Integrating computational physics and numerical optimization to address challenges in science, engineering, and medicine

Matthew J. Zahr
Assistant Professor
Department of Aerospace and Mechanical Engineering
University of Notre Dame
Applied and Computational Mathematics and Statistics (ACMS) Seminar
University of Notre Dame, Notre Dame, IN
April 5, 2021
Students: T. Huang, M. Mirhoseini, C. Naudet, T. Wen
Collaborators: D.Z. Huang, P.-O. Persson, A. Shi, J. Töger

Discontinuities often arise in engineering systems, particularly in those involving compressible flows: shock waves, contact lines

Supersonic and transonic flow around commercial planes and fighter jets Hypersonics, e.g., re-entry of vehicles in atmosphere, and scramjets

Other applications with discontinuities: fracture, problems with interfaces

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement
Shock tracking/fitting: align features of solution basis with features in the solution using optimization formulation and solver

Numerical methods for resolving shocks

Fundamental issue: approximate discontinuity with polynomial basis
Exising solutions: limiting, artificial viscosity
Drawbacks: order reduction, local refinement
Shock tracking/fitting: align features of solution basis with features in the solution using optimization formulation and solver

Why tracking: Recover optimal $\mathcal{O}\left(h^{p+1}\right)$ convergence rates

Convergence of implicit shock tracking (Burgers' equation) with polynomial degrees $p=1(\bullet)$,

$$
p=2(\boldsymbol{\bullet}), p=3(\mathbf{\Delta}), p=4(\star), p=5(*), p=6(\otimes) .
$$

Key observation: Optimal convergence rates $\left(\mathcal{O}\left(h^{p+1}\right)\right)$ attainable, even for discontinuous solutions.

Why high-order tracking: Benefits more dramatic than low-order

Convergence of implicit shock tracking (Burgers' equation): implicit shock tracking (solid) vs. adaptive mesh refinement (dashed).

Key observation: Accuracy improvement of tracking approach relative to (specialized) adaptive mesh refinement is more exaggerated for high-order approximations: $\mathcal{O}\left(10^{1}\right)$ for $p=1$ and $\mathcal{O}\left(10^{6}\right)$ for $p=3$.

Why high-order tracking: Accurate solutions on coarse meshes

Density of supersonic flow $(M=2)$ past a cylinder using implicit shock tracking with $p=1$ to $p=4$ (left to right) DG discretization.

Key observation: High-order tracking enables accurate resolution of 2D supersonic flow with 48 elements; the error in the stagnation enthalpy is $\mathcal{O}\left(10^{-4}\right)$ for $p=2(1152 \mathrm{DoF})$.

Why not tracking: Difficult for complex discontinuity surfaces

Implicit shock tracking

Aims to overcome the difficulty of explicitly meshing the unknown shock surface, e.g., HOIST [Zahr, Persson; 2018], MDG-ICE [Corrigan, Kercher, Kessler; 2019]

Implicit tracking for stable, high-order resolution of discontinuities

Goal: Align element faces with (unknown) discontinuities to perfectly capture them and approximate smooth regions to high-order

Non-aligned

Discontinuity-aligned

High-Order Implicit Shock Tracking (HOIST) ${ }^{1}$

- Discontinuous Galerkin discretization: inter-element jumps, high-order
- Discontinuity-aligned mesh: solution of optimization problem constrained by the discrete PDE \Longrightarrow implicit tracking
- Full space solver that converges the solution and mesh simultaneously to ensure solution of PDE never required on non-aligned mesh

[^0]
Discontinuous Galerkin discretization of conservation law

Inviscid conservation law:

$$
\nabla \cdot F(U)=0 \quad \text { in } \Omega
$$

Element-wise finite-dimensional weak form of conservation law:

$$
r_{h, p^{\prime}}^{K}\left(U_{h, p}\right):=\int_{\partial K} \psi_{h, p^{\prime}}^{+} \cdot \mathcal{H}\left(U_{h, p}^{+}, U_{h, p}^{-}, n\right) d S-\int_{K} F\left(U_{h, p}\right): \nabla \psi_{h, p^{\prime}} d V
$$

where $\mathcal{V}_{h, p^{\prime}}$ is the test space, $\mathcal{V}_{h, p}$ is the trial space, \mathcal{H} is the numerical flux function, h is element size, and p / p^{\prime} is the polynomial degree.

Introduce basis for polynomial spaces to obtain discrete residuals

$$
\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{x}) \quad\left(p^{\prime}=p\right), \quad \boldsymbol{R}(\boldsymbol{u}, \boldsymbol{x}) \quad\left(p^{\prime}=p+1\right)
$$

where \boldsymbol{u} is the discrete state vector and \boldsymbol{x} are the coordinates of the mesh nodes.

Implicit shock tracking: constrained optimization formulation

We formulate the problem of tracking discontinuities with the mesh as the solution of an optimization problem constrained by the discrete PDE (DG discretization)

$$
\begin{array}{ll}
\underset{\boldsymbol{u}, \boldsymbol{x}}{\operatorname{minimize}} & f(\boldsymbol{u}, \boldsymbol{x}):=\frac{1}{2}\|\boldsymbol{F}(\boldsymbol{u}, \boldsymbol{x})\|_{2}^{2} \\
\text { subject to } & \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{x})=\mathbf{0}
\end{array}
$$

The objective function balances tracking and mesh quality

$$
\boldsymbol{F}(\boldsymbol{u}, \boldsymbol{x})=\left[\begin{array}{c}
\boldsymbol{R}(\boldsymbol{u}, \boldsymbol{x}) \\
\kappa \boldsymbol{R}_{\mathrm{msh}}(\boldsymbol{x})
\end{array}\right]
$$

$\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{x})=\mathbf{0}$ (DG equation), \boldsymbol{u} (discrete state vector), \boldsymbol{x} (coordinates of mesh nodes)
\boldsymbol{R} (tracking term): penalizes the DG residual in the enriched test space
$\boldsymbol{R}_{\mathrm{msh}}$ (mesh term): accounts for the distortion of each high-order element
κ : mesh distortion penalization parameter

Implicit shock tracking: sequential quadratic programming solver

Define $\boldsymbol{z}=(\boldsymbol{u}, \boldsymbol{x})$ and use interchangeably. To solve the optimization problem, we define a sequence $\left\{\boldsymbol{z}_{k}\right\}$ updated as

$$
\boldsymbol{z}_{k+1}=\boldsymbol{z}_{k}+\alpha_{k} \Delta \boldsymbol{z}_{k}
$$

Implicit shock tracking: sequential quadratic programming solver

Define $\boldsymbol{z}=(\boldsymbol{u}, \boldsymbol{x})$ and use interchangeably. To solve the optimization problem, we define a sequence $\left\{\boldsymbol{z}_{k}\right\}$ updated as

$$
\boldsymbol{z}_{k+1}=\boldsymbol{z}_{k}+\alpha_{k} \Delta \boldsymbol{z}_{k}
$$

The step direction $\Delta \boldsymbol{z}_{k}$ is defined as the solution of the quadratic program (QP) approximation of the tracking problem centered at \boldsymbol{z}_{k}

$$
\begin{array}{cl}
\underset{\Delta \boldsymbol{z} \in \mathbb{R}^{N \boldsymbol{z}}}{\operatorname{minimize}} & \boldsymbol{g}_{\boldsymbol{z}}\left(\boldsymbol{z}_{k}\right)^{T} \Delta \boldsymbol{z}+\frac{1}{2} \Delta \boldsymbol{z}^{T} \boldsymbol{B}_{\boldsymbol{z}}\left(\boldsymbol{z}_{k}, \hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right) \Delta \boldsymbol{z} \\
\text { subject to } & \boldsymbol{r}\left(\boldsymbol{z}_{k}\right)+\boldsymbol{J}_{\boldsymbol{z}}\left(\boldsymbol{z}_{k}\right) \Delta \boldsymbol{z}=\mathbf{0}
\end{array}
$$

where

$$
\begin{align*}
\boldsymbol{g}_{\boldsymbol{z}}(\boldsymbol{z}) & =\frac{\partial f}{\partial \boldsymbol{z}}(\boldsymbol{z})^{T}, \quad \boldsymbol{J}_{\boldsymbol{z}}(\boldsymbol{z})=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{z}}(\boldsymbol{z}), & & \boldsymbol{B}_{\boldsymbol{z}}(\boldsymbol{z}, \boldsymbol{\lambda}) \approx \frac{\partial^{2} \mathcal{L}}{\partial \boldsymbol{z} \partial \boldsymbol{z}}(\boldsymbol{z}, \boldsymbol{\lambda}), \\
\mathcal{L}(\boldsymbol{z}, \boldsymbol{\lambda}) & =f(\boldsymbol{z})-\boldsymbol{\lambda}^{T} \boldsymbol{r}(\boldsymbol{z}) & & \text { (Lagrangian) } \tag{Lagrangian}\\
\hat{\boldsymbol{\lambda}}(\boldsymbol{z}) & =\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}(\boldsymbol{z})^{-T} \frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{z})^{T} & & \text { (Lagrange mulitplier estimate) }
\end{align*}
$$

Implicit shock tracking: sequential quadratic programming solver

The solution of the quadratic program leads to the following linear system

$$
\left[\begin{array}{ccc}
\boldsymbol{B}_{u \boldsymbol{u}}\left(\boldsymbol{z}_{k}, \hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right) & \boldsymbol{B}_{\boldsymbol{u x}}\left(\boldsymbol{z}_{k}, \hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right) & \boldsymbol{J}_{\boldsymbol{u}}\left(\boldsymbol{z}_{k}\right)^{T} \\
\boldsymbol{B}_{\boldsymbol{u x}}\left(\boldsymbol{z}_{k}, \hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right)^{T} & \boldsymbol{B}_{\boldsymbol{x} \boldsymbol{x}}\left(\boldsymbol{z}_{k}, \hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right) & \boldsymbol{J}_{\boldsymbol{x}}\left(\boldsymbol{z}_{k}\right)^{T} \\
\boldsymbol{J}_{\boldsymbol{u}}\left(\boldsymbol{z}_{k}\right) & \boldsymbol{J}_{\boldsymbol{x}}\left(\boldsymbol{z}_{k}\right) & \boldsymbol{0}
\end{array}\right]\left[\begin{array}{c}
\Delta \boldsymbol{u}_{k} \\
\Delta \boldsymbol{x}_{k} \\
\boldsymbol{\eta}_{k}
\end{array}\right]=-\left[\begin{array}{c}
\boldsymbol{g}_{\boldsymbol{u}}\left(\boldsymbol{z}_{k}\right) \\
\boldsymbol{g}_{\boldsymbol{x}}\left(\boldsymbol{z}_{k}\right) \\
\boldsymbol{r}\left(\boldsymbol{z}_{k}\right)
\end{array}\right],
$$

where

$$
\boldsymbol{g}_{\boldsymbol{u}}(\boldsymbol{z})=\frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{z})^{T}, \quad \boldsymbol{J}_{\boldsymbol{u}}(\boldsymbol{z})=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}(\boldsymbol{z}), \quad \boldsymbol{g}_{\boldsymbol{x}}(\boldsymbol{z})=\frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{z})^{T}, \quad \boldsymbol{J}_{\boldsymbol{x}}(\boldsymbol{z})=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}}(\boldsymbol{z})
$$

the approximate Hessian of the Lagrangian is taken as

$$
\begin{aligned}
\boldsymbol{B}_{u \boldsymbol{u}}(\boldsymbol{z}, \boldsymbol{\lambda}) & =\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}(\boldsymbol{z})^{T} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}(\boldsymbol{z}), \quad \boldsymbol{B}_{\boldsymbol{u x}}(\boldsymbol{z}, \boldsymbol{\lambda})=\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}(\boldsymbol{z})^{T} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}(\boldsymbol{z}) \\
\boldsymbol{B}_{\boldsymbol{x} \boldsymbol{x}}(\boldsymbol{z}, \boldsymbol{\lambda}) & =\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}(\boldsymbol{z})^{T} \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}(\boldsymbol{z})+\gamma \boldsymbol{D}
\end{aligned}
$$

and $\boldsymbol{\eta}_{k}$ are the Lagrange multipliers of the QP and \boldsymbol{D} is a mesh regularization matrix (linear elasticity stiffness).

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove element from the mesh: tag elements for removal based on volume and minimum edge length, collapse shortest edge

- Well-defined for simplices of any order in any dimension

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove element from the mesh: tag elements for removal based on volume and minimum edge length, collapse shortest edge

- Well-defined for simplices of any order in any dimension

Practical considerations: shock-aware element collapse

Despite measures to keep mesh well-conditioned, best option may be to remove element from the mesh: tag elements for removal based on volume and minimum edge length, collapse shortest edge

- Well-defined for simplices of any order in any dimension
- Must preserve boundaries and shock

before collapse

ignore shock

shock-aware

Practical considerations: solution re-initialization

- High-order solutions can become oscillatory, which leads to poor SQP steps (requiring many line search iterations)
- Overcome by replacing element-wise solution with the element-wise average (oscillatory element identified using Persson-Peraire indicator)
- Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization

with re-initialization

Practical considerations: solution re-initialization

- High-order solutions can become oscillatory, which leads to poor SQP steps (requiring many line search iterations)
- Overcome by replacing element-wise solution with the element-wise average (oscillatory element identified using Persson-Peraire indicator)
- Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization

with re-initialization

Practical considerations: solution re-initialization

- High-order solutions can become oscillatory, which leads to poor SQP steps (requiring many line search iterations)
- Overcome by replacing element-wise solution with the element-wise average (oscillatory element identified using Persson-Peraire indicator)
- Without re-initialization, must hope oscillatory elements get collapsed

without re-initialization

with re-initialization

Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of $\boldsymbol{u}, \boldsymbol{x}$ is critical

- \boldsymbol{x}_{0} : directly from mesh generation
- $\boldsymbol{u}_{0}: \mathrm{DG}(p=0)$ solution on mesh \boldsymbol{x}_{0}
(

Reference mesh, $p=0 \mathrm{DG}$ solution

Practical considerations: initialization

HOIST optimization problem is non-convex so initialization of $\boldsymbol{u}, \boldsymbol{x}$ is critical

- x_{0} : directly from mesh generation
- $\boldsymbol{u}_{0}: \mathrm{DG}(p=0)$ solution on mesh \boldsymbol{x}_{0}

$p=1$ (left) and $p=4$ (right) tracking solution

Linear advection (2D), straight shock

$p=0$ space for solution, $q=1$ space for mesh

Newton-like convergence when solution lies in DG subspace

Linear advection with straight shock

$$
\|r(\boldsymbol{z})\|(\rightarrow),\|\boldsymbol{R}(\boldsymbol{z})\|(\cdots),\left\|\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{z}, \hat{\boldsymbol{\lambda}}(\boldsymbol{z}))\right\|(\cdots)
$$

Linear advection (2D), trigonometic shock

$p=0$ space for solution, $q=2$ space for mesh

Linear advection (3D), trigonometric shock

Linear advection (3D), trigonometric shock

$p=0$ space for solution, $q=2$ space for mesh

Burgers' equation, accelerating shock

$p=q=1$
$p=q=2$
$p=q=3$

Burgers' equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit shock tracking over sequence of space-time slabs.

Burgers' equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit shock tracking over sequence of space-time slabs.

Burgers' equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit shock tracking over sequence of space-time slabs.

Burgers' equation, accelerating shock: space-time slabs

Observation: Monolithic space-time formulation not always practical; use implicit shock tracking over sequence of space-time slabs.

Inviscid flow through area variation: HOIST vs capturing $(p=4)$

Exact solution (-), shock capturing (---), HOIST (…)

Inviscid flow through area variation: HOIST vs capturing $(p=4)$

Exact solution (-), shock capturing (---), HOIST ($\quad \cdots$)

Inviscid flow through area variation: HOIST vs capturing $(p=4)$

Exact solution (-), shock capturing (---), HOIST ($\quad \cdots$)

Inviscid flow through area variation: HOIST vs capturing $(p=4)$

Exact solution (-), shock capturing (---), HOIST ($\quad \cdots$)

Inviscid flow through area variation: h-convergence

Shock capturing: $p=4(-)$; HOIST: $p=1(\rightarrow-), p=2(\longrightarrow), p=3(\longrightarrow)$, $p=4(\multimap), p=5(\multimap)$; dashed line indicates optimal convergence rate $\left(\mathcal{O}\left(h^{p+1}\right)\right)$

Observation: Shock capturing limited to sub-first-order convergence rate; HOIST achieves optimal convergence rates $\left(\mathcal{O}\left(h^{p+1}\right)\right)$ and high accuracy per DoF

Unsteady, inviscid flow, space-time: Sod shock tube

$$
p=2, q=1
$$

Observation: Tracks multiple features including discontinuities and derivative jumps; stronger features "easier" to track (track earlier in process).

Unsteady, inviscid flow, space-time: Sod shock tube

Observation: Tracks multiple features including discontinuities and derivative jumps; stronger features "easier" to track (track earlier in process).

Unsteady, inviscid flow, space-time: Sod shock tube

Observation: Tracks multiple features including discontinuities and derivative jumps; stronger features "easier" to track (track earlier in process).

2D Supersonic flow: $M=2$ flow over diamond

2D Supersonic flow: $M=2$ flow over diamond

$$
p=q=2
$$

2D Hypersonic flow: $M=5$ flow through scramjet

$$
p=q=2
$$

3D Supersonic flow: $M=2$ flow over sphere

3D Supersonic flow: $M=2$ flow over sphere

3D Supersonic flow: $M=2$ flow over sphere

High-Order Implicit Shock Tracking

- Implicit tracking: formulate tracking as optimization problem over ($\boldsymbol{u}, \boldsymbol{x}$)
- Highly accurate solutions on coarse meshes, optimal convergence rates
- High-order methods exaggerate accuracy benefits of tracking discontinuities
- Traditional barrier to tracking (explicitly meshing unknown discontinuity surface) replaced with solving constrained optimization problem

Acknowledgments

- DOE Grant DE-AC02-05CH1123 (Alvarez fellowship)
- AFOSR Grant FA9550-20-1-0236 (F. Fahroo)

Tianci Huang (ND) robust solvers

Charles Naudet (ND) space-time slabs

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking - electromagnetic invisibility

PDE-constrained optimization formulation

Goal: Find the solution of the PDE-constrained optimization problem

$$
\begin{array}{cl}
\underset{\boldsymbol{U}, \boldsymbol{\mu}}{\operatorname{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\
\text { subject to } & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\
& \frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}, \boldsymbol{\mu})=0
\end{array}
$$

\boldsymbol{U}	$:$	PDE solution
$\boldsymbol{\mu}$	$:$	design/control parameters
$\mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu})$	$:$	objective function
$\boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu})$	$:$	constraints
$\boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U})$	$:$	conservation law flux function

Nested approach to PDE-constrained optimization

Nested approach to PDE-constrained optimization

Nested approach to PDE-constrained optimization

Nested approach to PDE-constrained optimization

Nested approach to PDE-constrained optimization

Highlights of globally high-order discretization

Arbitrary Lagrangian-Eulerian formulation: Map, $\mathcal{G}(\cdot, \boldsymbol{\mu}, t)$, from physical $v(\boldsymbol{\mu}, t)$ to reference V

$$
\left.\frac{\partial \boldsymbol{U}_{\boldsymbol{X}}}{\partial t}\right|_{\boldsymbol{X}}+\nabla_{\boldsymbol{X}} \cdot \boldsymbol{F}_{\boldsymbol{X}}\left(\boldsymbol{U}_{\boldsymbol{X}}, \nabla_{\boldsymbol{X}} \boldsymbol{U}_{\boldsymbol{X}}\right)=0
$$

Space discretization: discontinuous Galerkin

$$
\boldsymbol{M} \frac{\partial \boldsymbol{u}}{\partial t}=\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, t)
$$

Time discretization: diagonally implicit RK

$$
\begin{aligned}
\boldsymbol{u}_{n} & =\boldsymbol{u}_{n-1}+\sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n, i} \\
\boldsymbol{M} \boldsymbol{k}_{n, i} & =\Delta t_{n} \boldsymbol{r}\left(\boldsymbol{u}_{n, i}, \boldsymbol{\mu}, t_{n, i}\right)
\end{aligned}
$$

Quantity of interest: solver-consistency

$$
F\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right)
$$

Mapping-Based ALE

DG Discretization

Butcher Tableau for DIRK

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

$$
F(\boldsymbol{\mu})=F\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right)
$$

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

$$
F(\boldsymbol{\mu})=F\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right)
$$

Total derivative with respect to parameters $\boldsymbol{\mu}$

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\sum_{n=0}^{N_{t}} \frac{\partial F}{\partial \boldsymbol{u}_{n}} \frac{\partial \boldsymbol{u}_{n}}{\partial \boldsymbol{\mu}}+\sum_{n=1}^{N_{t}} \sum_{i=1}^{s} \frac{\partial F}{\partial \boldsymbol{k}_{n, i}} \frac{\partial \boldsymbol{k}_{n, i}}{\partial \boldsymbol{\mu}}
$$

However, the sensitivities, $\frac{\partial \boldsymbol{u}_{n}}{\partial \boldsymbol{\mu}}$ and $\frac{\partial \boldsymbol{k}_{n, i}}{\partial \boldsymbol{\mu}}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations

Adjoint method to efficiently compute gradients of QoI

Fully discrete output function i.e., either objective or a constraint

$$
F(\boldsymbol{\mu})=F\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right)
$$

Total derivative with respect to parameters $\boldsymbol{\mu}$

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\sum_{n=0}^{N_{t}} \frac{\partial F}{\partial \boldsymbol{u}_{n}} \frac{\partial \boldsymbol{u}_{n}}{\partial \boldsymbol{\mu}}+\sum_{n=1}^{N_{t}} \sum_{i=1}^{s} \frac{\partial F}{\partial \boldsymbol{k}_{n, i}} \frac{\partial \boldsymbol{k}_{n, i}}{\partial \boldsymbol{\mu}}
$$

However, the sensitivities, $\frac{\partial \boldsymbol{u}_{n}}{\partial \boldsymbol{\mu}}$ and $\frac{\partial \boldsymbol{k}_{n, i}}{\partial \boldsymbol{\mu}}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations

Adjoint method

Alternative method for computing $D F$ that does not require sensitivities

Dissection of fully discrete adjoint equations

- Linear evolution equations solved backward in time
- Primal state/stage, $\boldsymbol{u}_{n, i}$ required at each state/stage of dual problem
- Heavily dependent on chosen ouput

$$
\begin{aligned}
\boldsymbol{\lambda}_{N_{t}} & =\frac{\partial F^{T}}{\partial \boldsymbol{u}_{N_{t}}} \\
\boldsymbol{\lambda}_{n-1} & =\boldsymbol{\lambda}_{n}+{\frac{\partial F^{T}}{\partial \boldsymbol{u}_{n-1}}+\sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}\left(u_{n, i}, \boldsymbol{\mu}, t_{n-1}+c_{i} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n, i}}_{\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n, i}}=\frac{\partial F^{T}}{\partial \boldsymbol{u}_{N_{t}}}+b_{i} \boldsymbol{\lambda}_{n}+\sum_{j=i}^{s} a_{j i} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}\left(u_{n, j}, \boldsymbol{\mu}, t_{n-1}+c_{j} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n, j}
\end{aligned}
$$

Gradient reconstruction via dual variables

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\boldsymbol{\lambda}_{0}{ }^{T} \frac{\partial \boldsymbol{g}}{\partial \boldsymbol{\mu}}(\boldsymbol{\mu})+\sum_{n=1}^{N_{t}} \Delta t_{n} \sum_{i=1}^{s} \boldsymbol{\kappa}_{n, i}{ }^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}\left(\boldsymbol{u}_{n, i}, \boldsymbol{\mu}, t_{n, i}\right)
$$

[Zahr and Persson, 2016]
AME60714 - Advanced Numerical Methods

Energetically optimal flapping flight

Energetically optimal flapping in three dimensions

$$
\begin{aligned}
& \text { Energy }=1.4459 \mathrm{e}-01 \\
& \text { Thrust }=-1.1192 \mathrm{e}-01
\end{aligned}
$$

$$
\begin{aligned}
& \text { Energy }=3.1378 \mathrm{e}-01 \\
& \text { Thrust }=0.0000 \mathrm{e}+00
\end{aligned}
$$

In vivo medical imaging insufficient for many applications

- Detailed in vivo imaging of the human body using MRI holds great potential for scientific discovery and impact in health care
- Limited by a fundamental trade-off: resolution, image quality, scan time
- Resolution: $1-3 \mathrm{~mm}, 25-100 \mathrm{~ms}$ in $10-20$ minute scan
- Insufficient for many applications: involving infants, while exercising

Goal: visualize in vivo flow with high-resolution and accurately compute clinically relevant quantities from quick scans

Approach: determine CFD parameters (material properties, boundary conditions) such that the simulation matches MRI data using optimization

Simulation-based imaging (SBI) workflow

High-quality reconstruction with experimental data: pulsatile flow

CFD-based reconstruction from quick, low-resolution scan matches laser PIV measurements better than slow, high-resolution scan

Laser PIV validation of simulation-based flow reconstruction

Flow visualization (left) and quantitative comparison with experimental data shows excellent reconstruction accuracy (right)

In vivo test of simulation-based flow reconstruction

MRI voxel velocity data on 2D spatial slice at time instance

Patient-specific mesh of brain vessel network (Circle of Willis)

SBI reconstruction

PDE-constrained optimization: Virtually all expense emanates from primal, dual PDE solves

$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0
$$

PDE-constrained optimization: Virtually all expense emanates from primal, dual PDE solves

$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0
$$

PDE-constrained optimization: Virtually all expense emanates from primal, dual PDE solves

$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0
$$

PDE-constrained optimization: Virtually all expense emanates from primal, dual PDE solves

$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0
$$

PDE-constrained optimization: Virtually all expense emanates from primal, dual PDE solves

$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0
$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

[^1]
Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

Manage inexactness with trust region method

- Embedded in globally convergent trust region framework
- Error indicators ${ }^{2}$ to account for all sources of inexactness
- Refinement of approximation model using greedy algorithms

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}^{\prime}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}{\operatorname{minimize}} \quad m_{k}(\boldsymbol{\mu})
$$

[^2]
Trust region ingredients for global convergence

Approximation model

$$
m_{k}(\boldsymbol{\mu})
$$

Error indicator

$$
\left\|\nabla F(\boldsymbol{\mu})-\nabla m_{k}(\boldsymbol{\mu})\right\| \leq \xi \varphi_{k}(\boldsymbol{\mu}), \quad \xi>0
$$

Adaptivity

$$
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}
$$

Global convergence

$$
\liminf _{k \rightarrow \infty}\left\|\nabla F\left(\boldsymbol{\mu}_{k}\right)\right\|=0
$$

Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model m_{k} such that error indicator φ_{k} satisfies

$$
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}
$$

2: Step computation: Approximately solve the trust region subproblem

$$
\hat{\boldsymbol{\mu}}_{k}=\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\arg \min } m_{k}(\boldsymbol{\mu}) \quad \text { subject to } \quad\left\|\boldsymbol{\mu}-\boldsymbol{\mu}_{k}\right\| \leq \Delta_{k}
$$

3: Step acceptance: Compute actual-to-predicted reduction

$$
\rho_{k}=\frac{F\left(\boldsymbol{\mu}_{k}\right)-F\left(\hat{\boldsymbol{\mu}}_{k}\right)}{m_{k}\left(\boldsymbol{\mu}_{k}\right)-m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)}
$$

if $\quad \rho_{k} \geq \eta_{1} \quad$ then $\quad \boldsymbol{\mu}_{k+1}=\hat{\boldsymbol{\mu}}_{k} \quad$ else $\quad \boldsymbol{\mu}_{k+1}=\boldsymbol{\mu}_{k} \quad$ end if
4: Trust region update:

if	$\rho_{k} \leq \eta_{1}$	then	$\Delta_{k+1} \in\left(0, \gamma\left\\|\hat{\boldsymbol{\mu}}_{k}-\boldsymbol{\mu}_{k}\right\\|\right]$	end if
if	$\rho_{k} \in\left(\eta_{1}, \eta_{2}\right)$	then	$\Delta_{k+1} \in\left[\gamma\left\\|\hat{\boldsymbol{\mu}}_{k}-\boldsymbol{\mu}_{k}\right\\|, \Delta_{k}\right]$	end if
if	$\rho_{k} \geq \eta_{2}$	then	$\Delta_{k+1} \in\left[\Delta_{k}, \Delta_{\max }\right]$	end if

Source of inexactness/efficiency: projection-based model reduction

- Model reduction ansatz: state vector lies in low-dimensional subspace

$$
\boldsymbol{u} \approx \boldsymbol{\Phi} \boldsymbol{u}_{r}
$$

- $\boldsymbol{\Phi}=\left[\begin{array}{lll}\phi^{1} & \cdots & \phi^{k_{u}}\end{array}\right] \in \mathbb{R}^{n_{u} \times k_{u}}$ is the reduced (trial) basis $\left(n_{\boldsymbol{u}} \gg k_{u}\right)$
- $\boldsymbol{u}_{r} \in \mathbb{R}^{k_{u}}$ are the reduced coordinates of \boldsymbol{u}
- Substitute into $\boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu})=0$ and project onto columnspace of a test basis $\Phi \in \mathbb{R}^{n_{u} \times k_{u}}$ to obtain a square system

$$
\boldsymbol{\Phi}^{T} \boldsymbol{r}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}, \boldsymbol{\mu}\right)=0
$$

Connection to finite element method: hierarchical subspaces

- \mathcal{S} - infinite-dimensional trial space

Connection to finite element method: hierarchical subspaces

- \mathcal{S} - infinite-dimensional trial space
- \mathcal{S}_{h} - (large) finite-dimensional trial space

Connection to finite element method: hierarchical subspaces

\mathcal{S}

- \mathcal{S} - infinite-dimensional trial space
- \mathcal{S}_{h} - (large) finite-dimensional trial space
- \mathcal{S}_{h}^{k} - (small) finite-dimensional trial space
- $\mathcal{S}_{h}^{k} \subset \mathcal{S}_{h} \subset \mathcal{S}$

Few global, data-driven basis functions v. many local ones

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$
m_{k}(\boldsymbol{\mu})=\mathcal{J}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)
$$

Error indicators from residual-based error bounds

$$
\varphi_{k}(\boldsymbol{\mu})=\left\|\boldsymbol{r}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)\right\|_{\boldsymbol{\Theta}}+\left\|\boldsymbol{r}^{\boldsymbol{\lambda}}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\Phi}_{k} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)\right\|_{\Theta^{\boldsymbol{\lambda}}}
$$

Adaptivity to refine basis at trust region center

$$
\begin{gathered}
\boldsymbol{\Phi}_{k}=\left[\begin{array}{llll}
\boldsymbol{u}\left(\boldsymbol{\mu}_{k}\right) & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k}\right) & \operatorname{POD}\left(\boldsymbol{U}_{k}\right) & \operatorname{POD}\left(\boldsymbol{V}_{k}\right)
\end{array}\right] \\
\boldsymbol{U}_{k}=\left[\begin{array}{lll}
\boldsymbol{u}\left(\boldsymbol{\mu}_{0}\right) & \cdots & \boldsymbol{u}\left(\boldsymbol{\mu}_{k-1}\right)
\end{array}\right] \\
\boldsymbol{V}_{k}=\left[\begin{array}{llll}
\boldsymbol{\lambda}\left(\boldsymbol{\mu}_{0}\right) & \cdots & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k-1}\right)
\end{array}\right]
\end{gathered}
$$

Interpolation property of minimum-residual reduced-order models $\Longrightarrow \varphi_{k}\left(\boldsymbol{\mu}_{k}\right)=0$

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$
m_{k}(\boldsymbol{\mu})=\mathcal{J}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)
$$

Error indicators from residual-based error bounds

$$
\varphi_{k}(\boldsymbol{\mu})=\left\|\boldsymbol{r}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)\right\|_{\boldsymbol{\Theta}}+\left\|\boldsymbol{r}^{\boldsymbol{\lambda}}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}), \boldsymbol{\Phi}_{k} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}), \boldsymbol{\mu}\right)\right\|_{\Theta^{\boldsymbol{\lambda}}}
$$

Adaptivity to refine basis at trust region center

$$
\begin{gathered}
\boldsymbol{\Phi}_{k}=\left[\begin{array}{llll}
\boldsymbol{u}\left(\boldsymbol{\mu}_{k}\right) & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k}\right) & \operatorname{POD}\left(\boldsymbol{U}_{k}\right) & \operatorname{POD}\left(\boldsymbol{V}_{k}\right)
\end{array}\right] \\
\boldsymbol{U}_{k}=\left[\begin{array}{lll}
\boldsymbol{u}\left(\boldsymbol{\mu}_{0}\right) & \cdots & \boldsymbol{u}\left(\boldsymbol{\mu}_{k-1}\right)
\end{array}\right] \\
\boldsymbol{V}_{k}=\left[\begin{array}{llll}
\boldsymbol{\lambda}\left(\boldsymbol{\mu}_{0}\right) & \cdots & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k-1}\right)
\end{array}\right]
\end{gathered}
$$

Interpolation property of minimum-residual reduced-order models $\Longrightarrow \varphi_{k}\left(\boldsymbol{\mu}_{k}\right)=0$

$$
\liminf _{k \rightarrow \infty}\left\|\nabla \mathcal{J}\left(\boldsymbol{u}\left(\boldsymbol{\mu}_{k}\right), \boldsymbol{\mu}_{k}\right)\right\|=0
$$

Trust region framework for optimization with ROMs

Schematic

$$
\boldsymbol{\mu} \text {-space }
$$

Breakdown of Computational Effort

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Breakdown of Computational Effort

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Breakdown of Computational Effort

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Breakdown of Computational Effort

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Breakdown of Computational Effort

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Trust region framework for optimization with ROMs

Schematic

$\boldsymbol{\mu}$-space

Trust region framework for optimization with ROMs

Schematic

Breakdown of Computational Effort

Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

NACA0012: Initial

RAE2822: Target

Pressure field for airfoil configurations at $M_{\infty}=0.5, \alpha=0.0^{\circ}$

Proposed method: $4 \times$ fewer HDM queries

Shape optimization of aircraft in turbulent flow

- Flow: $M=0.85 \quad \alpha=2.32^{\circ} \quad R e=5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- Mesh: 11.5M nodes, 68M tetra, 69M DOF
- Shape: 4 parameters (length, sweep, dihedral, twist)

$$
\begin{array}{ll}
\underset{\boldsymbol{\mu} \in \mathbb{R}^{4}}{\operatorname{minimize}} & -L_{z}(\boldsymbol{\mu}) / L_{x}(\boldsymbol{\mu}) \\
\text { subject to } & L_{z}(\boldsymbol{\mu})=\bar{L}_{z}
\end{array}
$$

Optimized shape: reduction in 2.2 drag counts

Baseline (gray) and optimized shape (red) $-2 \times$ magnification

Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape - colored by C_{p}

Performance: ROM-TR method obtains same solution (to 4 digits of accuracy) as HDM-only optimization and only requires about 60% of the computation time.

Conclusion: Very promising results considering ROMs have notoriously poor prediction capabilities for problems with moving shocks/discontinuities.

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

- apply parameter-dependent domain mapping to align features

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

- apply parameter-dependent domain mapping to align features
- use linear subspace in reference domain to reduce dimension

Reduction of conservation laws with parametrized discontinuities

Fundamental issue: linear subspace approximation ill-suited for advection-dominated features (slowly decay Kolmogorov n-width)

Proposed solution:

- apply parameter-dependent domain mapping to align features
- use linear subspace in reference domain to reduce dimension
- push forward to physical domain

PDE-constrained optimization under uncertainty: Ensemble of

 primal, dual PDE solves required at every optimization iteration$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \quad \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0, \quad \forall \boldsymbol{\xi}
$$

PDE-constrained optimization under uncertainty: Ensemble of

 primal, dual PDE solves required at every optimization iteration$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \quad \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0, \quad \forall \boldsymbol{\xi}
$$

PDE-constrained optimization under uncertainty: Ensemble of

 primal, dual PDE solves required at every optimization iteration$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \quad \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0, \quad \forall \boldsymbol{\xi}
$$

PDE-constrained optimization under uncertainty: Ensemble of

 primal, dual PDE solves required at every optimization iteration$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \quad \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0, \quad \forall \boldsymbol{\xi}
$$

PDE-constrained optimization under uncertainty: Ensemble of

 primal, dual PDE solves required at every optimization iteration$$
\underset{\boldsymbol{u}, \boldsymbol{\mu}}{\operatorname{minimize}} \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \quad \text { subject to } \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0, \quad \forall \boldsymbol{\xi}
$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for inexact integration of risk measures
- Reduced-order models used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for inexact integration of risk measures
- Reduced-order models used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for inexact integration of risk measures
- Reduced-order models used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Anisotropic sparse grids used for inexact integration of risk measures
- Reduced-order models used for inexact PDE evaluations

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\mu \in \mathbb{R}^{n} \mu}{\operatorname{minimize}} m(\boldsymbol{\mu})
$$

First source of inexactness: anisotropic sparse grids

Stochastic collocation using anisotropic sparse grid nodes to approximate integral with summation

$$
\begin{array}{ll}
\underset{\boldsymbol{u} \in \mathbb{R}^{n} \boldsymbol{u}, \boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}{\operatorname{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \\
\text { subject to } & \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \\
& \Downarrow \\
\operatorname{minin}_{\boldsymbol{u} \in \mathbb{R}^{n} \boldsymbol{u}, \boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}^{\operatorname{mimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \\
\text { subject to } & \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}}
\end{array}
$$

[Kouri et al., 2013, Kouri et al., 2014]

Two sources of inexactness

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation

$$
\begin{aligned}
& \underset{u \in \mathbb{R}^{n_{u}}, \boldsymbol{\mu} \in \mathbb{R}^{n_{\mu}}}{\operatorname{minimize}^{\sin }} \\
& \text { subject to } \\
& \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \\
& \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \\
& \Downarrow \\
& \underset{u \in \mathbb{R}^{n} \boldsymbol{u}, \mu \in \mathbb{R}^{n^{\mu}}}{\operatorname{minimize}} \\
& \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}, \cdot)] \\
& \text { subject to } \\
& \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi})=0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \\
& \Downarrow
\end{aligned}
$$

$\begin{array}{ll}\underset{\boldsymbol{u}_{r} \in \mathbb{R}^{k} \boldsymbol{u}, \boldsymbol{\mu} \in \mathbb{R}^{n_{\mu}}}{\operatorname{minimize}} & \mathbb{E}_{\mathcal{I}}\left[\mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}, \boldsymbol{\mu}, \cdot\right)\right] \\ \text { subject to } & \boldsymbol{\Phi}^{T} \boldsymbol{r}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}, \boldsymbol{\mu}, \boldsymbol{\xi}\right)=0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}}\end{array}$

Optimal control of steady Burgers' equation

- Optimization problem:

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}{\operatorname{minimize}} \int_{\boldsymbol{\Xi}} \rho(\boldsymbol{\xi})\left[\int_{0}^{1} \frac{1}{2}(u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)-\bar{u}(x))^{2} d x+\frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, x)^{2} d x\right] d \boldsymbol{\xi}
$$

where $u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)$ solves

$$
\begin{array}{r}
-\nu(\boldsymbol{\xi}) \partial_{x x} u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)+u(\boldsymbol{\mu}, \boldsymbol{\xi}, x) \partial_{x} u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)=z(\boldsymbol{\mu}, x) \quad x \in(0,1), \quad \boldsymbol{\xi} \in \boldsymbol{\Xi} \\
u(\boldsymbol{\mu}, \boldsymbol{\xi}, 0)=d_{0}(\boldsymbol{\xi}) \quad u(\boldsymbol{\mu}, \boldsymbol{\xi}, 1)=d_{1}(\boldsymbol{\xi})
\end{array}
$$

- Target state: $\bar{u}(x) \equiv 1$
- Stochastic Space: $\boldsymbol{\Xi}=[-1,1]^{3}, \rho(\boldsymbol{\xi}) d \boldsymbol{\xi}=2^{-3} d \boldsymbol{\xi}$

$$
\nu(\boldsymbol{\xi})=10^{\xi_{1}-2} \quad d_{0}(\boldsymbol{\xi})=1+\frac{\boldsymbol{\xi}_{2}}{1000} \quad d_{1}(\boldsymbol{\xi})=\frac{\boldsymbol{\xi}_{3}}{1000}
$$

- Parametrization: $z(\boldsymbol{\mu}, x)$ - cubic splines with 51 knots, $n_{\boldsymbol{\mu}}=53$

Optimal control and statistics

Optimal control and corresponding mean state (-) \pm one (---) and two (…...) standard deviations

Global convergence without pointwise agreement

$F\left(\boldsymbol{\mu}_{k}\right)$	$m_{k}\left(\boldsymbol{\mu}_{k}\right)$	$F\left(\hat{\boldsymbol{\mu}}_{k}\right)$	$m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)$	$\left\\|\nabla F\left(\boldsymbol{\mu}_{k}\right)\right\\|$	ρ_{k}	Success?
$6.6506 \mathrm{e}-02$	$7.2694 \mathrm{e}-02$	$5.3655 \mathrm{e}-02$	$5.9922 \mathrm{e}-02$	$2.2959 \mathrm{e}-02$	$1.0257 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$
$5.3655 \mathrm{e}-02$	$5.9593 \mathrm{e}-02$	$5.0783 \mathrm{e}-02$	$5.7152 \mathrm{e}-02$	$2.3424 \mathrm{e}-03$	$9.7512 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$5.0783 \mathrm{e}-02$	$5.0670 \mathrm{e}-02$	$5.0412 \mathrm{e}-02$	$5.0292 \mathrm{e}-02$	$1.9724 \mathrm{e}-03$	$9.8351 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$5.0412 \mathrm{e}-02$	$5.0292 \mathrm{e}-02$	$5.0405 \mathrm{e}-02$	$5.0284 \mathrm{e}-02$	$9.2654 \mathrm{e}-05$	$8.7479 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$5.0405 \mathrm{e}-02$	$5.0404 \mathrm{e}-02$	$5.0403 \mathrm{e}-02$	$5.0401 \mathrm{e}-02$	$8.3139 \mathrm{e}-05$	$9.9946 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$5.0403 \mathrm{e}-02$	$5.0401 \mathrm{e}-02$	-	-	$2.2846 \mathrm{e}-06$	-	-

Convergence history of trust region method built on two-level approximation

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDMCost $=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})$

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (), and proposed ROM/SG for $\tau=1(\quad), \tau=10(\quad), \tau=100(\quad), \tau=\infty(\quad)$

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDMCost $=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})$

5-level isotropic SG (-), dimension-adaptive SG [Kouri et al., 2014] (- -), and proposed ROM/SG for $\tau=1(\quad), \tau=10(\quad), \tau=100(\quad), \tau=\infty(\quad)$

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDMCost $=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})$

5-level isotropic SG (-), dimension-adaptive SG [Kouri et al., 2014] (- -), and proposed ROM/SG for $\tau=1\left(_\right), \tau=10(\quad), \tau=100(\quad), \tau=\infty(\quad)$

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDMCost $=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})$

5-level isotropic SG (-), dimension-adaptive SG [Kouri et al., 2014] (- -), and proposed ROM/SG for $\tau=1\left(_\right), \tau=10(-\Delta), \tau=100(\quad), \tau=\infty(\quad)$

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDM$$
\text { Cost }=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})
$$

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (-) , and proposed ROM/SG for $\tau=1(\backsim-), \tau=10\left(-_\right), \tau=100\left(_\right), \tau=\infty(\quad)$

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster

 than HDM$$
\text { Cost }=\mathrm{nHdmPrim}+0.5 \times \mathrm{nHdmAdj}+\tau^{-1} \times(\mathrm{nRomPrim}+0.5 \times \mathrm{nRomAdj})
$$

5-level isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (- -), and proposed ROM/SG for $\tau=1\left(_\right), \tau=10(\backsim-), \tau=100\left(_\right), \tau=\infty\left(_\right)$

High- and reduced-order methods for PDE optimization

- Developed fully discrete adjoint method for high-order numerical discretizations of PDEs and QoIs
- Treatment of parametrized time domain (optimal frequency)
- Explicit enforcement of time-periodicity constraints
- Extension to multiphysics (fluid-structure interaction, particle-laden flow, ...)
- Acceleration via rigorous multi-fidelity framework that uses reduced-order models, partially converged solutions, and sparse grids
- Applications: optimal flapping flight, energy harvesting, data assimilation

Acknowledgments

- DOE Grant DE-AC02-05CH1123 (Alvarez fellowship)
- AFOSR Grant FA9550-20-1-0236 (F. Fahroo)

Tianshu Wen (ND)
ROM/TR optimization

Marzieh Mirhoseini
ROM for convection-dominated

References i

Barter, G. E. (2008).
Shock capturing with PDE-based artificial viscosity for an adaptive, higher-order discontinuous Galerkin finite element method.

PhD thesis, M.I.T.

囯 Huang, D. Z., Persson, P.-O., and Zahr, M. J. (2018).
High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes.
Computer Methods in Applied Mechanics and Engineering, 346:674-706.
囯 Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2013).

A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty.
SIAM Journal on Scientific Computing, 35(4):A1847-A1879.

References ii

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2014).

Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.
SIAM Journal on Scientific Computing, 36(6):A3011-A3029.
囯 Wang, J., Zahr, M. J., and Persson, P.-O. (6/5/2017-6/9/2017).
Energetically optimal flapping flight based on a fully discrete adjoint method with explicit treatment of flapping frequency.
In Proc. of the 23rd AIAA Computational Fluid Dynamics Conference,
Denver, Colorado. American Institute of Aeronautics and Astronautics.
Rahr, M. J. and Persson, P.-O. (1/8/2018-1/12/2018b).
An optimization-based discontinuous Galerkin approach for high-order accurate shock tracking.
In Proc. of the AIAA Science and Technology Forum and Exposition (SciTech2018), Kissimmee, Florida. American Institute of Aeronautics and Astronautics.

References iii

圊 Zahr，M．J．and Persson，P．－O．（2016）．
An adjoint method for a high－order discretization of deforming domain conservation laws for optimization of flow problems．
Journal of Computational Physics，326（Supplement C）：516－543．
囦 Zahr，M．J．and Persson，P．－O．（2018a）．
An optimization－based approach for high－order accurate discretization of conservation laws with discontinuous solutions． Journal of Computational Physics，365：105－134．
國 Zahr，M．J．，Persson，P．－O．，and Wilkening，J．（2016）．
A fully discrete adjoint method for optimization of flow problems on deforming domains with time－periodicity constraints．
Computers ${ }^{63}$ Fluids，139：130－147．

SQP solver: regularization matrix D

The mesh regularization matrix \boldsymbol{D} is taken as the stiffness matrix of the linear elliptic PDE

$$
\nabla \cdot\left(k \nabla v_{i}\right)=0 \quad \text { in } \Omega
$$

for $i=1, \ldots, d$. The coefficient is constant over each element and inversely proportional to the element volume

$$
k(x)=\frac{\min _{K^{\prime} \in \mathcal{E}_{h, q}}\left|K^{\prime}\right|}{|K|}, \quad x \in K
$$

for each element K in the mesh: critical to maintain well-conditioned search directions for meshes where element size varies significantly.

SQP solver: step length $\left(\alpha_{k}\right)$

The step length, $\alpha_{k} \in(0,1]$, is selected using a backtracking line search to ensure sufficient decrease of a merit function $\varphi_{k}: \mathbb{R} \rightarrow \mathbb{R}$

$$
\varphi_{k}\left(\alpha_{k}\right) \leq \varphi_{k}(0)+c \alpha_{k} \varphi_{k}^{\prime}(0), \quad c \in(0,1) .
$$

We use the ℓ_{1} merit function

$$
\varphi_{k}(\alpha):=f\left(\boldsymbol{z}_{k}+\alpha \Delta \boldsymbol{z}_{k}\right)+\mu\left\|\boldsymbol{r}\left(\boldsymbol{z}_{k}+\alpha \Delta \boldsymbol{z}_{k}\right)\right\|_{1}
$$

where $\mu>\left\|\hat{\boldsymbol{\lambda}}\left(\boldsymbol{z}_{k}\right)\right\|_{\infty}$ because it is "exact", i.e., any minimizer of the original optimization problem is a minimizer of φ_{k}.

SQP solver: termination criteria

The termination criteria for the solver is based on the Karush-Kuhn-Tucker (KKT) conditions: \boldsymbol{z}^{\star} is a solution if there exist Lagrange multipliers $\boldsymbol{\lambda}^{\star}$ such that

$$
\nabla_{u} \mathcal{L}\left(z^{\star}, \lambda^{\star}\right)=0, \quad \nabla_{\boldsymbol{x}} \mathcal{L}\left(z^{\star}, \lambda^{\star}\right)=0, \quad r\left(z^{\star}\right)=0
$$

Our choice for the Lagrange multiplier estimate $\hat{\boldsymbol{\lambda}}(\boldsymbol{z})$ ensure

$$
\nabla_{u} \mathcal{L}(z, \hat{\boldsymbol{\lambda}}(\boldsymbol{z}))=\mathbf{0}
$$

and therefore termination is based on the remaining KKT conditions

$$
\left\|\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{z}, \hat{\boldsymbol{\lambda}}(\boldsymbol{z}))\right\|<\epsilon_{1}, \quad\|\boldsymbol{r}(\boldsymbol{z})\|<\epsilon_{2}
$$

where $\epsilon_{1}, \epsilon_{2}>0$ are convergence tolerances.

Burgers' equation, accelerating shock: h convergence

Convergence of solution error $\left(E_{u}\right)$ along line $x=0.8$ and shock surface error $\left(E_{\Gamma}\right)$

p	q	$\left\|\mathcal{E}_{h}\right\|$	h	E_{u}	$m\left(E_{u}\right)$	E_{Γ}	$m\left(E_{\Gamma}\right)$	
1	1	38	$1.45 \mathrm{e}-01$	$2.72 \mathrm{e}-02$	-	$2.32 \mathrm{e}-03$	-	
1	1	152	$7.25 \mathrm{e}-02$	$7.18 \mathrm{e}-03$	1.92	$1.09 \mathrm{e}-03$	1.09	
1	1	598	$3.66 \mathrm{e}-02$	$1.91 \mathrm{e}-03$	1.93	$1.93 \mathrm{e}-04$	2.53	
1	1	2392	$1.83 \mathrm{e}-02$	$4.69 \mathrm{e}-04$	2.03	$3.92 \mathrm{e}-05$	2.30	
2	2	38	$1.45 \mathrm{e}-01$	$5.68 \mathrm{e}-03$	-	$4.83 \mathrm{e}-05$	-	
2	2	152	$7.25 \mathrm{e}-02$	$9.64 \mathrm{e}-05$	5.88	$2.70 \mathrm{e}-07$	7.48	
2	2	608	$3.63 \mathrm{e}-02$	$6.36 \mathrm{e}-06$	3.92	$1.20 \mathrm{e}-08$	4.49	
2	2	2432	$1.81 \mathrm{e}-02$	$8.66 \mathrm{e}-07$	2.88	$7.70 \mathrm{e}-10$	3.96	
3	3	32	$1.58 \mathrm{e}-01$	$1.57 \mathrm{e}-03$	-	$2.06 \mathrm{e}-05$	-	
3	3	128	$7.91 \mathrm{e}-02$	$1.62 \mathrm{e}-05$	6.60	$3.37 \mathrm{e}-07$	5.93	
3	3	512	$3.95 \mathrm{e}-02$	$4.37 \mathrm{e}-07$	5.21	$5.90 \mathrm{e}-09$	5.84	
3	3	2040	$1.98 \mathrm{e}-02$	$3.31 \mathrm{e}-08$	3.73	$1.87 \mathrm{e}-10$	5.00	

Observation: Optimal convergence rates $\left(\mathcal{O}\left(h^{p+1}\right)\right)$ obtained for solution error; faster rates obtained for shock surface.

Burgers' equation, shock formation and intersection (space-time)

$$
p=q=3
$$

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

Burgers' equation, shock formation and intersection (time slices)

Observation: Triple point where shocks merge is tracked. Insufficient resolution to fully capture shock formation; approximate with discontinuity.

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Material inversion: find inclusions from acoustic, structural measurements Source inversion: find source of contaminant from downstream measurements

Full waveform inversion: estimate subsurface of crust from acoustic measurements

High-order discretization of PDE-constrained optimization

- Continuous PDE-constrained optimization problem

$$
\begin{array}{ll}
\underset{\boldsymbol{U}, \boldsymbol{\mu}}{\operatorname{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\
\text { subject to } & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\
& \frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U})=0 \text { in } v(\boldsymbol{\mu}, t)
\end{array}
$$

- Fully discrete PDE-constrained optimization problem

$$
\begin{array}{ll}
\underset{\substack{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t} \in \mathbb{R}^{N u},}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s} \in \mathbb{R}^{N \boldsymbol{u}}, \boldsymbol{\mu} \in \mathbb{R}^{n \boldsymbol{\mu}}}}{\operatorname{minimize}} & J\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right) \\
\text { subject to } & \mathbf{C}\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right) \leq 0 \\
& \boldsymbol{u}_{0}-\boldsymbol{g}(\boldsymbol{\mu})=0 \\
& \boldsymbol{u}_{n}-\boldsymbol{u}_{n-1}-\sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n, i}=0 \\
& \boldsymbol{M} \boldsymbol{k}_{n, i}-\Delta t_{n} \boldsymbol{r}\left(\boldsymbol{u}_{n, i}, \boldsymbol{\mu}, t_{n, i}\right)=0
\end{array}
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

The total derivative of \boldsymbol{r} leads to the sensitivity equations

$$
D r=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}+\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=0 \Longrightarrow \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=-\frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

The total derivative of \boldsymbol{r} leads to the sensitivity equations

$$
D r=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}+\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=0 \Longrightarrow \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=-\frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

The total derivative of F

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

The total derivative of \boldsymbol{r} leads to the sensitivity equations

$$
D r=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}+\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=0 \Longrightarrow \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=-\frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

The total derivative of F

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=\frac{\partial F}{\partial \boldsymbol{\mu}}-\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

The total derivative of \boldsymbol{r} leads to the sensitivity equations

$$
D r=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}+\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=0 \Longrightarrow \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=-\frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

The total derivative of F

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=\frac{\partial F}{\partial \boldsymbol{\mu}}-\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}=\frac{\partial F}{\partial \boldsymbol{\mu}}-\boldsymbol{\lambda}^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Discrete adjoint equations can be derived from an algebraic manipulation to save computations

Let $\boldsymbol{u}(\boldsymbol{\mu})$ be the solution of $\boldsymbol{r}(\cdot, \boldsymbol{\mu})=0$

$$
\boldsymbol{r}(\boldsymbol{\mu})=\boldsymbol{r}(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})=0, \quad F(\boldsymbol{\mu})=F(\boldsymbol{u}(\boldsymbol{\mu}), \boldsymbol{\mu})
$$

The total derivative of \boldsymbol{r} leads to the sensitivity equations

$$
D r=\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}+\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=0 \Longrightarrow \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=-\frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

The total derivative of F

$$
D F=\frac{\partial F}{\partial \boldsymbol{\mu}}+\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}=\frac{\partial F}{\partial \boldsymbol{\mu}}-\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}=\frac{\partial F}{\partial \boldsymbol{\mu}}-\boldsymbol{\lambda}^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Algebraic equations leads to adjoint equations

$$
{\frac{\partial \boldsymbol{r}^{T}}{\partial \boldsymbol{u}}}^{\boldsymbol{\lambda}}=\frac{\partial F^{T}}{\partial \boldsymbol{u}}
$$

$$
\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}^{-1}}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Sensitivity vs. adjoint method to compute gradient of F

$$
\frac{\partial F}{\partial \boldsymbol{u}}{\frac{\partial \boldsymbol{r}}{}{ }^{-1}}^{\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}}
$$

Sensitivity method requires n_{μ} linear solves and $n_{F} n_{\mu}$ inner products $\left(\mathbb{R}^{n_{u}}\right)$

Sensitivity vs. adjoint method to compute gradient of F

$$
\frac{\partial F}{\partial \boldsymbol{u}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}
$$

Sensitivity method requires n_{μ} linear solves and $n_{F} n_{\mu}$ inner products $\left(\mathbb{R}^{n_{u}}\right)$

Sensitivity vs. adjoint method to compute gradient of F

$$
\frac{\partial F}{\partial \boldsymbol{u}}{\frac{\partial \boldsymbol{r}}{} \boldsymbol{u}^{-1}}^{\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}}
$$

Sensitivity method requires n_{μ} linear solves and $n_{F} n_{\mu}$ inner products ($\mathbb{R}^{n_{u}}$)
Adjoint method requires n_{F} linear solves and $n_{F} n_{\mu}$ inner products ($\mathbb{R}^{n_{u}}$)

Adjoint equation derivation: outline

- Define auxiliary PDE-constrained optimization problem

$$
\begin{array}{ll}
\underset{\substack{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}} \in \mathbb{R}^{N_{u}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s} \in \mathbb{R}^{N_{u}}}}{\operatorname{minimid}} & F\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t}, s}, \boldsymbol{\mu}\right) \\
\text { subject to } & \boldsymbol{R}_{0}=\boldsymbol{u}_{0}-\boldsymbol{g}(\boldsymbol{\mu})=0 \\
& \boldsymbol{R}_{n}=\boldsymbol{u}_{n}-\boldsymbol{u}_{n-1}-\sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n, i}=0 \\
& \boldsymbol{R}_{n, i}=\boldsymbol{M} \boldsymbol{k}_{n, i}-\Delta t_{n} \boldsymbol{r}\left(\boldsymbol{u}_{n, i}, \boldsymbol{\mu}, t_{n, i}\right)=0
\end{array}
$$

- Define Lagrangian

$$
\mathcal{L}\left(\boldsymbol{u}_{n}, \boldsymbol{k}_{n, i}, \boldsymbol{\lambda}_{n}, \boldsymbol{\kappa}_{n, i}\right)=F-\boldsymbol{\lambda}_{0}^{T} \boldsymbol{R}_{0}-\sum_{n=1}^{N_{t}} \boldsymbol{\lambda}_{n}^{T} \boldsymbol{R}_{n}-\sum_{n=1}^{N_{t}} \sum_{i=1}^{s} \boldsymbol{\kappa}_{n, i}^{T} \boldsymbol{R}_{n, i}
$$

- The solution of the optimization problem is given by the Karush-Kuhn-Tucker (KKT) sytem

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_{n}}=0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{k}_{n, i}}=0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}_{n}}=0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\kappa}_{n, i}}=0
$$

Extension: constraint requiring time-periodicity [Zahr et al., 2016]

Optimization of cyclic problems requires finding time-periodic solution of PDE; necessary for physical relevance and avoid transients that may lead to crash

$$
\begin{array}{llrl}
\underset{\boldsymbol{U}, \boldsymbol{\mu}}{\operatorname{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\
\text { subject to } & \boldsymbol{U}(\boldsymbol{x}, 0)=\boldsymbol{U}(\boldsymbol{x}, T) \\
& \frac{\partial \boldsymbol{U}}{\partial t}+\nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U})=0 & \boldsymbol{\lambda}_{N_{t}} & =\boldsymbol{\lambda}_{0}+{\frac{\partial F}{}{ }^{2 \boldsymbol{u}_{N_{t}}}}^{T} \\
\boldsymbol{\lambda}_{n-1} & =\boldsymbol{\lambda}_{n}+{\frac{\partial F^{T}}{\partial \boldsymbol{u}_{n-1}}}^{T}+\sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}_{n, i}^{T}}{\partial \boldsymbol{u}} \boldsymbol{\kappa}_{n, i} \\
\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n, i} & ={\frac{\partial F^{T}}{\partial \boldsymbol{u}_{N_{t}}}{ }^{T}+b_{i} \boldsymbol{\lambda}_{n}+\sum_{j=i}^{s} a_{j i} \Delta t_{n} \frac{\partial \boldsymbol{r}_{n, i}^{T}}{\partial \boldsymbol{u}} \boldsymbol{\kappa}_{n, j}}
\end{array}
$$

Time history of power on airfoil of flow initialized from steady-state (-) and from a time-periodic solution $(-$)

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$
T(\boldsymbol{\mu})=N_{t} \Delta t \Longrightarrow N_{t}=N_{t}(\boldsymbol{\mu}) \text { or } \Delta t=\Delta t(\boldsymbol{\mu})
$$

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$
T(\boldsymbol{\mu})=N_{t} \Delta t \Longrightarrow N_{t}=N_{t}(\boldsymbol{\mu}) \text { or } \Delta t=\Delta t(\boldsymbol{\mu})
$$

Choose $\Delta t=\Delta t(\boldsymbol{\mu})$ to avoid discrete changes

Extension: Parametrized time domain [Wang et al., 2017]

Parametrization of time domain, e.g., flapping frequency, leads to parametrization of time discretization in fully discrete setting

$$
T(\boldsymbol{\mu})=N_{t} \Delta t \Longrightarrow N_{t}=N_{t}(\boldsymbol{\mu}) \text { or } \Delta t=\Delta t(\boldsymbol{\mu})
$$

Choose $\Delta t=\Delta t(\boldsymbol{\mu})$ to avoid discrete changes
Does not change adjoint equations themselves, only reconstruction of gradient from adjoint solution

Energetically optimal flapping vs. required thrust

Energy $=1.8445$
Thrust $=0.06729$

Energy $=0.21934$
Thrust $=0.0000$

$$
\begin{aligned}
& \text { Optimal } \\
& T_{x}=0
\end{aligned}
$$

Energy $=6.2869$
Thrust $=2.5000$

Initial Guess

Optimal
$T_{x}=2.5$

Energetically optimal flapping vs. required thrust: QoI

The optimal flapping energy $\left(W^{*}\right)$, frequency $\left(f^{*}\right)$, maximum heaving amplitude ($y_{\text {max }}^{*}$), and maximum pitching amplitude $\left(\theta_{\max }^{*}\right)$ as a function of the thrust constraint \bar{T}_{x}.

High-resolution in vivo images through optimization

Goal: visualize in vivo flow with high-resolution and accurately compute clinically relevant quantities from quick scans

Experimental setup

Noisy, low-resolution MRI data

Approach: determine CFD parameters (material properties, boundary conditions) such that the simulation matches MRI data using optimization

Simulation-based imaging (SBI) workflow

MRI optimization formulation that respects scanner physics

$$
\underset{\mu}{\operatorname{minimize}} \sum_{i=1}^{n_{x y z}} \sum_{n=1}^{n_{t}} \frac{\alpha_{i, n}}{2}\left\|\boldsymbol{d}_{i, n}(\boldsymbol{U}(\boldsymbol{\mu}))-\boldsymbol{d}_{i, n}^{*}\right\|_{2}^{2}
$$

$\boldsymbol{d}_{i, n}^{*}$: MRI measurement taken in voxel i at the nth time sample $\boldsymbol{d}_{i, n}(\boldsymbol{U})$: computational representation of $\boldsymbol{d}_{i, n}^{*}$

$$
\begin{aligned}
\boldsymbol{d}_{i, n}(\boldsymbol{U}, \boldsymbol{\mu}) & =\int_{0}^{T} \int_{V} w_{i, n}(\boldsymbol{x}, t) \cdot \boldsymbol{U}(\boldsymbol{x}, t) d V d t \\
w_{i, n}(\boldsymbol{x}, t) & =\chi_{s}\left(\boldsymbol{x} ; \boldsymbol{x}_{i}, \Delta \boldsymbol{x}\right) \chi_{t}\left(t ; t_{n}, \Delta t\right) \\
\chi_{t}(s ; c, w) & =\frac{1}{1+e^{-(s-(c-0.5 w)) / \sigma}}-\frac{1}{1+e^{-(s-(c+0.5 w)) / \sigma}} \\
\chi_{s}(\boldsymbol{x} ; \boldsymbol{c}, \boldsymbol{w}) & =\chi_{t}\left(x_{1} ; c_{1}, w_{1}\right) \chi_{t}\left(x_{2} ; c_{2}, w_{2}\right) \chi_{t}\left(x_{3} ; c_{3}, w_{3}\right)
\end{aligned}
$$

\boldsymbol{x}_{i} center of i th MRI voxel, $\Delta \boldsymbol{x}$ size of MRI voxel
t_{n} time instance of nth MRI sample, Δt sampling interval in time

Quantitative comparison of 4D flow and SBI reconstruction

The reconstructed flow field (----) provides better agreement to accurate velocity measurements (-) on a 2D section than the 4D flow MRI measurements (---)

Quantitative comparison of 4D flow and SBI reconstruction

The reconstructed flow field (----) provides better agreement to accurate velocity measurements (-) on a 2D section than the 4D flow MRI measurements (---)

Quantitative comparison of 4D flow and SBI reconstruction

The reconstructed flow field (----) provides better agreement to accurate velocity measurements (-) on a 2D section than the 4D flow MRI measurements (---)

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena, no changes required if monolithic system considered

$$
\begin{aligned}
& \boldsymbol{M}_{0} \dot{\boldsymbol{u}}_{0}=\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{c}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right) \\
& \boldsymbol{M}_{1} \dot{\boldsymbol{u}}_{1}=\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{c}_{1}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)
\end{aligned}
$$

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena, no changes required if monolithic system considered

$$
\begin{aligned}
& \boldsymbol{M}_{0} \dot{\boldsymbol{u}}_{0}=\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{c}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right) \\
& \boldsymbol{M}_{1} \dot{\boldsymbol{u}}_{1}=\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{c}_{1}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)
\end{aligned}
$$

However, to solve in partitioned manner and achieve high-order, split as follows and apply implicit-explicit Runge-Kutta

$$
\begin{aligned}
& \boldsymbol{M}_{0} \dot{\boldsymbol{u}}_{0}=\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \tilde{\boldsymbol{c}}_{0}\right)+\left(\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{c}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)-\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \tilde{\boldsymbol{c}}_{0}\right)\right) \\
& \boldsymbol{M}_{1} \dot{\boldsymbol{u}}_{1}=\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \tilde{\boldsymbol{c}}_{1}\right)+\left(\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{c}_{1}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)-\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \tilde{\boldsymbol{c}}_{1}\right)\right)
\end{aligned}
$$

Extension: Multiphysics problems [Huang et al., 2018]

For problems that involve the interaction of multiple types of physical phenomena, no changes required if monolithic system considered

$$
\begin{aligned}
& \boldsymbol{M}_{0} \dot{\boldsymbol{u}}_{0}=\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{c}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right) \\
& \boldsymbol{M}_{1} \dot{\boldsymbol{u}}_{1}=\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{c}_{1}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)
\end{aligned}
$$

However, to solve in partitioned manner and achieve high-order, split as follows and apply implicit-explicit Runge-Kutta

$$
\begin{aligned}
& \boldsymbol{M}_{0} \dot{\boldsymbol{u}}_{0}=\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \tilde{\boldsymbol{c}}_{0}\right)+\left(\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{c}_{0}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)-\boldsymbol{r}_{0}\left(\boldsymbol{u}_{0}, \tilde{\boldsymbol{c}}_{0}\right)\right) \\
& \boldsymbol{M}_{1} \dot{\boldsymbol{u}}_{1}=\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \tilde{\boldsymbol{c}}_{1}\right)+\left(\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{c}_{1}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)\right)-\boldsymbol{r}_{1}\left(\boldsymbol{u}_{1}, \tilde{\boldsymbol{c}}_{1}\right)\right)
\end{aligned}
$$

Adjoint equations inherit explicit-implicit structure

High-order method for general multiphysics problems with unconditional linear stability

Fluid-structure interaction

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

$$
\underset{\mu}{\operatorname{maximize}} \frac{1}{T} \int_{0}^{T}\left(c \dot{h}^{2}\left(\boldsymbol{u}^{s}\right)-M_{z}\left(\boldsymbol{u}^{f}\right) \dot{\theta}(\boldsymbol{\mu}, t)\right) d t
$$

- Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
- Structure: Force balance in y-direction between foil and damper
- Motion driven by imposed $\theta(\boldsymbol{\mu}, t)=\mu_{1} \cos (2 \pi f t)$

$$
\mu_{1}^{*} \approx 45^{\circ}
$$

Proposed method: recovers target airfoil

At the cost of ROM queries

Source of inexactness: anisotropic sparse grids

Index set ($\mathcal{I})-\bullet$

Index set

Neighbors $(\mathcal{N}(\mathcal{I}))-\bullet$

Source of inexactness: anisotropic sparse grids

Index set (I) - •

Index set

Neighbors $(\mathcal{N}(\mathcal{I}))-\bullet$

Trust region ingredients for global convergence

$$
\underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n} \boldsymbol{\mu}}{\operatorname{minimize}} \quad m_{k}(\boldsymbol{\mu})
$$

Approximation models

$$
m_{k}(\boldsymbol{\mu}), \psi_{k}(\boldsymbol{\mu})
$$

Error indicators

$$
\begin{aligned}
\left\|\nabla F(\boldsymbol{\mu})-\nabla m_{k}(\boldsymbol{\mu})\right\| & \leq \xi \varphi_{k}(\boldsymbol{\mu}) & & \xi>0 \\
\left|F\left(\boldsymbol{\mu}_{k}\right)-F(\boldsymbol{\mu})+\psi_{k}(\boldsymbol{\mu})-\psi_{k}\left(\boldsymbol{\mu}_{k}\right)\right| & \leq \sigma \theta_{k}(\boldsymbol{\mu}) & & \sigma>0
\end{aligned}
$$

Adaptivity

$$
\begin{aligned}
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) & \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\} \\
\theta_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)^{\omega} & \leq \eta \min \left\{m_{k}\left(\boldsymbol{\mu}_{k}\right)-m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right), r_{k}\right\}
\end{aligned}
$$

Trust region method with inexact gradients and objective

1: Model update: Choose model m_{k} and error indicator φ_{k}

$$
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}
$$

2: Step computation: Approximately solve the trust region subproblem

$$
\hat{\boldsymbol{\mu}}_{k}=\underset{\mu \in \mathbb{R}^{n} \boldsymbol{\mu}}{\arg \min } m_{k}(\boldsymbol{\mu}) \quad \text { subject to } \quad\left\|\boldsymbol{\mu}-\boldsymbol{\mu}_{k}\right\| \leq \Delta_{k}
$$

3: Step acceptance: Compute approximation of actual-to-predicted reduction

$$
\rho_{k}=\frac{\psi_{k}\left(\boldsymbol{\mu}_{k}\right)-\psi_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)}{m_{k}\left(\boldsymbol{\mu}_{k}\right)-m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)}
$$

if $\quad \rho_{k} \geq \eta_{1} \quad$ then $\quad \boldsymbol{\mu}_{k+1}=\hat{\boldsymbol{\mu}}_{k} \quad$ else $\quad \boldsymbol{\mu}_{k+1}=\boldsymbol{\mu}_{k} \quad$ end if
4: Trust region update:

if	$\rho_{k} \leq \eta_{1}$	then	$\left.\Delta_{k+1} \in\left(0, \gamma\left\\|\hat{\boldsymbol{\mu}}_{k}-\boldsymbol{\mu}_{k}\right\\|\right)\right]$	end if
if	$\rho_{k} \in\left(\eta_{1}, \eta_{2}\right)$	then	$\Delta_{k+1} \in\left[\gamma\left\\|\hat{\boldsymbol{\mu}}_{k}-\boldsymbol{\mu}_{k}\right\\|, \Delta_{k}\right]$	end if
if	$\rho_{k} \geq \eta_{2}$	then	$\Delta_{k+1} \in\left[\Delta_{k}, \Delta_{\max }\right]$	end if

Trust region ingredients for global convergence

Approximation models

$$
m_{k}(\boldsymbol{\mu}), \psi_{k}(\boldsymbol{\mu})
$$

Error indicators

$$
\begin{aligned}
\left\|\nabla F(\boldsymbol{\mu})-\nabla m_{k}(\boldsymbol{\mu})\right\| & \leq \xi \varphi_{k}(\boldsymbol{\mu}) & & \xi>0 \\
\left|F\left(\boldsymbol{\mu}_{k}\right)-F(\boldsymbol{\mu})+\psi_{k}(\boldsymbol{\mu})-\psi_{k}\left(\boldsymbol{\mu}_{k}\right)\right| & \leq \sigma \theta_{k}(\boldsymbol{\mu}) & & \sigma>0
\end{aligned}
$$

Adaptivity

$$
\begin{aligned}
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) & \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\} \\
\theta_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)^{\omega} & \leq \eta \min \left\{m_{k}\left(\boldsymbol{\mu}_{k}\right)-m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right), r_{k}\right\}
\end{aligned}
$$

Global convergence

$$
\liminf _{k \rightarrow \infty}\left\|\nabla F\left(\boldsymbol{\mu}_{k}\right)\right\|=0
$$

Trust region method: ROM/SG approximation model

Approximation models built on two sources of inexactness

$$
\begin{aligned}
m_{k}(\boldsymbol{\mu}) & =\mathbb{E}_{\mathcal{I}_{k}}\left[\mathcal{J}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right] \\
\psi_{k}(\boldsymbol{\mu}) & =\mathbb{E}_{\mathcal{I}_{k}^{\prime}}\left[\mathcal{J}\left(\boldsymbol{\Phi}_{k}^{\prime} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right]
\end{aligned}
$$

Error indicators that account for both sources of error
$\varphi_{k}(\boldsymbol{\mu})=\alpha_{1} \mathcal{E}_{1}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)+\alpha_{2} \mathcal{E}_{2}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)+\alpha_{3} \mathcal{E}_{4}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)$
$\theta_{k}(\boldsymbol{\mu})=\beta_{1}\left(\mathcal{E}_{1}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}^{\prime}, \boldsymbol{\Phi}_{k}^{\prime}\right)+\mathcal{E}_{1}\left(\boldsymbol{\mu}_{k} ; \mathcal{I}_{k}^{\prime}, \boldsymbol{\Phi}_{k}^{\prime}\right)\right)+\beta_{2}\left(\mathcal{E}_{3}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}^{\prime}, \boldsymbol{\Phi}_{k}^{\prime}\right)+\mathcal{E}_{3}\left(\boldsymbol{\mu}_{k} ; \mathcal{I}_{k}^{\prime}, \boldsymbol{\Phi}_{k}^{\prime}\right)\right)$
Reduced-order model errors

$$
\begin{aligned}
& \mathcal{E}_{1}(\boldsymbol{\mu} ; \mathcal{I}, \boldsymbol{\Phi})=\mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})}\left[\left\|\boldsymbol{r}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right] \\
& \mathcal{E}_{2}(\boldsymbol{\mu} ; \mathcal{I}, \boldsymbol{\Phi})=\mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})}\left[\left\|\boldsymbol{r}^{\boldsymbol{\lambda}}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\Phi} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right]
\end{aligned}
$$

Sparse grid truncation errors

$$
\begin{aligned}
& \mathcal{E}_{3}(\boldsymbol{\mu} ; \mathcal{I}, \boldsymbol{\Phi})=\mathbb{E}_{\mathcal{N}(\mathcal{I})}\left[\left|\mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right|\right] \\
& \mathcal{E}_{4}(\boldsymbol{\mu} ; \mathcal{I}, \boldsymbol{\Phi})=\mathbb{E}_{\mathcal{N}(\mathcal{I})}\left[\left\|\nabla \mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right]
\end{aligned}
$$

Final requirement for convergence: Adaptivity

With the approximation model, $m_{k}(\boldsymbol{\mu})$, and gradient error indicator, $\varphi_{k}(\boldsymbol{\mu})$

$$
\begin{aligned}
m_{k}(\boldsymbol{\mu}) & =\mathbb{E}_{\mathcal{I}_{k}}\left[\mathcal{J}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right] \\
\varphi_{k}(\boldsymbol{\mu}) & =\alpha_{1} \mathcal{E}_{1}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)+\alpha_{2} \mathcal{E}_{2}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)+\alpha_{3} \mathcal{E}_{4}\left(\boldsymbol{\mu} ; \mathcal{I}_{k}, \boldsymbol{\Phi}_{k}\right)
\end{aligned}
$$

the sparse grid \mathcal{I}_{k} and reduced-order basis $\boldsymbol{\Phi}_{k}$ must be constructed such that the gradient condition holds

$$
\varphi_{k}\left(\boldsymbol{\mu}_{k}\right) \leq \kappa_{\varphi} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}
$$

Define dimension-adaptive greedy method to target each source of error such that the stronger conditions hold

$$
\begin{aligned}
& \mathcal{E}_{1}\left(\boldsymbol{\mu}_{k} ; \mathcal{I}, \boldsymbol{\Phi}\right) \leq \frac{\kappa_{\varphi}}{3 \alpha_{1}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\} \\
& \mathcal{E}_{2}\left(\boldsymbol{\mu}_{k} ; \mathcal{I}, \boldsymbol{\Phi}\right) \leq \frac{\kappa_{\varphi}}{3 \alpha_{2}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\} \\
& \mathcal{E}_{4}\left(\boldsymbol{\mu}_{k} ; \mathcal{I}, \boldsymbol{\Phi}\right) \leq \frac{\kappa_{\varphi}}{3 \alpha_{3}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}
\end{aligned}
$$

Adaptivity: Dimension-adaptive greedy method

while $\mathcal{E}_{4}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{3}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do
Refine index set: Dimension-adaptive sparse grids

$$
\mathcal{I}_{k} \leftarrow \mathcal{I}_{k} \cup\left\{\mathbf{j}^{*}\right\} \quad \text { where } \quad \mathbf{j}^{*}=\underset{\mathbf{j} \in \mathcal{N}\left(\mathcal{I}_{k}\right)}{\arg \max } \mathbb{E}_{\mathbf{j}}\left[\left\|\nabla \mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right]
$$

Adaptivity: Dimension-adaptive greedy method

while $\mathcal{E}_{4}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{3}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do
Refine index set: Dimension-adaptive sparse grids

$$
\mathcal{I}_{k} \leftarrow \mathcal{I}_{k} \cup\left\{\mathbf{j}^{*}\right\} \quad \text { where } \quad \mathbf{j}^{*}=\underset{\mathbf{j} \in \mathcal{N}\left(\mathcal{I}_{k}\right)}{\arg \max } \mathbb{E}_{\mathbf{j}}\left[\left\|\nabla \mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right]
$$

Refine reduced-order basis: Greedy sampling while $\mathcal{E}_{1}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{1}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do

$$
\begin{gathered}
\boldsymbol{\Phi}_{k} \leftarrow\left[\begin{array}{lll}
\boldsymbol{\Phi}_{k} & \boldsymbol{u}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right) & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right)
\end{array}\right] \\
\boldsymbol{\xi}^{*}=\underset{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^{*}}}{\arg \max } \rho(\boldsymbol{\xi})\left\|\boldsymbol{r}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right), \boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right)\right\|
\end{gathered}
$$

end while

Adaptivity: Dimension-adaptive greedy method

while $\mathcal{E}_{4}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{3}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do
Refine index set: Dimension-adaptive sparse grids

$$
\mathcal{I}_{k} \leftarrow \mathcal{I}_{k} \cup\left\{\mathbf{j}^{*}\right\} \quad \text { where } \quad \mathbf{j}^{*}=\underset{\mathbf{j} \in \mathcal{N}\left(\mathcal{I}_{k}\right)}{\arg \max } \mathbb{E}_{\mathbf{j}}\left[\left\|\nabla \mathcal{J}\left(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot\right)\right\|\right]
$$

Refine reduced-order basis: Greedy sampling while $\mathcal{E}_{1}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{1}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do

$$
\begin{gathered}
\boldsymbol{\Phi}_{k} \leftarrow\left[\begin{array}{lll}
\boldsymbol{\Phi}_{k} & \boldsymbol{u}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right) & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right)
\end{array}\right] \\
\boldsymbol{\xi}^{*}=\underset{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^{*}}}{\arg \max } \rho(\boldsymbol{\xi})\left\|\boldsymbol{r}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right), \boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right)\right\|
\end{gathered}
$$

end while
while $\mathcal{E}_{2}\left(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_{k}\right)>\frac{\kappa_{\varphi}}{3 \alpha_{2}} \min \left\{\left\|\nabla m_{k}\left(\boldsymbol{\mu}_{k}\right)\right\|, \Delta_{k}\right\}$ do

$$
\begin{gathered}
\boldsymbol{\Phi}_{k} \leftarrow\left[\begin{array}{lll}
\boldsymbol{\Phi}_{k} & \boldsymbol{u}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right) & \boldsymbol{\lambda}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}^{*}\right)
\end{array}\right] \\
\boldsymbol{\xi}^{*}=\underset{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{:} *}{\arg \max } \rho(\boldsymbol{\xi})\left\|\boldsymbol{r}^{\boldsymbol{\lambda}}\left(\boldsymbol{\Phi}_{k} \boldsymbol{u}_{r}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right), \boldsymbol{\Phi}_{k} \boldsymbol{\lambda}_{r}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right), \boldsymbol{\mu}_{k}, \boldsymbol{\xi}\right)\right\|
\end{gathered}
$$

Optimal boundary control of incompressible Navier-Stokes

Geometry and boundary conditions for backward facing step. Boundary conditions: viscous wall (-), parametrized inflow (-), stochastic inflow (-), outflow (-). Vorticity magnitude minimized in red shaded region.

Optimal boundary control and statistics

The mean flow $\bar{u}(x, \boldsymbol{\mu})$ (top) and standard deviation offsets $\bar{u}_{-}(x, \boldsymbol{\mu})$ (center), $\bar{u}_{+}(x, \boldsymbol{\mu})$ (bottom) corresponding to the uncontrolled, $\boldsymbol{\mu}=0$, (left) and controlled flow (right).
Boundary control along Γ_{c} effectively eliminates the re-circulation region.

Global convergence without pointwise agreement

$F\left(\boldsymbol{\mu}_{k}\right)$	$m_{k}\left(\boldsymbol{\mu}_{k}\right)$	$F\left(\hat{\boldsymbol{\mu}}_{k}\right)$	$m_{k}\left(\hat{\boldsymbol{\mu}}_{k}\right)$	$\left\\|\nabla F\left(\boldsymbol{\mu}_{k}\right)\right\\|$	ρ_{k}	Success?
$1.0740 \mathrm{e}+00$	$1.0805 \mathrm{e}+00$	$8.4412 \mathrm{e}-01$	$8.6172 \mathrm{e}-01$	$1.8723 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$
$8.4412 \mathrm{e}-01$	$8.4351 \mathrm{e}-01$	$7.4896 \mathrm{e}-01$	$7.4628 \mathrm{e}-01$	$1.3292 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$
$7.4896 \mathrm{e}-01$	$7.3757 \mathrm{e}-01$	$7.3766 \mathrm{e}-01$	$7.2654 \mathrm{e}-01$	$3.3224 \mathrm{e}-01$	$8.6570 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$7.3766 \mathrm{e}-01$	$7.3429 \mathrm{e}-01$	$7.3601 \mathrm{e}-01$	$7.3204 \mathrm{e}-01$	$1.1425 \mathrm{e}-01$	$7.3229 \mathrm{e}-01$	$1.0000 \mathrm{e}+00$
$7.3601 \mathrm{e}-01$	$7.3250 \mathrm{e}-01$	$7.3548 \mathrm{e}-01$	$7.3207 \mathrm{e}-01$	$7.9688 \mathrm{e}-02$	$1.2288 \mathrm{e}+00$	$1.0000 \mathrm{e}+00$
$7.3548 \mathrm{e}-01$	$7.3207 \mathrm{e}-01$	-	-	$1.4001 \mathrm{e}-02$	-	-

Convergence history of trust region method built on two-level approximation

One to two order of magnitude reduction in HDM evaluations

Figure 3: Cumulative number of HDM primal and adjoint evaluations as the major iterations in the various trust region algorithms progress: dimension-adaptive sparse grid [Kouri et al., 2014] (•…) and proposed method (- \mathbf{A}^{-}).

Adaptation of sparse grid and reduced basis

[^0]: ${ }^{1}$ [Zahr, Persson; 2018], [Zahr, Shi, Persson; 2020]

[^1]: ${ }^{2}$ Must be computable and apply to general, nonlinear PDEs

[^2]: ${ }^{2}$ Must be computable and apply to general, nonlinear PDEs

