
Integrating computational physics and numerical
optimization to address challenges in science,
engineering, and medicine

Matthew J. Zahr
Assistant Professor
Department of Aerospace and Mechanical Engineering
University of Notre Dame

Applied and Computational Mathematics and Statistics (ACMS) Seminar
University of Notre Dame, Notre Dame, IN
April 5, 2021

Students: T. Huang, M. Mirhoseini, C. Naudet, T. Wen
Collaborators: D.Z. Huang, P.-O. Persson, A. Shi, J. Töger

1 / 69

Discontinuities often arise in engineering systems, particularly in
those involving compressible flows: shock waves, contact lines

Supersonic and transonic flow around commercial planes and fighter jets

Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces

2 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Exising solutions: limiting, artificial viscosity

Drawbacks: order reduction, local refinement

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver

3 / 69

Why tracking: Recover optimal O(hp+1) convergence rates

100 101 102 103
10−8

10−6

10−4

10−2

100

Number of elements

‖u
−
u
h
‖ 1

Convergence of implicit shock tracking (Burgers’ equation) with polynomial degrees p = 1 (),
p = 2 (), p = 3 (), p = 4 (), p = 5 (), p = 6 ().

Key observation: Optimal convergence rates (O(hp+1)) attainable, even for
discontinuous solutions.

4 / 69

Why high-order tracking: Benefits more dramatic than low-order

implicit shock tracking p = 1 () p = 2 () p = 3 ()
adaptive refinement p = 1 () p = 2 () p = 3 ()

100 101 102 103

10−6

10−4

10−2

100

number of elements

‖u
−
u
h
‖ 1

Convergence of implicit shock tracking (Burgers’ equation): implicit shock tracking (solid) vs.
adaptive mesh refinement (dashed).

Key observation: Accuracy improvement of tracking approach relative to
(specialized) adaptive mesh refinement is more exaggerated for high-order
approximations: O(101) for p = 1 and O(106) for p = 3.

5 / 69

Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to
p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D
supersonic flow with 48 elements; the error in the stagnation enthalpy is O(10−4)

for p = 2 (1152 DoF).

6 / 69

Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking
Aims to overcome the difficulty of explicitly meshing the unknown shock surface,
e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]

7 / 69

Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking
Aims to overcome the difficulty of explicitly meshing the unknown shock surface,
e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]

7 / 69

Implicit tracking for stable, high-order resolution of discontinuities

Goal: Align element faces
with (unknown) discontinuit-
ies to perfectly capture them
and approximate smooth re-
gions to high-order

Non-aligned Discontinuity-aligned

High-Order Implicit Shock Tracking (HOIST)1

• Discontinuous Galerkin discretization: inter-element jumps, high-order

• Discontinuity-aligned mesh: solution of optimization problem constrained by
the discrete PDE =⇒ implicit tracking

• Full space solver that converges the solution and mesh simultaneously to
ensure solution of PDE never required on non-aligned mesh

1[Zahr, Persson; 2018], [Zahr, Shi, Persson; 2020]
8 / 69

Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:
∇ · F (U) = 0 in Ω

Element-wise finite-dimensional weak form of conservation law:

rKh,p′(Uh,p) :=

∫
∂K

ψ+
h,p′ · H(U+

h,p, U
−
h,p, n) dS −

∫
K

F (Uh,p) : ∇ψh,p′ dV,

where Vh,p′ is the test space, Vh,p is the trial space, H is the numerical flux
function, h is element size, and p/p′ is the polynomial degree.

Introduce basis for polynomial spaces to obtain discrete residuals

r(u,x) (p′ = p), R(u,x) (p′ = p+ 1),

where u is the discrete state vector and x are the coordinates of the mesh nodes.

9 / 69

Implicit shock tracking: constrained optimization formulation

We formulate the problem of tracking discontinuities with the mesh as the solution
of an optimization problem constrained by the discrete PDE (DG discretization)

minimize
u,x

f(u,x) :=
1

2
‖F (u,x)‖22

subject to r(u,x) = 0.

The objective function balances tracking and mesh quality

F (u,x) =

[
R(u,x)

κRmsh(x)

]

r(u,x) = 0 (DG equation), u (discrete state vector), x (coordinates of mesh nodes)

R (tracking term): penalizes the DG residual in the enriched test space

Rmsh (mesh term): accounts for the distortion of each high-order element

κ: mesh distortion penalization parameter

10 / 69

Implicit shock tracking: sequential quadratic programming solver

Define z = (u,x) and use interchangeably. To solve the optimization problem, we
define a sequence {zk} updated as

zk+1 = zk + αk∆zk.

The step direction ∆zk is defined as the solution of the quadratic program (QP)
approximation of the tracking problem centered at zk

minimize
∆z∈RNz

gz(zk)T∆z +
1

2
∆zTBz(zk, λ̂(zk))∆z

subject to r(zk) + Jz(zk)∆z = 0,

where

gz(z) =
∂f

∂z
(z)T , Jz(z) =

∂r

∂z
(z), Bz(z,λ) ≈ ∂2L

∂z∂z
(z,λ),

L(z,λ) = f(z)− λTr(z) (Lagrangian)

λ̂(z) =
∂r

∂u
(z)−T

∂f

∂u
(z)T (Lagrange mulitplier estimate)

11 / 69

Implicit shock tracking: sequential quadratic programming solver

Define z = (u,x) and use interchangeably. To solve the optimization problem, we
define a sequence {zk} updated as

zk+1 = zk + αk∆zk.

The step direction ∆zk is defined as the solution of the quadratic program (QP)
approximation of the tracking problem centered at zk

minimize
∆z∈RNz

gz(zk)T∆z +
1

2
∆zTBz(zk, λ̂(zk))∆z

subject to r(zk) + Jz(zk)∆z = 0,

where

gz(z) =
∂f

∂z
(z)T , Jz(z) =

∂r

∂z
(z), Bz(z,λ) ≈ ∂2L

∂z∂z
(z,λ),

L(z,λ) = f(z)− λTr(z) (Lagrangian)

λ̂(z) =
∂r

∂u
(z)−T

∂f

∂u
(z)T (Lagrange mulitplier estimate)

11 / 69

Implicit shock tracking: sequential quadratic programming solver

The solution of the quadratic program leads to the following linear system Buu(zk, λ̂(zk)) Bux(zk, λ̂(zk)) Ju(zk)T

Bux(zk, λ̂(zk))T Bxx(zk, λ̂(zk)) Jx(zk)T

Ju(zk) Jx(zk) 0


∆uk

∆xk
ηk

 = −

gu(zk)

gx(zk)

r(zk)

 ,
where

gu(z) =
∂f

∂u
(z)T , Ju(z) =

∂r

∂u
(z), gx(z) =

∂f

∂x
(z)T , Jx(z) =

∂r

∂x
(z),

the approximate Hessian of the Lagrangian is taken as

Buu(z,λ) =
∂F

∂u
(z)T

∂F

∂u
(z), Bux(z,λ) =

∂F

∂u
(z)T

∂F

∂x
(z),

Bxx(z,λ) =
∂F

∂x
(z)T

∂F

∂x
(z) + γD,

and ηk are the Lagrange multipliers of the QP and D is a mesh regularization
matrix (linear elasticity stiffness).

12 / 69

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove
element from the mesh: tag elements for removal based on volume and minimum
edge length, collapse shortest edge

• Well-defined for simplices of any order in any dimension

• Must preserve boundaries and shock

13 / 69

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove
element from the mesh: tag elements for removal based on volume and minimum
edge length, collapse shortest edge

• Well-defined for simplices of any order in any dimension

• Must preserve boundaries and shock

13 / 69

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove
element from the mesh: tag elements for removal based on volume and minimum
edge length, collapse shortest edge

• Well-defined for simplices of any order in any dimension

• Must preserve boundaries and shock

before collapse ignore shock shock-aware

13 / 69

Practical considerations: solution re-initialization

• High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

• Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

• Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization with re-initialization

14 / 69

Practical considerations: solution re-initialization

• High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

• Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

• Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization with re-initialization

14 / 69

Practical considerations: solution re-initialization

• High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

• Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

• Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization with re-initialization

14 / 69

Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of u, x is critical

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

Reference mesh, p = 0 DG solution

15 / 69

Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of u, x is critical

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

p = 1 (left) and p = 4 (right) tracking solution

15 / 69

Linear advection (2D), straight shock

p = 0 space for solution, q = 1 space for mesh

16 / 69

Newton-like convergence when solution lies in DG subspace

Linear advection with straight shock

0 1 2 3 4 5 6 7 8 9 10
10−16

10−12

10−8

10−4

100

Iteration

So
lv
er

co
nv

er
ge
nc
e

‖r(z)‖ (), ‖R(z)‖ (),
∥∥∥∇xL(z, λ̂(z))

∥∥∥ ()

17 / 69

Linear advection (2D), trigonometic shock

p = 0 space for solution, q = 2 space for mesh

18 / 69

Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh

19 / 69

Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh

19 / 69

Burgers’ equation, accelerating shock

p = q = 1 p = q = 2 p = q = 3

20 / 69

Burgers’ equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit
shock tracking over sequence of space-time slabs.

21 / 69

Burgers’ equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit
shock tracking over sequence of space-time slabs.

21 / 69

Burgers’ equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit
shock tracking over sequence of space-time slabs.

21 / 69

Burgers’ equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit
shock tracking over sequence of space-time slabs.

21 / 69

Inviscid flow through area variation: HOIST vs capturing (p = 4)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

Exact solution (), shock capturing (), HOIST ()

22 / 69

Inviscid flow through area variation: HOIST vs capturing (p = 4)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

Exact solution (), shock capturing (), HOIST ()

22 / 69

Inviscid flow through area variation: HOIST vs capturing (p = 4)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

Exact solution (), shock capturing (), HOIST ()

22 / 69

Inviscid flow through area variation: HOIST vs capturing (p = 4)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

ρ
(x

)

Exact solution (), shock capturing (), HOIST ()

22 / 69

Inviscid flow through area variation: h-convergence

10−2 10−1 100
10−14

10−11

10−8

10−5

10−2

h ∝ (# elements)−1

L
1
er
ro
r
(d
en
si
ty
)

Shock capturing: p = 4 (); HOIST: p = 1 (), p = 2 (), p = 3 (),
p = 4 (), p = 5 (); dashed line indicates optimal convergence rate (O(hp+1))

Observation: Shock capturing limited to sub-first-order convergence rate; HOIST
achieves optimal convergence rates (O(hp+1)) and high accuracy per DoF

23 / 69

Unsteady, inviscid flow, space-time: Sod shock tube

p = 2, q = 1

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).

24 / 69

Unsteady, inviscid flow, space-time: Sod shock tube

p = 2, q = 1

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).

24 / 69

Unsteady, inviscid flow, space-time: Sod shock tube

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

x

ρ
(x

)

Exact (), p = 2 (q = 1) HOIST ()

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).

25 / 69

2D Supersonic flow: M = 2 flow over diamond

p = q = 2

26 / 69

2D Supersonic flow: M = 2 flow over diamond

p = q = 2

26 / 69

2D Hypersonic flow: M = 5 flow through scramjet

p = q = 2

27 / 69

3D Supersonic flow: M = 2 flow over sphere

p = q = 2

28 / 69

3D Supersonic flow: M = 2 flow over sphere

p = q = 2

28 / 69

3D Supersonic flow: M = 2 flow over sphere

p = q = 2

28 / 69

High-Order Implicit Shock Tracking

• Implicit tracking: formulate tracking as optimization problem over (u,x)

• Highly accurate solutions on coarse meshes, optimal convergence rates

• High-order methods exaggerate accuracy benefits of tracking discontinuities

• Traditional barrier to tracking (explicitly meshing unknown discontinuity
surface) replaced with solving constrained optimization problem

29 / 69

Acknowledgments

• DOE Grant DE-AC02-05CH1123 (Alvarez fellowship)

• AFOSR Grant FA9550-20-1-0236 (F. Fahroo)

Tianci Huang (ND)
robust solvers

Charles Naudet (ND)
space-time slabs

30 / 69

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

31 / 69

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility
32 / 69

PDE-constrained optimization formulation

Goal: Find the solution of the PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U ,µ) = 0

U : PDE solution
µ : design/control parameters
J (U ,µ) : objective function
C(U ,µ) : constraints
F (U ,∇U) : conservation law flux function

33 / 69

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

34 / 69

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

µ

34 / 69

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

34 / 69

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ) µ

U

34 / 69

Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

DµJ (U , µ)

34 / 69

Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map,
G(·,µ, t), from physical v(µ, t) to reference V

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0

Space discretization: discontinuous Galerkin

M
∂u

∂t
= r(u,µ, t)

Time discretization: diagonally implicit RK

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tnr (un,i, µ, tn,i)

Quantity of interest: solver-consistency

F (u0, . . . ,uNt ,k1,1, . . . ,kNt,s,µ)

X1

X2

NdA

V

x1

x2

nda

v
G, g, vX

Mapping-Based ALE

DG Discretization

c1 a11
c2 a21 a22
...

...
...

. . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Butcher Tableau for DIRK

35 / 69

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

36 / 69

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

36 / 69

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities

36 / 69

Dissection of fully discrete adjoint equations

• Linear evolution equations solved backward in time

• Primal state/stage, un,i required at each state/stage of dual problem

• Heavily dependent on chosen ouput

λNt =
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂r

∂u
(un,i, µ, tn−1 + ci∆tn)

T
κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂r

∂u
(un,j , µ, tn−1 + cj∆tn)

T
κn,j

Gradient reconstruction via dual variables

DF =
∂F

∂µ
+ λ0

T ∂g

∂µ
(µ) +

Nt∑
n=1

∆tn

s∑
i=1

κn,i
T ∂r

∂µ
(un,i, µ, tn,i)

[Zahr and Persson, 2016]
AME60714 - Advanced Numerical Methods

37 / 69

Energetically optimal flapping flight

Energy = 9.4096
Thrust = 0.1766

Energy = 4.9476
Thrust = 2.500

Energy = 4.6182
Thrust = 2.500

Initial Guess
Optimal RBM
Tx = 2.5

Optimal RBM/TMG
Tx = 2.5

38 / 69

Energetically optimal flapping in three dimensions

Energy = 1.4459e-01
Thrust = -1.1192e-01

Energy = 3.1378e-01
Thrust = 0.0000e+00

39 / 69

In vivo medical imaging insufficient for many applications

• Detailed in vivo imaging of the human body using MRI holds great potential
for scientific discovery and impact in health care

• Limited by a fundamental trade-off: resolution, image quality, scan time
• Resolution: 1-3mm, 25-100ms in 10-20 minute scan
• Insufficient for many applications: involving infants, while exercising

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Approach: determine CFD parameters (material properties, boundary
conditions) such that the simulation matches MRI data using optimization

40 / 69

Simulation-based imaging (SBI) workflow

41 / 69

High-quality reconstruction with experimental data: pulsatile flow

CFD-based reconstruction from quick, low-resolution scan matches laser PIV
measurements better than slow, high-resolution scan

MRI data Reconstructed flow

42 / 69

Laser PIV validation of simulation-based flow reconstruction

Flow visualization (left) and quantitative comparison with experimental data
shows excellent reconstruction accuracy (right)

43 / 69

In vivo test of simulation-based flow reconstruction

Patient-specific mesh of brain vessel network
(Circle of Willis)

MRI voxel velocity data on
2D spatial slice at time

instance

SBI reconstruction

44 / 69

PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer

45 / 69

PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer

µ

45 / 69

PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer

J (u, µ)

45 / 69

PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer

J (u, µ) µ

u

45 / 69

PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer

J (u, µ)

DµJ (u, µ)

45 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations
• Partially converged solutions used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

Manage inexactness with trust region method

• Embedded in globally convergent trust region framework
• Error indicators2 to account for all sources of inexactness
• Refinement of approximation model using greedy algorithms

minimize
µ∈Rnµ

F (µ) −→
minimize
µ∈Rnµ

mk(µ)

subject to ‖µ− µk‖ ≤ ∆k

2Must be computable and apply to general, nonlinear PDEs
46 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations
• Partially converged solutions used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

Manage inexactness with trust region method

• Embedded in globally convergent trust region framework
• Error indicators2 to account for all sources of inexactness
• Refinement of approximation model using greedy algorithms

minimize
µ∈Rnµ

F (µ) −→
minimize
µ∈Rnµ

mk(µ)

subject to ‖µ− µk‖ ≤ ∆k

2Must be computable and apply to general, nonlinear PDEs
46 / 69

Trust region ingredients for global convergence

Approximation model
mk(µ)

Error indicator

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ), ξ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

Global convergence

lim inf
k→∞

‖∇F (µk)‖ = 0

47 / 69

Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model mk such that error indicator ϕk satisfies

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

2: Step computation: Approximately solve the trust region subproblem

µ̂k = arg min
µ∈Rnµ

mk(µ) subject to ‖µ− µk‖ ≤ ∆k

3: Step acceptance: Compute actual-to-predicted reduction

ρk =
F (µk)− F (µ̂k)

mk(µk)−mk(µ̂k)

if ρk ≥ η1 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ ‖µ̂k − µk‖] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ ‖µ̂k − µk‖ ,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

48 / 69

Source of inexactness/efficiency: projection-based model reduction

• Model reduction ansatz: state vector lies in low-dimensional subspace

u ≈ Φur

• Φ =
[
φ1 · · · φku

]
∈ Rnu×ku is the reduced (trial) basis (nu � ku)

• ur ∈ Rku are the reduced coordinates of u

• Substitute into r(u, µ) = 0 and project onto columnspace of a test basis
Φ ∈ Rnu×ku to obtain a square system

ΦTr(Φur, µ) = 0

49 / 69

Connection to finite element method: hierarchical subspaces

S

• S - infinite-dimensional trial space

• Sh - (large) finite-dimensional trial space

• Skh - (small) finite-dimensional trial space

• Skh ⊂ Sh ⊂ S

50 / 69

Connection to finite element method: hierarchical subspaces

S

Sh

• S - infinite-dimensional trial space

• Sh - (large) finite-dimensional trial space

• Skh - (small) finite-dimensional trial space

• Skh ⊂ Sh ⊂ S

50 / 69

Connection to finite element method: hierarchical subspaces

S

Sh

Skh

• S - infinite-dimensional trial space

• Sh - (large) finite-dimensional trial space

• Skh - (small) finite-dimensional trial space

• Skh ⊂ Sh ⊂ S

50 / 69

Few global, data-driven basis functions v. many local ones

• Instead of using traditional local
shape functions, use global shape
functions

• Instead of a-priori, analytical shape
functions, leverage data-rich
computing environment by using
data-driven modes

51 / 69

Trust region method: ROM approximation model

Approximation models based on reduced-order models

mk(µ) = J (Φkur(µ), µ)

Error indicators from residual-based error bounds

ϕk(µ) = ‖r(Φkur(µ), µ)‖Θ +
∥∥rλ(Φkur(µ), Φkλr(µ), µ)

∥∥
Θλ

Adaptivity to refine basis at trust region center

Φk =
[
u(µk) λ(µk) POD(Uk) POD(V k)

]
Uk =

[
u(µ0) · · · u(µk−1)

]
V k =

[
λ(µ0) · · · λ(µk−1)

]
Interpolation property of minimum-residual reduced-order models =⇒ ϕk(µk) = 0

lim inf
k→∞

‖∇J (u(µk), µk)‖ = 0

52 / 69

Trust region method: ROM approximation model

Approximation models based on reduced-order models

mk(µ) = J (Φkur(µ), µ)

Error indicators from residual-based error bounds

ϕk(µ) = ‖r(Φkur(µ), µ)‖Θ +
∥∥rλ(Φkur(µ), Φkλr(µ), µ)

∥∥
Θλ

Adaptivity to refine basis at trust region center

Φk =
[
u(µk) λ(µk) POD(Uk) POD(V k)

]
Uk =

[
u(µ0) · · · u(µk−1)

]
V k =

[
λ(µ0) · · · λ(µk−1)

]
Interpolation property of minimum-residual reduced-order models =⇒ ϕk(µk) = 0

lim inf
k→∞

‖∇J (u(µk), µk)‖ = 0

52 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M

· · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69

Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

NACA0012: Initial RAE2822: Target

Pressure field for airfoil configurations at M∞ = 0.5, α = 0.0◦

54 / 69

Proposed method: 4× fewer HDM queries

0 5 10 15 20 25 30
10−15

10−11

10−7

10−3

101

Number of HDM queries

O
bj
ec
ti
ve

Fu
nc
ti
on

HDM-based optimization
ROM-based optimization

55 / 69

Shape optimization of aircraft in turbulent flow

• Flow: M = 0.85 α = 2.32◦ Re = 5× 106

• Equations: RANS with Spalart-Allmaras

• Solver: Vertex-centered finite volume method

• Mesh: 11.5M nodes, 68M tetra, 69M DOF

• Shape: 4 parameters (length, sweep, dihedral, twist)

minimize
µ∈R4

− Lz(µ)/Lx(µ)

subject to Lz(µ) = L̄z

56 / 69

Optimized shape: reduction in 2.2 drag counts

Baseline (gray) and optimized shape (red) – 2× magnification

57 / 69

Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape – colored by Cp

Performance: ROM-TR method obtains same solution (to 4 digits of accuracy)
as HDM-only optimization and only requires about 60% of the computation time.

Conclusion: Very promising results considering ROMs have notoriously poor
prediction capabilities for problems with moving shocks/discontinuities.

58 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features

• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension

• push forward to physical domain

59 / 69

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain

59 / 69

PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer

60 / 69

PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer

µ

60 / 69

PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer

E [J (u, µ, ·)]

60 / 69

PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer

E [J (u, µ, ·)] µ

u

60 / 69

PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer

E [J (u, µ, ·)]

E [DµJ (u, µ, ·)]

60 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Anisotropic sparse grids used for inexact integration of risk measures

• Reduced-order models used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

HDM HDM ROM

61 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Anisotropic sparse grids used for inexact integration of risk measures

• Reduced-order models used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

HDM

HDM ROM

61 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Anisotropic sparse grids used for inexact integration of risk measures

• Reduced-order models used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

HDM HDM

ROM

61 / 69

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Anisotropic sparse grids used for inexact integration of risk measures

• Reduced-order models used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

HDM HDM ROM

61 / 69

First source of inexactness: anisotropic sparse grids

Stochastic collocation using anisotropic sparse grid nodes to approximate integral
with summation

minimize
u∈Rnu , µ∈Rnµ

E[J (u, µ, ·)]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ Ξ

⇓

minimize
u∈Rnu , µ∈Rnµ

EI [J (u, µ, ·)]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ ΞI

[Kouri et al., 2013, Kouri et al., 2014]

62 / 69

Two sources of inexactness

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes
used to approximate integral with cheap summation

minimize
u∈Rnu , µ∈Rnµ

E[J (u, µ, ·)]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ Ξ

⇓

minimize
u∈Rnu , µ∈Rnµ

EI [J (u, µ, ·)]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ ΞI

⇓

minimize
ur∈Rku , µ∈Rnµ

EI [J (Φur, µ, ·)]

subject to ΦTr(Φur, µ, ξ) = 0 ∀ξ ∈ ΞI

63 / 69

Optimal control of steady Burgers’ equation

• Optimization problem:

minimize
µ∈Rnµ

∫
Ξ

ρ(ξ)

[∫ 1

0

1

2
(u(µ, ξ, x)− ū(x))2 dx+

α

2

∫ 1

0

z(µ, x)2 dx

]
dξ

where u(µ, ξ, x) solves

−ν(ξ)∂xxu(µ, ξ, x) + u(µ, ξ, x)∂xu(µ, ξ, x) = z(µ, x) x ∈ (0, 1), ξ ∈ Ξ

u(µ, ξ, 0) = d0(ξ) u(µ, ξ, 1) = d1(ξ)

• Target state: ū(x) ≡ 1

• Stochastic Space: Ξ = [−1, 1]3, ρ(ξ)dξ = 2−3dξ

ν(ξ) = 10ξ1−2 d0(ξ) = 1 +
ξ2

1000
d1(ξ) =

ξ3

1000

• Parametrization: z(µ, x) – cubic splines with 51 knots, nµ = 53

64 / 69

Optimal control and statistics

0 0.2 0.4 0.6 0.8 1

0

2

x

z
(µ
,
x

)

0 0.2 0.4 0.6 0.8 1

0

1

x

E[
u

(µ
,
·,
x

)]

Optimal control and corresponding mean state () ± one () and two ()
standard deviations

65 / 69

Global convergence without pointwise agreement

0 1 2 3 4

10−8

10−5

10−2

Major iteration

() |F (µk)− F (µ∗)|
() |F (µ̂k)− F (µ∗)|
() |mk(µk)− F (µ∗)|
() |mk(µ̂k)− F (µ∗)|

F (µk) mk(µk) F (µ̂k) mk(µ̂k) ‖∇F (µk)‖ ρk Success?

6.6506e-02 7.2694e-02 5.3655e-02 5.9922e-02 2.2959e-02 1.0257e+00 1.0000e+00
5.3655e-02 5.9593e-02 5.0783e-02 5.7152e-02 2.3424e-03 9.7512e-01 1.0000e+00
5.0783e-02 5.0670e-02 5.0412e-02 5.0292e-02 1.9724e-03 9.8351e-01 1.0000e+00
5.0412e-02 5.0292e-02 5.0405e-02 5.0284e-02 9.2654e-05 8.7479e-01 1.0000e+00
5.0405e-02 5.0404e-02 5.0403e-02 5.0401e-02 8.3139e-05 9.9946e-01 1.0000e+00
5.0403e-02 5.0401e-02 - - 2.2846e-06 - -

Convergence history of trust region method built on two-level approximation

66 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗)
|

5-level isotropic SG (), dimension-adaptive SG [Kouri et al., 2014] (), and
proposed ROM/SG for τ = 1 (), τ = 10 (), τ = 100 (), τ =∞ ()

67 / 69

High- and reduced-order methods for PDE optimization

• Developed fully discrete adjoint method for high-order numerical
discretizations of PDEs and QoIs

• Treatment of parametrized time domain (optimal frequency)

• Explicit enforcement of time-periodicity constraints

• Extension to multiphysics (fluid-structure interaction, particle-laden flow, ...)

• Acceleration via rigorous multi-fidelity framework that uses reduced-order
models, partially converged solutions, and sparse grids

• Applications: optimal flapping flight, energy harvesting, data assimilation

68 / 69

Acknowledgments

• DOE Grant DE-AC02-05CH1123 (Alvarez fellowship)

• AFOSR Grant FA9550-20-1-0236 (F. Fahroo)

Tianshu Wen (ND)
ROM/TR optimization

Marzieh Mirhoseini
ROM for convection-dominated

69 / 69

References i

Barter, G. E. (2008).

Shock capturing with PDE-based artificial viscosity for an adaptive,
higher-order discontinuous Galerkin finite element method.

PhD thesis, M.I.T.

Huang, D. Z., Persson, P.-O., and Zahr, M. J. (2018).

High-order, linearly stable, partitioned solvers for general
multiphysics problems based on implicit-explicit Runge-Kutta
schemes.

Computer Methods in Applied Mechanics and Engineering, 346:674 – 706.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders,
B. G. (2013).

A trust-region algorithm with adaptive stochastic collocation for
PDE optimization under uncertainty.

SIAM Journal on Scientific Computing, 35(4):A1847–A1879.

References ii

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders,
B. G. (2014).

Inexact objective function evaluations in a trust-region algorithm
for PDE-constrained optimization under uncertainty.

SIAM Journal on Scientific Computing, 36(6):A3011–A3029.

Wang, J., Zahr, M. J., and Persson, P.-O. (6/5/2017 – 6/9/2017).

Energetically optimal flapping flight based on a fully discrete adjoint
method with explicit treatment of flapping frequency.

In Proc. of the 23rd AIAA Computational Fluid Dynamics Conference,
Denver, Colorado. American Institute of Aeronautics and Astronautics.

Zahr, M. J. and Persson, P.-O. (1/8/2018 – 1/12/2018b).

An optimization-based discontinuous Galerkin approach for
high-order accurate shock tracking.

In Proc. of the AIAA Science and Technology Forum and Exposition
(SciTech2018), Kissimmee, Florida. American Institute of Aeronautics and
Astronautics.

References iii

Zahr, M. J. and Persson, P.-O. (2016).

An adjoint method for a high-order discretization of deforming
domain conservation laws for optimization of flow problems.

Journal of Computational Physics, 326(Supplement C):516 – 543.

Zahr, M. J. and Persson, P.-O. (2018a).

An optimization-based approach for high-order accurate
discretization of conservation laws with discontinuous solutions.

Journal of Computational Physics, 365:105 – 134.

Zahr, M. J., Persson, P.-O., and Wilkening, J. (2016).

A fully discrete adjoint method for optimization of flow problems on
deforming domains with time-periodicity constraints.

Computers & Fluids, 139:130 – 147.

SQP solver: regularization matrix D

The mesh regularization matrix D is taken as the stiffness matrix of the linear
elliptic PDE

∇ · (k∇vi) = 0 in Ω

for i = 1, . . . , d. The coefficient is constant over each element and inversely
proportional to the element volume

k(x) =

min
K′∈Eh,q

|K ′|

|K|
, x ∈ K

for each element K in the mesh: critical to maintain well-conditioned search
directions for meshes where element size varies significantly.

SQP solver: step length (αk)

The step length, αk ∈ (0, 1], is selected using a backtracking line search to ensure
sufficient decrease of a merit function ϕk : R→ R

ϕk(αk) ≤ ϕk(0) + cαkϕ
′
k(0), c ∈ (0, 1).

We use the `1 merit function

ϕk(α) := f(zk + α∆zk) + µ ‖r(zk + α∆zk)‖1

where µ >
∥∥∥λ̂(zk)

∥∥∥
∞

because it is “exact”, i.e., any minimizer of the original
optimization problem is a minimizer of ϕk.

SQP solver: termination criteria

The termination criteria for the solver is based on the Karush-Kuhn-Tucker (KKT)
conditions: z? is a solution if there exist Lagrange multipliers λ? such that

∇uL(z?,λ?) = 0, ∇xL(z?,λ?) = 0, r(z?) = 0

Our choice for the Lagrange multiplier estimate λ̂(z) ensure

∇uL(z, λ̂(z)) = 0

and therefore termination is based on the remaining KKT conditions∥∥∥∇xL(z, λ̂(z))
∥∥∥ < ε1, ‖r(z)‖ < ε2,

where ε1, ε2 > 0 are convergence tolerances.

Burgers’ equation, accelerating shock: h convergence

Convergence of solution error (Eu) along line x = 0.8 and shock surface error (EΓ)

p q |Eh| h Eu m(Eu) EΓ m(EΓ)

1 1 38 1.45e-01 2.72e-02 - 2.32e-03 -
1 1 152 7.25e-02 7.18e-03 1.92 1.09e-03 1.09
1 1 598 3.66e-02 1.91e-03 1.93 1.93e-04 2.53
1 1 2392 1.83e-02 4.69e-04 2.03 3.92e-05 2.30
2 2 38 1.45e-01 5.68e-03 - 4.83e-05 -
2 2 152 7.25e-02 9.64e-05 5.88 2.70e-07 7.48
2 2 608 3.63e-02 6.36e-06 3.92 1.20e-08 4.49
2 2 2432 1.81e-02 8.66e-07 2.88 7.70e-10 3.96
3 3 32 1.58e-01 1.57e-03 - 2.06e-05 -
3 3 128 7.91e-02 1.62e-05 6.60 3.37e-07 5.93
3 3 512 3.95e-02 4.37e-07 5.21 5.90e-09 5.84
3 3 2040 1.98e-02 3.31e-08 3.73 1.87e-10 5.00

Observation: Optimal convergence rates (O(hp+1)) obtained for solution error;
faster rates obtained for shock surface.

Burgers’ equation, shock formation and intersection (space-time)

p = q = 3

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

Burgers’ equation, shock formation and intersection (time slices)

−1 0 1

−1

0

1.2

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements
Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements

High-order discretization of PDE-constrained optimization

• Continuous PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

• Fully discrete PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu ,

µ∈Rnµ

J(u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to C(u0, . . . , uNt
, k1,1, . . . , kNt,s, µ) ≤ 0

u0 − g(µ) = 0

un − un−1 −
s∑
i=1

bikn,i = 0

Mkn,i −∆tnr (un,i, µ, tn,i) = 0

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ

=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ
=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations

∂r

∂u

T

λ =
∂F

∂u

T

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1

∂F

∂u

∂r

∂µ

∂u

∂µ

λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Sensitivity vs. adjoint method to compute gradient of F

∂F

∂u

∂r

∂u

−1 ∂r

∂µ

∂r

∂u

−1∂F

∂u

∂r

∂µ

∂u

∂µ

λT

Sensitivity method requires nµ linear solves and nFnµ inner products (Rnu)

Adjoint method requires nF linear solves and nFnµ inner products (Rnu)

Adjoint equation derivation: outline

• Define auxiliary PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu

F (u0, . . . , uNt
, k1,1, . . . , kNt,s, µ)

subject to R0 = u0 − g(µ) = 0

Rn = un − un−1 −
s∑
i=1

bikn,i = 0

Rn,i = Mkn,i −∆tnr (un,i, µ, tn,i) = 0

• Define Lagrangian

L(un, kn,i, λn, κn,i) = F − λ0
TR0 −

Nt∑
n=1

λn
TRn −

Nt∑
n=1

s∑
i=1

κn,i
TRn,i

• The solution of the optimization problem is given by the
Karush-Kuhn-Tucker (KKT) sytem

∂L
∂un

= 0,
∂L
∂kn,i

= 0,
∂L
∂λn

= 0,
∂L
∂κn,i

= 0

Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of cyclic problems requires finding time-periodic solution of PDE;
necessary for physical relevance and avoid transients that may lead to crash

minimize
U, µ

J (U ,µ)

subject to U(x, 0) = U(x, T)

∂U

∂t
+∇ · F (U ,∇U) = 0

λNt = λ0 +
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+
s∑

i=1

∆tn
∂rn,i

∂u

T

κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +
s∑

j=i

aji∆tn
∂rn,i

∂u

T

κn,j

0 2 4
−60

−40

−20

0

time

po
w
er

0 2 4

−4

−2

0

time

po
w
er

Time history of power on airfoil of flow initialized from steady-state () and
from a time-periodic solution ()

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution

Energetically optimal flapping vs. required thrust

Energy = 1.8445
Thrust = 0.06729

Energy = 0.21934
Thrust = 0.0000

Energy = 6.2869
Thrust = 2.5000

Initial Guess
Optimal
Tx = 0

Optimal
Tx = 2.5

Energetically optimal flapping vs. required thrust: QoI

0 0.5 1 1.5 2 2.5
0

2

4

6

W
∗

0 0.5 1 1.5 2 2.5

0.1

0.15

0.2

0.25

f
∗

0 0.5 1 1.5 2 2.5

1.2

1.4

1.6

1.8

2

T̄x

y
∗ m

ax

0 0.5 1 1.5 2 2.5
20

40

60

T̄x
θ∗ m

ax

The optimal flapping energy (W ∗), frequency (f∗), maximum heaving amplitude (y∗max),
and maximum pitching amplitude (θ∗max) as a function of the thrust constraint T̄x.

High-resolution in vivo images through optimization

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Experimental setup Noisy, low-resolution MRI data

Approach: determine CFD parameters (material properties, boundary
conditions) such that the simulation matches MRI data using optimization

Simulation-based imaging (SBI) workflow

Phase I: MRI scan

Phase II: Preprocess MRI data for CFD
Image segmentation Mesh generation Phase III: Optimally fit CFD to

MRI data and perform UQ

Phase IV: Postprocess CFD,
compute biomarkers,

interpret results

Angiogram
images

Patient-specific
mesh

Low-resolution 4D flow

Ultra-resolution
4D flow

MRI optimization formulation that respects scanner physics

minimize
µ

nxyz∑
i=1

nt∑
n=1

αi,n
2

∥∥di,n(U(µ))− d∗i,n
∥∥2

2

d∗i,n : MRI measurement taken in voxel i at the nth time sample

di,n(U): computational representation of d∗i,n

di,n(U , µ) =

∫ T

0

∫
V

wi,n(x, t) ·U(x, t) dV dt

wi,n(x, t) = χs(x; xi, ∆x)χt(t; tn, ∆t)

χt(s; c, w) =
1

1 + e−(s−(c−0.5w))/σ
− 1

1 + e−(s−(c+0.5w))/σ

χs(x; c, w) = χt(x1; c1, w1)χt(x2; c2, w2)χt(x3; c3, w3)

xi center of ith MRI voxel, ∆x size of MRI voxel

tn time instance of nth MRI sample, ∆t sampling interval in time

Quantitative comparison of 4D flow and SBI reconstruction

0 0.2 0.4 0.6 0.8
30

40

50

60

time (s)

ve
lo
ci
ty

(c
m
/s
)

The reconstructed flow field () provides better agreement to accurate velocity
measurements () on a 2D section than the 4D flow MRI measurements ()

Quantitative comparison of 4D flow and SBI reconstruction

0 0.2 0.4 0.6 0.8
30

40

50

60

time (s)

ve
lo
ci
ty

(c
m
/s
)

The reconstructed flow field () provides better agreement to accurate velocity
measurements () on a 2D section than the 4D flow MRI measurements ()

Quantitative comparison of 4D flow and SBI reconstruction

0 0.2 0.4 0.6 0.8
30

40

50

60

time (s)

ve
lo
ci
ty

(c
m
/s
)

The reconstructed flow field () provides better agreement to accurate velocity
measurements () on a 2D section than the 4D flow MRI measurements ()

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c̃0) + (r0(u0, c0(u0, u1))− r0(u0, c̃0))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c̃0) + (r0(u0, c0(u0, u1))− r0(u0, c̃0))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c̃0) + (r0(u0, c0(u0, u1))− r0(u0, c̃0))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure

High-order method for general multiphysics problems with uncondi-
tional linear stability

Particle-laden flow

Fluid-structure interaction

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

maximize
µ

1

T

∫ T

0

(cḣ2(us)−Mz(u
f)θ̇(µ, t)) dt

• Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
• Structure: Force balance in y-direction between foil and damper
• Motion driven by imposed θ(µ, t) = µ1 cos(2πft)

c

θ(µ, t)

h(us)

µ∗1 ≈ 45◦

Proposed method: recovers target airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

Distance along airfoil

-C
p

Initial
Target

HDM-based optimization
ROM-based optimization

0

0.2

0.4

0.6

D
is
ta
nc
e
T
ra
ns
ve
rs
e
to

C
en
te
rl
in
e

At the cost of ROM queries

0 20 40 60 80 100 120 140 160
10−18

10−14

10−10

10−6

10−2

Reduced optimization iterations

O
bj
ec
ti
ve

Fu
nc
ti
on

HDM sample
0

20

40

60

R
O
M

si
ze

Source of inexactness: anisotropic sparse grids

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

ξ1

ξ
2

Quad rule ξ1 ⊗ ξ2

1 2 3 4 5 6

1
2
3
4
5
6

i1

i 2

Index set

Index set (I) – Neighbors (N (I)) –

Source of inexactness: anisotropic sparse grids

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

ξ1

ξ
2

Quad rule ξ1 ⊗ ξ2

1 2 3 4 5 6

1
2
3
4
5
6

i1

i 2

Index set

Index set (I) – Neighbors (N (I)) –

Trust region ingredients for global convergence

minimize
µ∈Rnµ

F (µ) −→
minimize
µ∈Rnµ

mk(µ)

subject to ‖µ− µk‖ ≤ ∆k

Approximation models
mk(µ), ψk(µ)

Error indicators

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ) ξ > 0

|F (µk)− F (µ) + ψk(µ)− ψk(µk)| ≤ σθk(µ) σ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}
θk(µ̂k)ω ≤ ηmin{mk(µk)−mk(µ̂k), rk}

Trust region method with inexact gradients and objective

1: Model update: Choose model mk and error indicator ϕk

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

2: Step computation: Approximately solve the trust region subproblem

µ̂k = arg min
µ∈Rnµ

mk(µ) subject to ‖µ− µk‖ ≤ ∆k

3: Step acceptance: Compute approximation of actual-to-predicted reduction

ρk =
ψk(µk)− ψk(µ̂k)

mk(µk)−mk(µ̂k)

if ρk ≥ η1 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ ‖µ̂k − µk‖)] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ ‖µ̂k − µk‖ ,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

Trust region ingredients for global convergence

Approximation models
mk(µ), ψk(µ)

Error indicators

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ) ξ > 0

|F (µk)− F (µ) + ψk(µ)− ψk(µk)| ≤ σθk(µ) σ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}
θk(µ̂k)ω ≤ ηmin{mk(µk)−mk(µ̂k), rk}

Global convergence

lim inf
k→∞

‖∇F (µk)‖ = 0

Trust region method: ROM/SG approximation model

Approximation models built on two sources of inexactness

mk(µ) = EIk [J (Φkur(µ, ·), µ, ·)]
ψk(µ) = EI′k

[
J (Φ′kur(µ, ·), µ, ·)

]
Error indicators that account for both sources of error

ϕk(µ) = α1E1(µ; Ik, Φk) + α2E2(µ; Ik, Φk) + α3E4(µ; Ik, Φk)

θk(µ) = β1(E1(µ; I ′k, Φ′k) + E1(µk; I ′k, Φ′k)) + β2(E3(µ; I ′k, Φ′k) + E3(µk; I ′k, Φ′k))

Reduced-order model errors

E1(µ; I, Φ) = EI ∪N (I) [‖r(Φur(µ, ·), µ, ·)‖]
E2(µ; I, Φ) = EI ∪N (I)

[∥∥rλ(Φur(µ, ·), Φλr(µ, ·), µ, ·)
∥∥]

Sparse grid truncation errors

E3(µ; I, Φ) = EN (I) [|J (Φur(µ, ·), µ, ·)|]
E4(µ; I, Φ) = EN (I) [‖∇J (Φur(µ, ·), µ, ·)‖]

Final requirement for convergence: Adaptivity

With the approximation model, mk(µ), and gradient error indicator, ϕk(µ)

mk(µ) = EIk [J (Φkur(µ, ·), µ, ·)]
ϕk(µ) = α1E1(µ; Ik, Φk) + α2E2(µ; Ik, Φk) + α3E4(µ; Ik, Φk)

the sparse grid Ik and reduced-order basis Φk must be constructed such that the
gradient condition holds

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

Define dimension-adaptive greedy method to target each source of error such that
the stronger conditions hold

E1(µk; I, Φ) ≤ κϕ
3α1

min{‖∇mk(µk)‖ , ∆k}

E2(µk; I, Φ) ≤ κϕ
3α2

min{‖∇mk(µk)‖ , ∆k}

E4(µk; I, Φ) ≤ κϕ
3α3

min{‖∇mk(µk)‖ , ∆k}

Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, ·), µ, ·)‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while

Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, ·), µ, ·)‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while

Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, ·), µ, ·)‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while

Optimal boundary control of incompressible Navier-Stokes

0 1 2 3 4 5 6 7 8
0

0.5

1

Γo
Γc

Γi

Ω∗

Geometry and boundary conditions for backward facing step. Boundary conditions:
viscous wall (), parametrized inflow (), stochastic inflow (), outflow ().
Vorticity magnitude minimized in red shaded region.

Optimal boundary control and statistics

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

The mean flow ū(x, µ) (top) and standard deviation offsets ū−(x, µ) (center), ū+(x, µ)
(bottom) corresponding to the uncontrolled, µ = 0, (left) and controlled flow (right).
Boundary control along Γc effectively eliminates the re-circulation region.

Global convergence without pointwise agreement

F (µk) mk(µk) F (µ̂k) mk(µ̂k) ‖∇F (µk)‖ ρk Success?

1.0740e+00 1.0805e+00 8.4412e-01 8.6172e-01 1.8723e+00 1.0000e+00 1.0000e+00
8.4412e-01 8.4351e-01 7.4896e-01 7.4628e-01 1.3292e+00 1.0000e+00 1.0000e+00
7.4896e-01 7.3757e-01 7.3766e-01 7.2654e-01 3.3224e-01 8.6570e-01 1.0000e+00
7.3766e-01 7.3429e-01 7.3601e-01 7.3204e-01 1.1425e-01 7.3229e-01 1.0000e+00
7.3601e-01 7.3250e-01 7.3548e-01 7.3207e-01 7.9688e-02 1.2288e+00 1.0000e+00
7.3548e-01 7.3207e-01 - - 1.4001e-02 - -

Convergence history of trust region method built on two-level approximation

One to two order of magnitude reduction in HDM evaluations

1 2 3 4 5
100

101

102

103

Major iterations

P
ri
m
al

H
D
M

ev
al
ua

ti
on

s

1 2 3 4 5
100

101

102

103

Major iterations

A
dj
oi
nt

H
D
M

ev
al
ua

ti
on

s
Figure 3: Cumulative number of HDM primal and adjoint evaluations as the major
iterations in the various trust region algorithms progress: dimension-adaptive sparse grid
[Kouri et al., 2014] () and proposed method ().

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2

	Appendix

