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Discontinuities often arise in engineering systems, particularly in
those involving compressible flows: shock waves, contact lines

Supersonic and transonic flow around commercial planes and fighter jets

Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces
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Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Shock tracking/fitting: align features of solution basis with features in the solution
using optimization formulation and solver
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Why tracking: Recover optimal O(hp+1) convergence rates
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Convergence of implicit shock tracking (Burgers’ equation) with polynomial degrees p = 1 ( ),
p = 2 ( ), p = 3 ( ), p = 4 ( ), p = 5 ( ), p = 6 ( ).

Key observation: Optimal convergence rates (O(hp+1)) attainable, even for
discontinuous solutions.
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Why high-order tracking: Benefits more dramatic than low-order

implicit shock tracking p = 1 ( ) p = 2 ( ) p = 3 ( )
adaptive refinement p = 1 ( ) p = 2 ( ) p = 3 ( )
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Convergence of implicit shock tracking (Burgers’ equation): implicit shock tracking (solid) vs.
adaptive mesh refinement (dashed).

Key observation: Accuracy improvement of tracking approach relative to
(specialized) adaptive mesh refinement is more exaggerated for high-order
approximations: O(101) for p = 1 and O(106) for p = 3.
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Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow (M = 2) past a cylinder using implicit shock tracking with p = 1 to
p = 4 (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D
supersonic flow with 48 elements; the error in the stagnation enthalpy is O(10−4)

for p = 2 (1152 DoF).
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Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking
Aims to overcome the difficulty of explicitly meshing the unknown shock surface,
e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]
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Implicit tracking for stable, high-order resolution of discontinuities

Goal: Align element faces
with (unknown) discontinuit-
ies to perfectly capture them
and approximate smooth re-
gions to high-order

Non-aligned Discontinuity-aligned

High-Order Implicit Shock Tracking (HOIST)1

• Discontinuous Galerkin discretization: inter-element jumps, high-order

• Discontinuity-aligned mesh: solution of optimization problem constrained by
the discrete PDE =⇒ implicit tracking

• Full space solver that converges the solution and mesh simultaneously to
ensure solution of PDE never required on non-aligned mesh

1[Zahr, Persson; 2018], [Zahr, Shi, Persson; 2020]
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Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:
∇ · F (U) = 0 in Ω

Element-wise finite-dimensional weak form of conservation law:

rKh,p′(Uh,p) :=

∫
∂K

ψ+
h,p′ · H(U+

h,p, U
−
h,p, n) dS −

∫
K

F (Uh,p) : ∇ψh,p′ dV,

where Vh,p′ is the test space, Vh,p is the trial space, H is the numerical flux
function, h is element size, and p/p′ is the polynomial degree.

Introduce basis for polynomial spaces to obtain discrete residuals

r(u,x) (p′ = p), R(u,x) (p′ = p+ 1),

where u is the discrete state vector and x are the coordinates of the mesh nodes.
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Implicit shock tracking: constrained optimization formulation

We formulate the problem of tracking discontinuities with the mesh as the solution
of an optimization problem constrained by the discrete PDE (DG discretization)

minimize
u,x

f(u,x) :=
1

2
‖F (u,x)‖22

subject to r(u,x) = 0.

The objective function balances tracking and mesh quality

F (u,x) =

[
R(u,x)

κRmsh(x)

]

r(u,x) = 0 (DG equation), u (discrete state vector), x (coordinates of mesh nodes)

R (tracking term): penalizes the DG residual in the enriched test space

Rmsh (mesh term): accounts for the distortion of each high-order element

κ: mesh distortion penalization parameter
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Implicit shock tracking: sequential quadratic programming solver

Define z = (u,x) and use interchangeably. To solve the optimization problem, we
define a sequence {zk} updated as

zk+1 = zk + αk∆zk.

The step direction ∆zk is defined as the solution of the quadratic program (QP)
approximation of the tracking problem centered at zk

minimize
∆z∈RNz

gz(zk)T∆z +
1

2
∆zTBz(zk, λ̂(zk))∆z

subject to r(zk) + Jz(zk)∆z = 0,

where

gz(z) =
∂f

∂z
(z)T , Jz(z) =

∂r

∂z
(z), Bz(z,λ) ≈ ∂2L

∂z∂z
(z,λ),

L(z,λ) = f(z)− λTr(z) (Lagrangian)

λ̂(z) =
∂r

∂u
(z)−T

∂f

∂u
(z)T (Lagrange mulitplier estimate)
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Implicit shock tracking: sequential quadratic programming solver

The solution of the quadratic program leads to the following linear system Buu(zk, λ̂(zk)) Bux(zk, λ̂(zk)) Ju(zk)T

Bux(zk, λ̂(zk))T Bxx(zk, λ̂(zk)) Jx(zk)T

Ju(zk) Jx(zk) 0


∆uk

∆xk
ηk

 = −

gu(zk)

gx(zk)

r(zk)

 ,
where

gu(z) =
∂f

∂u
(z)T , Ju(z) =

∂r

∂u
(z), gx(z) =

∂f

∂x
(z)T , Jx(z) =

∂r

∂x
(z),

the approximate Hessian of the Lagrangian is taken as

Buu(z,λ) =
∂F

∂u
(z)T

∂F

∂u
(z), Bux(z,λ) =

∂F

∂u
(z)T

∂F

∂x
(z),

Bxx(z,λ) =
∂F

∂x
(z)T

∂F

∂x
(z) + γD,

and ηk are the Lagrange multipliers of the QP and D is a mesh regularization
matrix (linear elasticity stiffness).
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Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove
element from the mesh: tag elements for removal based on volume and minimum
edge length, collapse shortest edge

• Well-defined for simplices of any order in any dimension

• Must preserve boundaries and shock
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before collapse ignore shock shock-aware
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Practical considerations: solution re-initialization

• High-order solutions can become oscillatory, which leads to poor SQP steps
(requiring many line search iterations)

• Overcome by replacing element-wise solution with the element-wise average
(oscillatory element identified using Persson-Peraire indicator)

• Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization with re-initialization
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Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of u, x is critical

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

Reference mesh, p = 0 DG solution
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Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of u, x is critical

– x0: directly from mesh generation

– u0: DG(p = 0) solution on mesh x0

p = 1 (left) and p = 4 (right) tracking solution
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Linear advection (2D), straight shock

p = 0 space for solution, q = 1 space for mesh
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Newton-like convergence when solution lies in DG subspace

Linear advection with straight shock
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Linear advection (2D), trigonometic shock

p = 0 space for solution, q = 2 space for mesh
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Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh
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Linear advection (3D), trigonometric shock

p = 0 space for solution, q = 2 space for mesh
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Burgers’ equation, accelerating shock

p = q = 1 p = q = 2 p = q = 3
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Burgers’ equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit
shock tracking over sequence of space-time slabs.
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Inviscid flow through area variation: HOIST vs capturing (p = 4)
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Inviscid flow through area variation: h-convergence
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Shock capturing: p = 4 ( ); HOIST: p = 1 ( ), p = 2 ( ), p = 3 ( ),
p = 4 ( ), p = 5 ( ); dashed line indicates optimal convergence rate (O(hp+1))

Observation: Shock capturing limited to sub-first-order convergence rate; HOIST
achieves optimal convergence rates (O(hp+1)) and high accuracy per DoF
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Unsteady, inviscid flow, space-time: Sod shock tube

p = 2, q = 1

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).
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Unsteady, inviscid flow, space-time: Sod shock tube
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Exact ( ), p = 2 (q = 1) HOIST ( )

Observation: Tracks multiple features including discontinuities and derivative
jumps; stronger features “easier” to track (track earlier in process).
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2D Supersonic flow: M = 2 flow over diamond

p = q = 2
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2D Supersonic flow: M = 2 flow over diamond

p = q = 2
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2D Hypersonic flow: M = 5 flow through scramjet

p = q = 2
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3D Supersonic flow: M = 2 flow over sphere

p = q = 2
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High-Order Implicit Shock Tracking

• Implicit tracking: formulate tracking as optimization problem over (u,x)

• Highly accurate solutions on coarse meshes, optimal convergence rates

• High-order methods exaggerate accuracy benefits of tracking discontinuities

• Traditional barrier to tracking (explicitly meshing unknown discontinuity
surface) replaced with solving constrained optimization problem
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PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle
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PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility
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PDE-constrained optimization formulation

Goal: Find the solution of the PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U ,µ) = 0

U : PDE solution
µ : design/control parameters
J (U ,µ) : objective function
C(U ,µ) : constraints
F (U ,∇U) : conservation law flux function
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Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer
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Nested approach to PDE-constrained optimization

Primal PDE Dual PDE

Optimizer

J (U , µ)

DµJ (U , µ)
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Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map,
G(·,µ, t), from physical v(µ, t) to reference V

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0

Space discretization: discontinuous Galerkin

M
∂u

∂t
= r(u,µ, t)

Time discretization: diagonally implicit RK

un = un−1 +

s∑
i=1

bikn,i

Mkn,i = ∆tnr (un,i, µ, tn,i)

Quantity of interest: solver-consistency

F (u0, . . . ,uNt ,k1,1, . . . ,kNt,s,µ)

X1

X2

NdA

V

x1

x2

nda

v
G, g, vX

Mapping-Based ALE

DG Discretization

c1 a11
c2 a21 a22
...

...
...

. . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Butcher Tableau for DIRK
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Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

F (µ) = F (u0, . . . ,un,k1,1, . . . ,kNt,s,µ)

Total derivative with respect to parameters µ

DF =
∂F

∂µ
+

Nt∑
n=0

∂F

∂un

∂un
∂µ

+

Nt∑
n=1

s∑
i=1

∂F

∂kn,i

∂kn,i
∂µ

However, the sensitivities,
∂un
∂µ

and
∂kn,i
∂µ

, are expensive to compute, requiring the

solution of nµ linear evolution equations

Adjoint method
Alternative method for computing DF that does not require sensitivities
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Dissection of fully discrete adjoint equations

• Linear evolution equations solved backward in time

• Primal state/stage, un,i required at each state/stage of dual problem

• Heavily dependent on chosen ouput

λNt =
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+

s∑
i=1

∆tn
∂r

∂u
(un,i, µ, tn−1 + ci∆tn)

T
κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +

s∑
j=i

aji∆tn
∂r

∂u
(un,j , µ, tn−1 + cj∆tn)

T
κn,j

Gradient reconstruction via dual variables

DF =
∂F

∂µ
+ λ0

T ∂g

∂µ
(µ) +

Nt∑
n=1

∆tn

s∑
i=1

κn,i
T ∂r

∂µ
(un,i, µ, tn,i)

[Zahr and Persson, 2016]
AME60714 - Advanced Numerical Methods
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Energetically optimal flapping flight

Energy = 9.4096
Thrust = 0.1766

Energy = 4.9476
Thrust = 2.500

Energy = 4.6182
Thrust = 2.500

Initial Guess
Optimal RBM
Tx = 2.5

Optimal RBM/TMG
Tx = 2.5
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Energetically optimal flapping in three dimensions

Energy = 1.4459e-01
Thrust = -1.1192e-01

Energy = 3.1378e-01
Thrust = 0.0000e+00
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In vivo medical imaging insufficient for many applications

• Detailed in vivo imaging of the human body using MRI holds great potential
for scientific discovery and impact in health care

• Limited by a fundamental trade-off: resolution, image quality, scan time
• Resolution: 1-3mm, 25-100ms in 10-20 minute scan
• Insufficient for many applications: involving infants, while exercising

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Approach: determine CFD parameters (material properties, boundary
conditions) such that the simulation matches MRI data using optimization
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Simulation-based imaging (SBI) workflow
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High-quality reconstruction with experimental data: pulsatile flow

CFD-based reconstruction from quick, low-resolution scan matches laser PIV
measurements better than slow, high-resolution scan

MRI data Reconstructed flow
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Laser PIV validation of simulation-based flow reconstruction

Flow visualization (left) and quantitative comparison with experimental data
shows excellent reconstruction accuracy (right)
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In vivo test of simulation-based flow reconstruction

Patient-specific mesh of brain vessel network
(Circle of Willis)

MRI voxel velocity data on
2D spatial slice at time

instance

SBI reconstruction
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PDE-constrained optimization: Virtually all expense emanates from
primal, dual PDE solves

minimize
u,µ

J (u,µ) subject to r(u,µ) = 0

Primal PDE Dual PDE

Optimizer
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Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations
• Partially converged solutions used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

Manage inexactness with trust region method

• Embedded in globally convergent trust region framework
• Error indicators2 to account for all sources of inexactness
• Refinement of approximation model using greedy algorithms

minimize
µ∈Rnµ

F (µ) −→
minimize
µ∈Rnµ

mk(µ)

subject to ‖µ− µk‖ ≤ ∆k

2Must be computable and apply to general, nonlinear PDEs
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Trust region ingredients for global convergence

Approximation model
mk(µ)

Error indicator

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ), ξ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

Global convergence

lim inf
k→∞

‖∇F (µk)‖ = 0
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Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model mk such that error indicator ϕk satisfies

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

2: Step computation: Approximately solve the trust region subproblem

µ̂k = arg min
µ∈Rnµ

mk(µ) subject to ‖µ− µk‖ ≤ ∆k

3: Step acceptance: Compute actual-to-predicted reduction

ρk =
F (µk)− F (µ̂k)

mk(µk)−mk(µ̂k)

if ρk ≥ η1 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ ‖µ̂k − µk‖] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ ‖µ̂k − µk‖ ,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if
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Source of inexactness/efficiency: projection-based model reduction

• Model reduction ansatz: state vector lies in low-dimensional subspace

u ≈ Φur

• Φ =
[
φ1 · · · φku

]
∈ Rnu×ku is the reduced (trial) basis (nu � ku)

• ur ∈ Rku are the reduced coordinates of u

• Substitute into r(u, µ) = 0 and project onto columnspace of a test basis
Φ ∈ Rnu×ku to obtain a square system

ΦTr(Φur, µ) = 0
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Connection to finite element method: hierarchical subspaces

S

• S - infinite-dimensional trial space

• Sh - (large) finite-dimensional trial space

• Skh - (small) finite-dimensional trial space

• Skh ⊂ Sh ⊂ S
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Few global, data-driven basis functions v. many local ones

• Instead of using traditional local
shape functions, use global shape
functions

• Instead of a-priori, analytical shape
functions, leverage data-rich
computing environment by using
data-driven modes
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Trust region method: ROM approximation model

Approximation models based on reduced-order models

mk(µ) = J (Φkur(µ), µ)

Error indicators from residual-based error bounds

ϕk(µ) = ‖r(Φkur(µ), µ)‖Θ +
∥∥rλ(Φkur(µ), Φkλr(µ), µ)

∥∥
Θλ

Adaptivity to refine basis at trust region center

Φk =
[
u(µk) λ(µk) POD(Uk) POD(V k)

]
Uk =

[
u(µ0) · · · u(µk−1)

]
V k =

[
λ(µ0) · · · λ(µk−1)

]
Interpolation property of minimum-residual reduced-order models =⇒ ϕk(µk) = 0

lim inf
k→∞

‖∇J (u(µk), µk)‖ = 0
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Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M

· · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Trust region framework for optimization with ROMs

Compress

HDM

HDM

HDM

ROB Φ

ROM

Optimizer

Schematic

µ-space

HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M HDM ROB

R
O
M

R
O
M

R
O
M · · ·

R
O
M

R
O
M · · ·

Breakdown of Computational Effort

53 / 69



Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

NACA0012: Initial RAE2822: Target

Pressure field for airfoil configurations at M∞ = 0.5, α = 0.0◦
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Proposed method: 4× fewer HDM queries
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HDM-based optimization
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Shape optimization of aircraft in turbulent flow

• Flow: M = 0.85 α = 2.32◦ Re = 5× 106

• Equations: RANS with Spalart-Allmaras

• Solver: Vertex-centered finite volume method

• Mesh: 11.5M nodes, 68M tetra, 69M DOF

• Shape: 4 parameters (length, sweep, dihedral, twist)

minimize
µ∈R4

− Lz(µ)/Lx(µ)

subject to Lz(µ) = L̄z
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Optimized shape: reduction in 2.2 drag counts

Baseline (gray) and optimized shape (red) – 2× magnification
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Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape – colored by Cp

Performance: ROM-TR method obtains same solution (to 4 digits of accuracy)
as HDM-only optimization and only requires about 60% of the computation time.

Conclusion: Very promising results considering ROMs have notoriously poor
prediction capabilities for problems with moving shocks/discontinuities.
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Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

• apply parameter-dependent domain mapping to align features
• use linear subspace in reference domain to reduce dimension
• push forward to physical domain
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PDE-constrained optimization under uncertainty: Ensemble of
primal, dual PDE solves required at every optimization iteration

minimize
u,µ

E [J (u,µ, ·)] subject to r(u,µ, ξ) = 0, ∀ξ

Primal PDE Dual PDE

Optimizer
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Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Anisotropic sparse grids used for inexact integration of risk measures

• Reduced-order models used for inexact PDE evaluations

minimize
µ∈Rnµ

F (µ) −→ minimize
µ∈Rnµ

m(µ)

HDM HDM ROM
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First source of inexactness: anisotropic sparse grids

Stochastic collocation using anisotropic sparse grid nodes to approximate integral
with summation

minimize
u∈Rnu , µ∈Rnµ

E[J (u, µ, · )]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ Ξ

⇓

minimize
u∈Rnu , µ∈Rnµ

EI [J (u, µ, · )]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ ΞI

[Kouri et al., 2013, Kouri et al., 2014]
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Two sources of inexactness

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes
used to approximate integral with cheap summation

minimize
u∈Rnu , µ∈Rnµ

E[J (u, µ, · )]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ Ξ

⇓

minimize
u∈Rnu , µ∈Rnµ

EI [J (u, µ, · )]

subject to r(u, µ, ξ) = 0 ∀ξ ∈ ΞI

⇓

minimize
ur∈Rku , µ∈Rnµ

EI [J (Φur, µ, · )]

subject to ΦTr(Φur, µ, ξ) = 0 ∀ξ ∈ ΞI
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Optimal control of steady Burgers’ equation

• Optimization problem:

minimize
µ∈Rnµ

∫
Ξ

ρ(ξ)

[∫ 1

0

1

2
(u(µ, ξ, x)− ū(x))2 dx+

α

2

∫ 1

0

z(µ, x)2 dx

]
dξ

where u(µ, ξ, x) solves

−ν(ξ)∂xxu(µ, ξ, x) + u(µ, ξ, x)∂xu(µ, ξ, x) = z(µ, x) x ∈ (0, 1), ξ ∈ Ξ

u(µ, ξ, 0) = d0(ξ) u(µ, ξ, 1) = d1(ξ)

• Target state: ū(x) ≡ 1

• Stochastic Space: Ξ = [−1, 1]3, ρ(ξ)dξ = 2−3dξ

ν(ξ) = 10ξ1−2 d0(ξ) = 1 +
ξ2

1000
d1(ξ) =

ξ3

1000

• Parametrization: z(µ, x) – cubic splines with 51 knots, nµ = 53
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Optimal control and statistics
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Global convergence without pointwise agreement

0 1 2 3 4

10−8

10−5

10−2

Major iteration

( ) |F (µk)− F (µ∗)|
( ) |F (µ̂k)− F (µ∗)|
( ) |mk(µk)− F (µ∗)|
( ) |mk(µ̂k)− F (µ∗)|

F (µk) mk(µk) F (µ̂k) mk(µ̂k) ‖∇F (µk)‖ ρk Success?

6.6506e-02 7.2694e-02 5.3655e-02 5.9922e-02 2.2959e-02 1.0257e+00 1.0000e+00
5.3655e-02 5.9593e-02 5.0783e-02 5.7152e-02 2.3424e-03 9.7512e-01 1.0000e+00
5.0783e-02 5.0670e-02 5.0412e-02 5.0292e-02 1.9724e-03 9.8351e-01 1.0000e+00
5.0412e-02 5.0292e-02 5.0405e-02 5.0284e-02 9.2654e-05 8.7479e-01 1.0000e+00
5.0405e-02 5.0404e-02 5.0403e-02 5.0401e-02 8.3139e-05 9.9946e-01 1.0000e+00
5.0403e-02 5.0401e-02 - - 2.2846e-06 - -

Convergence history of trust region method built on two-level approximation
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Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



Significant reduction in cost, even if (largest) ROM only 10× faster
than HDM

Cost = nHdmPrim + 0.5× nHdmAdj + τ−1 × (nRomPrim + 0.5× nRomAdj)

101 102 103 104 105

10−5

10−4

10−3

10−2

Cost

|F
(µ

)
−
F

(µ
∗ )
|

5-level isotropic SG ( ), dimension-adaptive SG [Kouri et al., 2014] ( ), and
proposed ROM/SG for τ = 1 ( ), τ = 10 ( ), τ = 100 ( ), τ =∞ ( )

67 / 69



High- and reduced-order methods for PDE optimization

• Developed fully discrete adjoint method for high-order numerical
discretizations of PDEs and QoIs

• Treatment of parametrized time domain (optimal frequency)

• Explicit enforcement of time-periodicity constraints

• Extension to multiphysics (fluid-structure interaction, particle-laden flow, ...)

• Acceleration via rigorous multi-fidelity framework that uses reduced-order
models, partially converged solutions, and sparse grids

• Applications: optimal flapping flight, energy harvesting, data assimilation
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SQP solver: regularization matrix D

The mesh regularization matrix D is taken as the stiffness matrix of the linear
elliptic PDE

∇ · (k∇vi) = 0 in Ω

for i = 1, . . . , d. The coefficient is constant over each element and inversely
proportional to the element volume

k(x) =

min
K′∈Eh,q

|K ′|

|K|
, x ∈ K

for each element K in the mesh: critical to maintain well-conditioned search
directions for meshes where element size varies significantly.



SQP solver: step length (αk)

The step length, αk ∈ (0, 1], is selected using a backtracking line search to ensure
sufficient decrease of a merit function ϕk : R→ R

ϕk(αk) ≤ ϕk(0) + cαkϕ
′
k(0), c ∈ (0, 1).

We use the `1 merit function

ϕk(α) := f(zk + α∆zk) + µ ‖r(zk + α∆zk)‖1

where µ >
∥∥∥λ̂(zk)

∥∥∥
∞

because it is “exact”, i.e., any minimizer of the original
optimization problem is a minimizer of ϕk.



SQP solver: termination criteria

The termination criteria for the solver is based on the Karush-Kuhn-Tucker (KKT)
conditions: z? is a solution if there exist Lagrange multipliers λ? such that

∇uL(z?,λ?) = 0, ∇xL(z?,λ?) = 0, r(z?) = 0

Our choice for the Lagrange multiplier estimate λ̂(z) ensure

∇uL(z, λ̂(z)) = 0

and therefore termination is based on the remaining KKT conditions∥∥∥∇xL(z, λ̂(z))
∥∥∥ < ε1, ‖r(z)‖ < ε2,

where ε1, ε2 > 0 are convergence tolerances.



Burgers’ equation, accelerating shock: h convergence

Convergence of solution error (Eu) along line x = 0.8 and shock surface error (EΓ)

p q |Eh| h Eu m(Eu) EΓ m(EΓ)

1 1 38 1.45e-01 2.72e-02 - 2.32e-03 -
1 1 152 7.25e-02 7.18e-03 1.92 1.09e-03 1.09
1 1 598 3.66e-02 1.91e-03 1.93 1.93e-04 2.53
1 1 2392 1.83e-02 4.69e-04 2.03 3.92e-05 2.30
2 2 38 1.45e-01 5.68e-03 - 4.83e-05 -
2 2 152 7.25e-02 9.64e-05 5.88 2.70e-07 7.48
2 2 608 3.63e-02 6.36e-06 3.92 1.20e-08 4.49
2 2 2432 1.81e-02 8.66e-07 2.88 7.70e-10 3.96
3 3 32 1.58e-01 1.57e-03 - 2.06e-05 -
3 3 128 7.91e-02 1.62e-05 6.60 3.37e-07 5.93
3 3 512 3.95e-02 4.37e-07 5.21 5.90e-09 5.84
3 3 2040 1.98e-02 3.31e-08 3.73 1.87e-10 5.00

Observation: Optimal convergence rates (O(hp+1)) obtained for solution error;
faster rates obtained for shock surface.



Burgers’ equation, shock formation and intersection (space-time)

p = q = 3

Observation: Triple point where shocks merge is tracked. Insufficient resolution
to fully capture shock formation; approximate with discontinuity.
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PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements
Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements



High-order discretization of PDE-constrained optimization

• Continuous PDE-constrained optimization problem

minimize
U , µ

J (U ,µ)

subject to C(U ,µ) ≤ 0

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t)

• Fully discrete PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu ,

µ∈Rnµ

J(u0, . . . , uNt , k1,1, . . . , kNt,s, µ)

subject to C(u0, . . . , uNt
, k1,1, . . . , kNt,s, µ) ≤ 0

u0 − g(µ) = 0

un − un−1 −
s∑
i=1

bikn,i = 0

Mkn,i −∆tnr (un,i, µ, tn,i) = 0



Discrete adjoint equations can be derived from an algebraic manip-
ulation to save computations

Let u(µ) be the solution of r(·,µ) = 0

r(µ) = r(u(µ),µ) = 0, F (µ) = F (u(µ),µ)

The total derivative of r leads to the sensitivity equations

Dr =
∂r

∂µ
+
∂r

∂u

∂u

∂µ
= 0 =⇒ ∂u

∂µ
= − ∂r

∂u

−1 ∂r

∂µ

The total derivative of F

DF =
∂F

∂µ
+
∂F

∂u

∂u

∂µ

=
∂F

∂µ
− ∂F

∂u

∂r

∂u

−1 ∂r

∂µ
=
∂F

∂µ
− λT ∂r

∂µ

Algebraic equations leads to adjoint equations
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Sensitivity vs. adjoint method to compute gradient of F
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Adjoint equation derivation: outline

• Define auxiliary PDE-constrained optimization problem

minimize
u0, ..., uNt∈R

Nu ,

k1,1, ..., kNt,s∈R
Nu

F (u0, . . . , uNt
, k1,1, . . . , kNt,s, µ)

subject to R0 = u0 − g(µ) = 0

Rn = un − un−1 −
s∑
i=1

bikn,i = 0

Rn,i = Mkn,i −∆tnr (un,i, µ, tn,i) = 0

• Define Lagrangian

L(un, kn,i, λn, κn,i) = F − λ0
TR0 −

Nt∑
n=1

λn
TRn −

Nt∑
n=1

s∑
i=1

κn,i
TRn,i

• The solution of the optimization problem is given by the
Karush-Kuhn-Tucker (KKT) sytem

∂L
∂un

= 0,
∂L
∂kn,i

= 0,
∂L
∂λn

= 0,
∂L
∂κn,i

= 0



Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of cyclic problems requires finding time-periodic solution of PDE;
necessary for physical relevance and avoid transients that may lead to crash

minimize
U, µ

J (U ,µ)

subject to U(x, 0) = U(x, T )

∂U

∂t
+∇ · F (U ,∇U) = 0

λNt = λ0 +
∂F

∂uNt

T

λn−1 = λn +
∂F

∂un−1

T

+
s∑

i=1

∆tn
∂rn,i

∂u

T

κn,i

MTκn,i =
∂F

∂uNt

T

+ biλn +
s∑

j=i

aji∆tn
∂rn,i

∂u

T

κn,j

0 2 4
−60

−40

−20

0

time

po
w
er

0 2 4

−4

−2

0

time

po
w
er

Time history of power on airfoil of flow initialized from steady-state ( ) and
from a time-periodic solution ( )



Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization
of time discretization in fully discrete setting

T (µ) = Nt∆t =⇒ Nt = Nt(µ) or ∆t = ∆t(µ)

Choose ∆t = ∆t(µ) to avoid discrete changes

Does not change adjoint equations themselves, only reconstruction of gradient from
adjoint solution
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Energetically optimal flapping vs. required thrust

Energy = 1.8445
Thrust = 0.06729

Energy = 0.21934
Thrust = 0.0000

Energy = 6.2869
Thrust = 2.5000

Initial Guess
Optimal
Tx = 0

Optimal
Tx = 2.5



Energetically optimal flapping vs. required thrust: QoI
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High-resolution in vivo images through optimization

Goal: visualize in vivo flow with high-resolution and accurately compute clinically
relevant quantities from quick scans

Experimental setup Noisy, low-resolution MRI data

Approach: determine CFD parameters (material properties, boundary
conditions) such that the simulation matches MRI data using optimization



Simulation-based imaging (SBI) workflow

Phase I: MRI scan

Phase II: Preprocess MRI data for CFD
Image segmentation Mesh generation Phase III: Optimally fit CFD to

MRI data and perform UQ

Phase IV: Postprocess CFD,
compute biomarkers,

interpret results

Angiogram 
images

Patient-specific
mesh

Low-resolution 4D flow

Ultra-resolution
4D flow



MRI optimization formulation that respects scanner physics

minimize
µ

nxyz∑
i=1

nt∑
n=1

αi,n
2

∥∥di,n(U(µ))− d∗i,n
∥∥2

2

d∗i,n : MRI measurement taken in voxel i at the nth time sample

di,n(U): computational representation of d∗i,n

di,n(U , µ) =

∫ T

0

∫
V

wi,n(x, t) ·U(x, t) dV dt

wi,n(x, t) = χs(x; xi, ∆x)χt(t; tn, ∆t)

χt(s; c, w) =
1

1 + e−(s−(c−0.5w))/σ
− 1

1 + e−(s−(c+0.5w))/σ

χs(x; c, w) = χt(x1; c1, w1)χt(x2; c2, w2)χt(x3; c3, w3)

xi center of ith MRI voxel, ∆x size of MRI voxel

tn time instance of nth MRI sample, ∆t sampling interval in time



Quantitative comparison of 4D flow and SBI reconstruction
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The reconstructed flow field ( ) provides better agreement to accurate velocity
measurements ( ) on a 2D section than the 4D flow MRI measurements ( )
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Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena,
no changes required if monolithic system considered

M0u̇0 = r0(u0, c0(u0, u1))

M1u̇1 = r1(u1, c1(u0, u1))

However, to solve in partitioned manner and achieve high-order, split as follows
and apply implicit-explicit Runge-Kutta

M0u̇0 = r0(u0, c̃0) + (r0(u0, c0(u0, u1))− r0(u0, c̃0))

M1u̇1 = r1(u1, c̃1) + (r1(u1, c1(u0, u1))− r1(u1, c̃1))

Adjoint equations inherit explicit-implicit structure
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High-order method for general multiphysics problems with uncondi-
tional linear stability

Particle-laden flow

Fluid-structure interaction



Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

maximize
µ

1

T

∫ T

0

(cḣ2(us)−Mz(u
f )θ̇(µ, t)) dt

• Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
• Structure: Force balance in y-direction between foil and damper
• Motion driven by imposed θ(µ, t) = µ1 cos(2πft)

c

θ(µ, t)

h(us)

µ∗1 ≈ 45◦



Proposed method: recovers target airfoil
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At the cost of ROM queries
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Source of inexactness: anisotropic sparse grids
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Trust region ingredients for global convergence

minimize
µ∈Rnµ

F (µ) −→
minimize
µ∈Rnµ

mk(µ)

subject to ‖µ− µk‖ ≤ ∆k

Approximation models
mk(µ), ψk(µ)

Error indicators

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ) ξ > 0

|F (µk)− F (µ) + ψk(µ)− ψk(µk)| ≤ σθk(µ) σ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}
θk(µ̂k)ω ≤ ηmin{mk(µk)−mk(µ̂k), rk}



Trust region method with inexact gradients and objective

1: Model update: Choose model mk and error indicator ϕk

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

2: Step computation: Approximately solve the trust region subproblem

µ̂k = arg min
µ∈Rnµ

mk(µ) subject to ‖µ− µk‖ ≤ ∆k

3: Step acceptance: Compute approximation of actual-to-predicted reduction

ρk =
ψk(µk)− ψk(µ̂k)

mk(µk)−mk(µ̂k)

if ρk ≥ η1 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ ‖µ̂k − µk‖)] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ ‖µ̂k − µk‖ ,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if



Trust region ingredients for global convergence

Approximation models
mk(µ), ψk(µ)

Error indicators

‖∇F (µ)−∇mk(µ)‖ ≤ ξϕk(µ) ξ > 0

|F (µk)− F (µ) + ψk(µ)− ψk(µk)| ≤ σθk(µ) σ > 0

Adaptivity
ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}
θk(µ̂k)ω ≤ ηmin{mk(µk)−mk(µ̂k), rk}

Global convergence

lim inf
k→∞

‖∇F (µk)‖ = 0



Trust region method: ROM/SG approximation model

Approximation models built on two sources of inexactness

mk(µ) = EIk [J (Φkur(µ, · ), µ, · )]
ψk(µ) = EI′k

[
J (Φ′kur(µ, · ), µ, · )

]
Error indicators that account for both sources of error

ϕk(µ) = α1E1(µ; Ik, Φk) + α2E2(µ; Ik, Φk) + α3E4(µ; Ik, Φk)

θk(µ) = β1(E1(µ; I ′k, Φ′k) + E1(µk; I ′k, Φ′k)) + β2(E3(µ; I ′k, Φ′k) + E3(µk; I ′k, Φ′k))

Reduced-order model errors

E1(µ; I, Φ) = EI ∪N (I) [‖r(Φur(µ, ·), µ, · )‖]
E2(µ; I, Φ) = EI ∪N (I)

[∥∥rλ(Φur(µ, ·), Φλr(µ, · ), µ, · )
∥∥]

Sparse grid truncation errors

E3(µ; I, Φ) = EN (I) [|J (Φur(µ, · ), µ, · )|]
E4(µ; I, Φ) = EN (I) [‖∇J (Φur(µ, · ), µ, · )‖]



Final requirement for convergence: Adaptivity

With the approximation model, mk(µ), and gradient error indicator, ϕk(µ)

mk(µ) = EIk [J (Φkur(µ, · ), µ, · )]
ϕk(µ) = α1E1(µ; Ik, Φk) + α2E2(µ; Ik, Φk) + α3E4(µ; Ik, Φk)

the sparse grid Ik and reduced-order basis Φk must be constructed such that the
gradient condition holds

ϕk(µk) ≤ κϕ min{‖∇mk(µk)‖ , ∆k}

Define dimension-adaptive greedy method to target each source of error such that
the stronger conditions hold

E1(µk; I, Φ) ≤ κϕ
3α1

min{‖∇mk(µk)‖ , ∆k}

E2(µk; I, Φ) ≤ κϕ
3α2

min{‖∇mk(µk)‖ , ∆k}

E4(µk; I, Φ) ≤ κϕ
3α3

min{‖∇mk(µk)‖ , ∆k}



Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, · ), µ, · )‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while



Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, · ), µ, · )‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while



Adaptivity: Dimension-adaptive greedy method

while E4(Φ, I, µk) >
κϕ
3α3

min{‖∇mk(µk)‖ , ∆k} do

Refine index set: Dimension-adaptive sparse grids

Ik ← Ik ∪ {j∗} where j∗ = arg max
j∈N (Ik)

Ej [‖∇J (Φur(µ, · ), µ, · )‖]

Refine reduced-order basis: Greedy sampling
while E1(Φ, I, µk) >

κϕ
3α1

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ) ‖r(Φkur(µk, ξ), µk, ξ)‖

end while

while E2(Φ, I, µk) >
κϕ
3α2

min{‖∇mk(µk)‖ , ∆k} do

Φk ←
[
Φk u(µk, ξ

∗) λ(µk, ξ
∗)
]

ξ∗ = arg max
ξ∈Ξj∗

ρ(ξ)
∥∥rλ(Φkur(µk, ξ), Φkλr(µk, ξ), µk, ξ)

∥∥
end while

end while



Optimal boundary control of incompressible Navier-Stokes
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Geometry and boundary conditions for backward facing step. Boundary conditions:
viscous wall ( ), parametrized inflow ( ), stochastic inflow ( ), outflow ( ).
Vorticity magnitude minimized in red shaded region.



Optimal boundary control and statistics
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The mean flow ū(x, µ) (top) and standard deviation offsets ū−(x, µ) (center), ū+(x, µ)
(bottom) corresponding to the uncontrolled, µ = 0, (left) and controlled flow (right).
Boundary control along Γc effectively eliminates the re-circulation region.



Global convergence without pointwise agreement

F (µk) mk(µk) F (µ̂k) mk(µ̂k) ‖∇F (µk)‖ ρk Success?

1.0740e+00 1.0805e+00 8.4412e-01 8.6172e-01 1.8723e+00 1.0000e+00 1.0000e+00
8.4412e-01 8.4351e-01 7.4896e-01 7.4628e-01 1.3292e+00 1.0000e+00 1.0000e+00
7.4896e-01 7.3757e-01 7.3766e-01 7.2654e-01 3.3224e-01 8.6570e-01 1.0000e+00
7.3766e-01 7.3429e-01 7.3601e-01 7.3204e-01 1.1425e-01 7.3229e-01 1.0000e+00
7.3601e-01 7.3250e-01 7.3548e-01 7.3207e-01 7.9688e-02 1.2288e+00 1.0000e+00
7.3548e-01 7.3207e-01 - - 1.4001e-02 - -

Convergence history of trust region method built on two-level approximation



One to two order of magnitude reduction in HDM evaluations
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Figure 3: Cumulative number of HDM primal and adjoint evaluations as the major
iterations in the various trust region algorithms progress: dimension-adaptive sparse grid
[Kouri et al., 2014] ( ) and proposed method ( ).



Adaptation of sparse grid and reduced basis

1 2 3 4

1

2

3

4

i1

i 2

−1 0 1

−1

0

1

ξ1
ξ

2
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Adaptation of sparse grid and reduced basis
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Adaptation of sparse grid and reduced basis
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Adaptation of sparse grid and reduced basis
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Adaptation of sparse grid and reduced basis
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