,φ(y)) = 0

• Planar boundaries: φ automatically constructed from normals

• Curved boundaries: φ defined from the analytical expression for the surface
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Implicit shock tracking for simple 2D compressible flows

M = 2 M = 3 M = 4

M = 0.8 M = 2

Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remove
element from the mesh

• Tag elements for removal based on volume, quality, edge length

• Collapse shortest edge: well-defined for simplices of any order in any dimension

• Remove all zero-volume elements

• Must preserve boundaries

17 / 33



Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remove
element from the mesh

• Tag elements for removal based on volume, quality, edge length

• Collapse shortest edge: well-defined for simplices of any order in any dimension

• Remove all zero-volume elements

• Must preserve boundaries

17 / 33



Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remove
element from the mesh

• Tag elements for removal based on volume, quality, edge length

• Collapse shortest edge: well-defined for simplices of any order in any dimension

• Remove all zero-volume elements

• Must preserve boundaries

17 / 33



Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remove
element from the mesh

• Tag elements for removal based on volume, quality, edge length

• Collapse shortest edge: well-defined for simplices of any order in any dimension

• Remove all zero-volume elements

• Must preserve boundaries

17 / 33



Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remove
element from the mesh

• Tag elements for removal based on volume, quality, edge length

• Collapse shortest edge: well-defined for simplices of any order in any dimension

• Remove all zero-volume elements

• Must preserve boundaries and shocks

before collapse ignore shock shock-aware
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Practical considerations: solution re-initialization

• High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

• Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

• Without re-initialization, must hope oscillatory elements get collapsed

before SQP step (without re-init) after SQP step (without re-init)
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Practical considerations: initialization

Robustness measures reduce sensitivity of solvers to initialization of u, x.

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

– homotopy in p no longer required

Reference mesh, p = 0 DG solution
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Robustness measures reduce sensitivity of solvers to initialization of u, x.

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

– homotopy in p no longer required

p = 1 (left) and p = 4 (right) tracking solution
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Burgers’ equation, shock formation and intersection
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Burgers’ equation, shock formation and intersection (space-time)

p = q = 3

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Unsteady, inviscid flow, space-time: Sod shock tube
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Unsteady, inviscid flow, space-time: Sod shock tube

p = 2, q = 1

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).
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2D Supersonic flow: M = 2 flow over diamond

p = q = 2
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2D Supersonic flow: M = 2 flow over diamond

p = q = 2
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2D Hypersonic flow: M = 5 flow through scramjet

Coarse mesh, p = q = 2
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2D Hypersonic flow: M = 5 flow through scramjet

Fine mesh, p = q = 2

28 / 33



3D Supersonic flow: M = 2 flow over sphere

p = q = 2
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3D Supersonic flow: M = 2 flow over sphere

p = q = 2
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High-order, implicit shock tracking

• Implicit tracking: formulate tracking as optimization problem over (u,x)

• Highly accurate solutions on coarse meshes, optimal convergence rates

• High-order methods exaggerate accuracy benefits of tracking discontinuities

• Traditional barrier to tracking (explicitly meshing unknown discontinuity
surface) replaced with solving constrained optimization problem
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Research to make implicit tracking competitive for hypersonics

• Viscous conservation laws

• Time-dependent problems:

• Scalable linear system solver

• Edge collapses for hypercube elements; degenerate elements

• Automatically slide nodes along curved boundaries from CAD or mesh

• Integrate approach with second-order finite volume method

• Hybrid shock tracking/capturing approach (e.g., only track bow shock)

minimize
u,x

1

2
‖R(u,x)‖22 +

κ2

2
‖Rmsh(x)‖22

subject to r(u,x) = 0
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Perspective: artificial viscosity vs. implicit tracking

artificial viscosity implicit tracking2

Strong shocks control easier
Complex shock structures control harder
Nonlinear solver PTC/Newton SQP
Parameter tweaking formulation solver
Linearization ∂u, ∂ν ∂u, ∂x
Mesh generation control easier
Geometry only high-order mesh geometry required
Linear solver ILU+GMRES ?
Cost per element control higher
Cost per iteration control higher
Mesh fineness control coarser
Overall cost control ?

2e.g., HOIST, MDG-ICE
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Why tracking: Recover optimal O(hp+1) convergence rates

100 101 102 103
10−8

10−6

10−4

10−2

100

Number of elements

‖u
−
u
h
‖ 1

Convergence of implicit shock tracking (Burgers’ equation) with polynomial degrees p = 1 ( ),
p = 2 ( ), p = 3 ( ), p = 4 ( ), p = 5 ( ), p = 6 ( ).

Key observation: Optimal convergence rates (O(hp+1)) attainable, even for
discontinuous solutions.



Why high-order tracking: Benefits more dramatic than low-order

implicit shock tracking p = 1 ( ) p = 2 ( ) p = 3 ( )
adaptive refinement p = 1 ( ) p = 2 ( ) p = 3 ( )

100 101 102 103
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10−4

10−2

100

number of elements

‖u
−

u
h
‖ 1

Convergence of implicit shock tracking (Burgers’ equation): implicit shock tracking (solid) vs.
adaptive mesh refinement (dashed).

Key observation: Accuracy improvement of tracking approach relative to
(specialized) adaptive mesh refinement is more exaggerated for high-order
approximations: O(101) for p = 1 and O(106) for p = 3.



Burgers’ equation, accelerating shock

p = q = 1 p = q = 2 p = q = 3



Burgers’ equation, accelerating shock: h convergence

Convergence of solution error (Eu) along line x = 0.8 and shock surface error (EΓ)

p q |Eh| h Eu m(Eu) EΓ m(EΓ)

1 1 38 1.45e-01 2.72e-02 - 2.32e-03 -
1 1 152 7.25e-02 7.18e-03 1.92 1.09e-03 1.09
1 1 598 3.66e-02 1.91e-03 1.93 1.93e-04 2.53
1 1 2392 1.83e-02 4.69e-04 2.03 3.92e-05 2.30
2 2 38 1.45e-01 5.68e-03 - 4.83e-05 -
2 2 152 7.25e-02 9.64e-05 5.88 2.70e-07 7.48
2 2 608 3.63e-02 6.36e-06 3.92 1.20e-08 4.49
2 2 2432 1.81e-02 8.66e-07 2.88 7.70e-10 3.96
3 3 32 1.58e-01 1.57e-03 - 2.06e-05 -
3 3 128 7.91e-02 1.62e-05 6.60 3.37e-07 5.93
3 3 512 3.95e-02 4.37e-07 5.21 5.90e-09 5.84
3 3 2040 1.98e-02 3.31e-08 3.73 1.87e-10 5.00

Observation: Optimal convergence rates (O(hp+1)) obtained for solution error;
faster rates obtained for shock surface.
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