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Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p =1 to
p =4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D
supersonic flow with 48 elements; the error in the stagnation enthalpy is O(10~%)

for p = 2 (1152 DoF).
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Why not tracking: Difficult for complex discontinuity surfaces
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Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking

Aims to overcome the difficulty of explicitly meshing the unknown shock surface,
e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]
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Implicit tracking for stable, high-order resolution of discontinuities

Goal: Align element faces
with (unknown) discontinuit- / ‘
ies to perfectly capture them "

and approximate smooth re-

gions to high-order

Non-aligned Discontinuity-aligned

High-order implicit shock tracking (HOIST)!

e Discontinuous Galerkin discretization: inter-element jumps, high-order

e Discontinuity-aligned mesh: solution of optimization problem constrained by
the discrete PDE = implicit tracking

e Full space solver that converges the solution and mesh simultaneously to

ensure solution of PDE never required on non-aligned mesh

1[Zahr, Persson; 2018], [Zahr, Shi, Persson; 2020]
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Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:

V-FU)=0 in{

Element-wise finite-dimensional weak form of conservation law:
e (Unyp) = ‘ o HWUT U n)dS — .F(U ) 2 Vb dV,
]h,p/ h,p) * oK h,p’ h,p? Iz,,[ﬁ” K h,p) - h,p’ ’

where V}, , is the test space, V}, ,, is the trial space, H is the numerical flux

function, h is element size, and p/p’ is the polynomial degree.

Introduce basis for polynomial spaces to obtain discrete residuals

/

r(u,x) (p' =p), R(u,x) (p'=p+1),

where u is the discrete state vector and x are the coordinates of the mesh nodes.
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Implicit shock tracking: constrained optimization formulation

We formulate the problem of tracking discontinuities with the mesh as the solution

of an optimization problem constrained by the discrete PDE (DG discretization)

1
minimize  f(u,) = o | F(u,2)3

subject to  7(u,x) = 0.

The objective function balances tracking and mesh quality

F(u,z) = l B(u, z) 1

KRumsh ()

r(u,x) = 0 (DG equation), u (discrete state vector), @ (coordinates of mesh nodes)
R (tracking term): penalizes the DG residual in the enriched test space
R,,sn (mesh term): accounts for the distortion of each high-order element

r: mesh distortion penalization parameter
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Implicit shock tracking: sequential quadratic programming solver

Define z = (u, x) and use interchangeably. To solve the optimization problem, we
define a sequence {z;} updated as

ZEk+1 = Rk + O{k,AZk,.
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Implicit shock tracking: sequential quadratic programming solver

Define z = (u, x) and use interchangeably. To solve the optimization problem, we
define a sequence {z;} updated as

Zpy1 = 2k + apAzy.

The step direction Az is defined as the solution of the quadratic program (QP)

approximation of the tracking problem centered at zj

L 1 N
nil;lé%{%e g.(zp) Az + EAzTBZ(zk,, A(zp))Az

subject to  7(zg) + J2(zr)Az =0,

where
_Of . _Or 0L
gz(Z)—afZ(Z) ’ Jz(z)*aiz(z)v BZ(Z7/\)~ @zaz(zﬁ)\)‘
L(z,A) = f(z) = ATr(z) (Lagrangian)
Sy O -1 Of 7 : T
Alz) = au(z) S (2) (Lagrange mulitplier estimate)
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Implicit shock tracking: sequential quadratic programming solver

The solution of the quadratic program leads to the following linear system

Buu(zi, A(2k))  Bua(zk, é\(zk)) Ju(zi)"| |Auy, 9u(2k)
Buw(zkyA(Zk))T mw(zlwk(zk) J$(Zk’)T Ain = gm(zk)
Ju(zkr) Jm ) 0 N ’I"(Zk)

where
of or af or

9u(2) = (T, Tu(2) = 5o(2). Gu(z) = ()T, Talz) = 5o (2),

the approximate Hessian of the Lagrangian is taken as

_OF 7 OF _OF 1 OF
Buu(z,A) = 5 -(2)" 5-(2), Bua(z,A) = 5-(2)" 5 (2),
OF , ;OF
Bya(z,A) = disc(z) dw( z) +9D,

and n,;, are the Lagrange multipliers of the QP and D is a mesh regularization
matrix (linear elasticity stiffness).
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Linear advection (2D), straight shock

p = 0 space for solution, ¢ = 1 space for mesh
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Newton-like convergence when solution lies in DG subspace

Linear advection with straight shock
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Linear advection (2D), trigonometic shock

p = 0 space for solution, ¢ = 2 space for mesh
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Linear advection (3D), trigonometric shock

p = 0 space for solution, ¢ = 2 space for mesh
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Inviscid flow through area variation: HOIST vs capturing (p = 4)
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Inviscid flow through area variation: HOIST vs capturing (p = 4)
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Inviscid flow through area variation: HOIST vs capturing (p = 4)
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Inviscid flow through area variation: h-convergence

Lerror (density)
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Shock capturing: p =4 (—); HOIST: p=1 (—e—), p=2 (——), p = 3 (——),
p =4 (——), p =5 (——); dashed line indicates optimal convergence rate (O(h?*1))

Observation: Shock capturing limited to first-order convergence rate; HOIST

achieves optimal convergence rates (O(hPT1)) and high accuracy per DoF
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Construction of admissible mesh motion

Cannot directly optimize nodal coordinates () without changing the domain;
instead, construct mapping that guarantees mesh conforms to the domain
boundaries from a collection of unconstrained degrees of freedom (y) and directly
optimize y
minimize  f(u, d(y))

uy

T = ¢(y) =
subject to  7(u,p(y)) =0

e Planar boundaries: ¢ automatically constructed from normals
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Construction of admissible mesh motion

Cannot directly optimize nodal coordinates () without changing the domain;
instead, construct mapping that guarantees mesh conforms to the domain
boundaries from a collection of unconstrained degrees of freedom (y) and directly
optimize y
minimize  f(u, d(y))

uy

T = ¢(y) =
subject to  7(u,p(y)) =0

e Planar boundaries: ¢ automatically constructed from normals

e Curved boundaries: ¢ defined from the analytical expression for the surface
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Implicit shock tracking for simple 2D compressible flows

M =0.8 M =2
M =2 M =3 M=4

Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Implicit shock tracking for simple 2D compressible flows

M =0.8

Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Implicit shock tracking for simple 2D compressible flows

M =0.8

Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Implicit shock tracking for simple 2D compressible flows
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Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Implicit shock tracking for simple 2D compressible flows
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Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
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Implicit shock tracking for simple 2D compressible flows
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Observation: Quickly tracks bow shocks, shocks attached to curved boundaries,
and secondary shocks; high-order elements curve to approximate curvature in shock
surface; high-quality solutions on coarse high-order meshes (O(100) elements).
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Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remowve

element from the mesh

e Tag elements for removal based on volume, quality, edge length
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Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remowve
element from the mesh
e Tag elements for removal based on volume, quality, edge length
e Collapse shortest edge: well-defined for simplices of any order in any dimension
e Remove all zero-volume elements

e Must preserve boundaries
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Practical considerations: element collapse

Despite measures to keep mesh well-conditioned, best option can be to remowve
element from the mesh

e Tag elements for removal based on volume, quality, edge length
e Collapse shortest edge: well-defined for simplices of any order in any dimension
e Remove all zero-volume elements

e Must preserve boundaries and shocks

before collapse ignore shock shock-aware
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Practical considerations: solution re-initialization

e High-order solutions can become oscillatory, which leads to poor SQP steps

(requiring many line search iterations)

before SQP step (without re-init) after SQP step (without re-init)
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Practical considerations: solution re-initialization

e High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

e Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

before SQP step (with re-init) after SQP step (with re-init)
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Practical considerations: initialization

Robustness measures reduce sensitivity of solvers to initialization of u, x.

— xq: directly from mesh generation
~ ug: DG(p = 0) solution on mesh x

— homotopy in p no longer required

Reference mesh, p = 0 DG solution
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Practical considerations: initialization

Robustness measures reduce sensitivity of solvers to initialization of u, x.

— xg: directly from mesh generation
— ug: DG(p = 0) solution on mesh xg

— homotopy in p no longer required

p=1 (left) and p = 4 (right) tracking solution
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Burgers’ equation, shock formation and intersection
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Burgers’ equation, shock formation and intersection (space-time)

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)

1.2 =

Ul(z,t)

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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Burgers’ equation, shock formation and intersection (time slices)
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Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
22 /33



Unsteady, inviscid flow, space-time: Sod shock tube
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Unsteady, inviscid flow, space-time: Sod shock tube

p=2q=1

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).
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Unsteady, inviscid flow, space-time: Sod shock tube
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Exact (—), p=2 (¢ = 1) tracking (---)

Observation: Tracks multiple features including discontinuities and derivative

jumps; stronger features “easier” to track (track earlier in process).
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2D Supersonic flow: M = 2 flow over diamond
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2D Supersonic flow: M = 2 flow over diamond
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2D Hypersonic flow: 5 flow through scramjet

Coarse mesh, p = ¢ =2
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2D Hypersonic flow 5 flow through scramjet

VaVAVaVavav,
AVAVaVaVav, i}
VYAV paAvATav:

Fine mesh, p = ¢ =2
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3D Supersonic flow: M = 2 flow over sphere
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3D Supersonic flow: M = 2 flow over sphere

29 /33



3D Supersonic flow: M = 2 flow over sphere
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High-order, implicit shock tracking

Implicit tracking: formulate tracking as optimization problem over (u,x)

Highly accurate solutions on coarse meshes, optimal convergence rates

High-order methods exaggerate accuracy benefits of tracking discontinuities

e Traditional barrier to tracking (explicitly meshing unknown discontinuity
surface) replaced with solving constrained optimization problem
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Research to make implicit tracking competitive for hypersonics

e Viscous conservation laws

o 1 9 K2 .
minimize o [|R(u, 2[5 + 5 [ Rmsn ()13

subject to  7r(u,x) =0
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Research to make implicit tracking competitive for hypersonics

e Viscous conservation laws
e Time-dependent problems: method of lines, slab-based space-time

e Scalable linear system solver

Buu(zka)\( )) um(zlm}:\(zk)) Ju(z/ﬂ)T Auk? gu(zk)
Buw(zk )\( k))T Bw:c(zk A(Zl«)) Jw(zk)T Awk = - gm(zk)
Ju(zk) Jz(zk) 0 up r(zr)
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Research to make implicit tracking competitive for hypersonics

e Viscous conservation laws
e Time-dependent problems: method of lines, slab-based space-time
e Scalable linear system solver

e Edge collapses for hypercube elements; degenerate elements

3
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e Viscous conservation laws
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Research to make implicit tracking competitive for hypersonics

e Viscous conservation laws

e Time-dependent problems: method of lines, slab-based space-time

e Scalable linear system solver

e Edge collapses for hypercube elements; degenerate elements

e Automatically slide nodes along curved boundaries from CAD or mesh
e Integrate approach with second-order finite volume method

e Hybrid shock tracking/capturing approach (e.g., only track bow shock)

31/33



artificial viscosity

Perspective: artificial viscosity vs. implicit tracking

implicit tracking?

Strong shocks control easier
Complex shock structures control harder
Nonlinear solver PTC/Newton SQP
Parameter tweaking formulation solver
Linearization Ou, Oy Ow, O
Mesh generation control easier

Geometry only high-order mesh | geometry required
Linear solver ILU+GMRES ?

Cost per element control higher
Cost per iteration control higher
Mesh fineness control coarser
Overall cost control ?

26.¢., HOIST, MDG-ICE
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Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
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Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution

using optimization formulation and solver



vergence rates

tracking: Recover optimal O(h**!)
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Convergence of implicit shock tracking (Burgers’ equation) with polynomial degrees p =1 (@),
p=2M),p=34),p=4(),p=5(*),p=06(®).

Key observation: Optimal convergence rates (O(hP*!)) attainable, even for

discontinuous solutions.



high-order tracking: Benefits more dramatic than low-order

implicit shock tracking | p=1(—@—) p=2(—8—) p=23(——)
adaptive refinement | p=1(-@-) p=2(-W-) p=23(-4-)
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Convergence of implicit shock tracking (Burgers’ equation): implicit shock tracking (solid) vs.
adaptive mesh refinement (dashed).

Key observation: Accuracy improvement of tracking approach relative to
(specialized) adaptive mesh refinement is more exaggerated for high-order
approximations: O(10') for p = 1 and O(10°) for p = 3.



Burgers’ equation, accelerating shock




Burgers’ equation, accelerating shock: i convergence

Convergence of solution error (E,,) along line = 0.8 and shock surface error (Er)

q & h E, m(E,) Er m(Er)
1 38 1.45e-01 | 2.72e-02 - 2.32e-03 -

1 152 | 7.25e-02 | 7.18e-03 1.92 1.09e-03 1.09
1 598 | 3.66e-02 | 1.91e-03 1.93 1.93e-04 2.53
1 2392 | 1.83e-02 | 4.69e-04 2.03 3.92e-05 2.30
2 38 | 1.45e-01 | 5.68e-03 - 4.83e-05 -

2 152 | 7.25e-02 | 9.64e-05  5.88 | 2.70e-07  7.48
2 608 | 3.63e-02 | 6.36e-06 3.92 1.20e-08 4.49
2

3

3

3

3

i

2432 | 1.81e-02 | 8.66e-07 2.88 7.70e-10 3.96

32 1.58e-01 | 1.57e-03 - 2.06e-05 -
128 | 7.91e-02 | 1.62e-05 6.60 3.37e-07 5.93
512 | 3.95e-02 | 4.37e-07  5.21 5.90e-09 5.84
2040 | 1.98e-02 | 3.31e-08 3.73 1.87e-10 5.00

LW W W W NN N ==

Observation: Optimal convergence rates (O(hP*1)) obtained for solution error;
faster rates obtained for shock surface.
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